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MULTIPLE NORMALIZED SOLUTIONS

FOR CHOQUARD EQUATIONS

INVOLVING KIRCHHOFF TYPE PERTURBATION

Zeng Liu

Abstract. In this paper we study the existence of critical points of the C1

functional

E(u) =
a

2

∫
RN
|∇u|2 dx+

b

4

(∫
RN
|∇u|2 dx

)2

−
1

2p

∫
RN

(Iα ∗ |u|p)|u|p dx

under the constraint

Sc =

{
u ∈ H1(RN )

∣∣∣∣ ∫
RN
|u|2 dx = c2

}
,

where a > 0, b > 0, N ≥ 3, α ∈ (0, N), (N + α)/N < p < (N + α)/

(N − 2) and Iα is the Riesz Potential. When p belongs to different ranges,
we obtain the threshold values separating the existence and nonexistence

of critical points of E on Sc. We also study the behaviors of the Lagrange

multipliers and the energies corresponding to the constrained critical points
when c→ 0 and c→ +∞, respectively.
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1. Introduction

In this paper we study the following Choquard equation perturbed by a Kirch-

hoff type nonlocal term

(1.1) −
(
a+ b

∫
RN

|∇u|2 dx
)

∆u− µu = (Iα ∗ |u|p)|u|p−2u, in RN ,

where a > 0, b > 0, µ ∈ R, N ≥ 3, α ∈ (0, N), (N+α)/N < p < (N+α)/(N−2),

∆ is the Laplacian and Iα is the Riesz potential defined as

Iα =

Γ

(
N − α

2

)
Γ

(
α

2

)
πN/22α|x|N−α

, for all x ∈ RN \ {0}.

When a = 1, b = 0, µ = −1, Problem (1.1) reduces to the nonlinear Choquard

equation or Choquard–Pekar equation

(1.2) −∆u+ u = (Iα ∗ |u|p)|u|p−2u, in RN ,

which arises in various fields of mathematical physics, such as quantum mecha-

nics, physics of laser beams, the physics of multiple-particle systems. In the

case N = 3, α = 2, p = 2, problem (1.2) was introduced in 1954 by S.I. Pekar

as a model in quantum theory of a polaron at rest [25]. In 1976, P. Choquard

used (1.2) to describe an electron trapped in its own hole, in a certain approxima-

tion to Hartree–Fock theory of one component plasma [17]. In 1996, R. Penrose

proposed (1.2) as a model of self-gravitating matter, in a programme in which

quantum state reduction is understood as a gravitational phenomenon [19]. If u

solves (1.2), then the function ψ defined by ψ(t, x) = eitu(x) is a solitary wave

of the focussing time dependent Hartree–Fock equation

iψt = −∆ψ − (Iα ∗ |ψ|p)|ψ|p−2ψ, in R+ × RN .

Equation (1.2) has been studied in past decades by variational methods starting

with the pioneering works of E.H. Lieb [17]. More recently, some new and im-

proved techniques have been devised to deal with various forms of (1.2). In [18],

Ma and Zhao proved, under some assumptions on N , α and p, that every posi-

tive solution of (1.2) is radially symmetric and monotone decreasing about some

point by the method moving planes in an integral form developed by Chen et al.

in [4]. In [20], Moroz and Schaftingen eliminated the restriction given by Ma

and Zhao in [18] and established an optimal range of parameters for the exis-

tence of a positive ground state solution of (1.2). Moreover, they proved that

all positive ground state solutions of (1.2) are radially symmetric and monotone

decaying about some point. For more details on this subject, see, for example,

the literature [1], [5], [14], [15], [21]–[23], [27], [28], and the survey [24].
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Back to (1.1) we should point out that since for all ϕ ∈ C∞0 (RN ), Iα ∗ϕ→ ϕ

as α→ 0, then equation

(1.3) −
(
a+ b

∫
RN

|∇u|2 dx
)

∆u− µu = |u|2p−2u, in RN ,

can be seen as the limit equation of (1.1) as α→ 0. Equation (1.3) is related to

the stationary solutions of

(1.4) utt −
(
a+ b

∫
RN

|∇u|2 dx
)

∆u = f(x, u),

where f(x, u) is a general nonlinearity. Equation (1.4) was proposed by Kirch-

hoff in [12] and models free vibrations of elastic strings by taking into account

the changes in length of the string produced by transverse vibrations. From

a mathematical point of view, equation (1.3) is nonlocal, in the sense that, the

term
∫
RN |∇u|2 dx∆u depends not only on the pointwise value of ∆u, but also on

the integral of |∇u|2 over the whole space. This new feature brings new mathe-

matical difficulties that make the study of Kirchhoff type equations particularly

interesting. Equation (1.3) and its variants have been studied extensively in the

literature, see [6]–[9], [13], [16], [26], [32] and the references therein.

In the present paper, motivated by the fact that physicists are often interested

in “normalized solutions”, we search for solutions in H1(RN ) having a prescribed

L2-norm. More precisely, for given c > 0,

(µc, uc) ∈ R×H1(RN ) solution of (1.1) with

∫
RN

|u|2 dx = c2.

Such solutions of Schrödinger–Poisson equations, Kirchhoff type equations, quasi-

linear Schrödinger equations and Choquard equations have been obtained re-

cently in [2], [3], [5], [11], [14], [15], [28]–[31] and the references therein. Therefore

the main aim of this paper is to extend the results of [14], [28]–[31] to the equa-

tion (1.1), moreover, we also study the asymptotic behaviors of the normalized

solutions as c→ 0 and c→ +∞, respectively.

The normalized solutions can be obtained by looking for critical points of

the following C1 functional

(1.5) E(u) =
a

2

∫
RN

|∇u|2 dx+
b

4

(∫
RN

|∇u|2 dx
)2

− 1

2p

∫
RN

(Iα ∗ |u|p)|u|p dx

constrained on the L2-spheres in H1(RN ):

Sc =

{
u ∈ H1(RN )

∣∣∣∣ ∫
RN

|u|2 dx = c2
}
.

Recalling that in this case the frequency µ is not fixed any longer but appears

as a Lagrange multiplier.
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For c > 0, we set the following constrained minimization problem

(1.6) Ec2 = inf
u∈Sc

E(u).

It follows from Lemma 2.1 below that E(u) is bounded from below on Sc if (N +

α)/N < p < min{(N+4+α)/(N−2), (N+α)/(N−2)}, then we first try to find

the minimizers of (1.6) since it is standard that the minimizers of (1.6) are critical

points of E on Sc. We note that the main difficulty of obtaining the minimizer

of (1.6) is due to the lack of compactness of the minimizing sequence {un}
on Sc. To recover the compactness one can use the concentration-compactness

principle and then rule out the cases of vanishing and dichotomy. Inspired by

[20], [28], [31], we can deal with this type problem in a simple way by observing

the two special nonlocal terms of the functional (1.5), where only technical energy

estimates are involved and the concentration-compactness principle is avoided.

To state our main results, we first give some preliminaries. By [20], [28], we

know that if Qp(x) is a positive ground state solution of the equation

(1.7) −Np−N − α
2

∆u+
N + α− (N − 2)p

2
u = (Iα ∗ |u|p)|u|p−2u, in RN ,

then it satisfies the following Pohozaev identity

(N − 2)(Np−N − α)

4
‖∇Qp‖22 +

N
(
N + α− (N − 2)p

)
4

‖Qp‖2

=
N + α

2p

∫
RN

(
Iα ∗ |Qp|p

)
|Qp|p dx,

therefore we can obtain that

(1.8) ‖∇Qp‖22 = ‖Qp‖22 =
1

p

∫
RN

(
Iα ∗ |Qp|p

)
|Qp|p dx.

Moreover, Qp(x) is the optimizer of the following sharp Gagliardo–Nirenberg

inequality with best constants

(1.9)

∫
RN

(Iα ∗ |u|p)|u|p dx

≤ p

‖Qp‖2p−2
2

(
‖∇u‖22

)(Np−N−α)/2 (‖u‖22)(N+α−(N−2)p)/2
.

for (N + α)/N < p < (N + α)/(N − 2).

For c > 0, we denote the function fc(t) and the numbers c∗, c∗∗, c∗∗ as

(1.10) fc(t) =
a

2
t+

b

4
t2 − cN+α−(N−2)p

2‖Qp‖2p−2
2

t(Np−N−α)/2, t ≥ 0,
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(1.11) c∗ =



0 if
N + α

N
< p <

N + 2 + α

N
,

aN/(2α+4)‖Q(N+2+α)/N‖2

if p =
N + 2 + α

N
,

c∗∗ if
N + 2 + α

N
< p < min

{
N + 4 + α

N
,
N + α

(N − 2)

}
,

(
b

2

)N/2(α+4−N)

‖Q(N+α+4)/N‖
(α+4)/(α+4−N)
2

if p =
N + 4 + α

N
,

0 if
N + 4 + α

N
< p <

N + α

(N − 2)
(N < α+ 4),

(1.12) c∗∗ =

(
2‖Qp‖2p−2

2

(
a

4− κ

)(4−κ)/2(
b

2(κ− 2)

)(κ−2)/2)1/(2p−κ)

,

(1.13) c∗∗ =

(
4‖Qp‖2p−2

2

κ

(
a

4− κ

)(4−κ)/2(
b

κ− 2

)(κ−2)/2)1/(2p−κ)

.

where κ := κ(N, p, α) = Np−N − α.

Remark 1.1. By a simple calculation, we see that c∗∗ < c∗∗ if

N + 2 + α

N
< p < min

{
N + 4 + α

N
,
N + α

N − 2

}
.

Our main result is the following.

Theorem 1.2. Let a > 0, b > 0, N ≥ 3, α ∈ (0, N), (N + α)/N < p <

min{(N + 4 + α)/N, (N + α)/(N − 2)} and Qp(x) is a positive ground state

solution of (1.7), λc = t
1/2
c /c and tc > 0 is the global minimizer of (1.10) for

c ≥ c∗.
(a) Assume that (N + α)/N < p ≤ (N + 2 + α)/N , then Problem (1.6)

has a minimizer uc ∈ Sc of the form uc(x) = cλ
N/2
c Qp(λcx)/‖Qp‖2 with

E(uc) = Ec2 if and only if c > c∗.

(b) Assume that (N + 2 + α)/N < p < min{(N + 4 + α)/N, (N + α)/

(N − 2)}, then Problem (1.6) has a minimizer uc ∈ Sc of the form

uc(x) = cλ
N/2
c Qp(λcx)/‖Qp‖2 with E(uc) = Ec2 if and only if c ≥ c∗.

Then for each minimizer uc there exists a couple (µc, uc) ∈ R×H1(RN ) solution

of (1.1).

From the above theorem we see that problem (1.6) has no global minimizer

if (N + α+ 2)/N ≤ p < min{(N + α+ 4)/N, (N + α)/(N − 2)} and 0 < c ≤ c∗
or p > min{(N + 4 + α)/N, (N + α)/(N − 2)} and c > 0. We try to find the
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mountain pass type normalized solutions of (1.1) and local minimizer of E on

Sc. Here, we say that a normalized solution (µc, uc) ∈ R ×H1(RN ) of (1.1) is

a mountain pass type normalized solution if E(uc) = m(c), where m(c) is defined

in the following definition.

Definition 1.3. Given c > 0, the functional E is said to have a mountain

pass geometry on Sc if there exists Kc > 0 and e ∈ H1(RN ) such that

m(c) := inf
h∈Γ(c)

max
t∈[0,1]

E(h(t)) > {E(h(0)), E(h(1))},

where

Γ(c) = {h ∈ C([0, 1];Sc) | h(0) ∈ AK(c), h(1) = e},

and AK(c) = {u ∈ Sc | ‖∇u‖22 ≤ K(c)}.

Inspired by the results of [2], [10], [11], [31], we investigate the existence of

mountain pass type normalized solutions of (1.1) and local minimizers of the

functional E on Sc. Our main result is the following.

Theorem 1.4. Assume that a > 0, b > 0, N ≥ 3, α ∈ (0, N), Qp(x) is a

positive ground state solution of (1.7), λc = (t
1/2
c )/c and tc > 0 is such that

f ′c(tc) = 0 for c > 0. Let uc,i (i = 0, 1, 2, 3) and Ẽc2 are given by (3.3) and (3.9).

(a) Assume that (N+2+α)/N < p < min{(N+4+α)/N, (N+α)/(N−2)}.
(i) If c ∈ (0, c∗∗), then E does not admit normalized solutions on the

constraint Sc.

(ii) If c = c∗∗, then (1.1) has a normalized solution (µc,0, uc,0) ∈ R ×
H1(RN ) of the form (3.3) with E(uc,0) > 0.

(iii) If c > c∗∗, then (1.1) has two normalized solutions (µc,1, uc,1),

(µc,2, uc,2) ∈ R×H1(RN ) of the form (3.3) with E(uc,1) = m(c) > 0

and E(uc,1) = m(c) > E(uc,2) = Ẽc2 , which means that (µc,1, uc,1)

is a mountain pass type normalized solution of (1.1) and uc,2 is a lo-

cal minimizer of E on Sc when c ∈ (c∗∗, c∗∗) and a global minimizer

of E on Sc when c ≥ c∗∗.
(b) Assume that N + 4 + α/N ≤ p < (N + α)/(N − 2) (i.e. N < α + 4),

then (1.1) has a mountain pass type normalized solution (µc,3, uc,3) ∈
R × H1(RN ) of the form (3.3) with E(uc,3) = m(c) > 0 if and only

if c > c∗.

Remark 1.5. Theorems 1.2 and 1.4 provide threshold values of c∗ ≥ 0 and

c∗∗ > 0 separating the existence and nonexistence of minimizers E on Sc and

normalized solutions of (1.1) when p belongs to different ranges. Our results are

sharp. Theorems 1.2 and 1.4 extend the results of [14, Theorem 1.1], [28] and

[31, Theorems 1.1 and 1.2], where Ye studied (1.1) when a = 1 and b = 0 in [28],

Zeng and Zhang studied (1.1) when α = 0 in [31].
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When µ is replaced by the external potential V (x), the concentration and

symmetry breaking of the minimizers were studied in [5], [15], [28], [30]. In [2],

[10], [11], Jeanjean et al. investigated the asymptotic behavior of the Lagrange

multiplier µc corresponding to the global minimizer uc as c→ +∞. In [3], Bel-

lazzini et al. show that if the function Ec2/c
2 is monotone decreasing, then they

prove that the dichotomy case of the minimizing sequence does not occur, which

is crucial to proving the convergence of the minimizing sequences. Motivated by

these results and the proofs of our theorems 1.2 and 1.4, we attempt to inves-

tigate some properties of normalized solutions of equation (1.1) by introducing

some new observations and energy estimates, therefore we study the behaviors

of the Lagrange multipliers and the energies corresponding to the constrained

critical points of E as c → 0 and c → +∞, respectively. Our main results are

the following.

Theorem 1.6. Assume that (N+α)/N < p < (N+2+α)/N or (N+4+α)/

N < p < (N + α)/(N − 2) (N < α+ 4). Let (µc, uc) be the normalized solution

obtained by Theorem 1.2 and Theorem 1.4 with uc(x) = cλ
N/2
c Qp(λcx)/‖Qp‖2.

(a) If (N +α)/N < p < (N + 2 +α)/N , then λc is monotone increasing for

c > 0 small enough and Ec2/c
2 is monotone decreasing for c > 0 small

enough; furthermore, as c→ 0,

λc → 0,
c2p−2

λN+α+2−Np
c

→ 2‖Qp‖2p−2
2

Np−N − α
a,

Ec2

c2
→ 0,

µc
λ2
c

→ (N − 2)p−N − α
Np−N − α

a.

(b) If (N + 4 + α)/N < p < (N + α)/(N − 2) (i.e. N < α + 4), then λc is

monotone decreasing for c > 0 and as c→ 0,

λcc→ +∞, c2p−4

λN+4+α−Np
c

→ 2‖Qp‖2p−2
2

Np−N − α
b,

E(uc)→ +∞, µc
λ4
cc

2
→ (N − 2)p−N − α

Np−N − α
b.

Theorem 1.7. Assume that (N +α)/N < p < min{(N +α+4)/N, (N +α)/

(N − 2)}. Let (µc, uc) be the normalized solution obtained by Theorem 1.2 and

Theorem 1.4 with uc(x) = cλ
N/2
c Qp(λcx)/‖Qp‖2.

(a) If (N +α)/N < p < min{(N + 4 +α)/N, (N +α)/(N − 2)} and (µc, uc)

is obtained by Theorem 1.2, then, as c→ +∞,

λcc→ +∞, c2p−4

λN+4+α−Np
c

→ 2‖Qp‖2p−2
2

Np−N − α
b,

E(uc)→ −∞,
µc
c2λ4

c

→ (N − 2)p−N − α
Np−N − α

b.

Moreover,
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(i) if (N +α)/N < p < min{2, (N + 4 +α)/N, (N +α)/(N − 2)}, then

λc → 0 as c→ +∞;

(ii) for α + 4 > N , if 2 < p < min{(N + 4 + α)/N, (N + α)/(N − 2)},
then λc → +∞ as c→ +∞.

(b) If (µc, uc) is obtained by Theorem 1.4 with E(uc) > 0, then, as c→ +∞,

λc → 0, λcc→ 0,
c2p−2

λN+2+α−Np
c

→ 2‖Qp‖2p−2
2

Np−N − α
a,

E(uc)→ 0,
µc
λ2
c

→ (N − 2)p−N − α
Np−N − α

a.

Finally, we explicit a relationship between the ground states of (1.1) and the

global minimizers of Ec2 . Let (µc, uc) be a normalized solution of (1.1). Set

Aµc
= {u | u is a solution of (1.1) with µ = µc},

then Aµc
6= ∅ since uc ∈ Aµc

. Here v is called a ground state solution of (1.1)

with µ = µc if v ∈ Aµc
and I(v) = inf{I(u) : u ∈ Aµc

}.

Theorem 1.8. Assume that a > 0, b > 0, N = 3 or N = 4, α ∈ (0, N),

(N + α)/N < p < min{(N + 4 + α)/N, (N + α)/(N − 2)}. Let uc be a global

minimum of E on Sc and µc < 0 be its Lagrange multiplier. Then uc is a ground

state solution of (1.1) with µ = µc.

We conclude this introduction by pointing out that whether or not the moun-

tain pass type normalized solution of (1.1) is the ground state solution of (1.1)

is an open question.

The paper is organized as follows: Section 2 is devoted to the preliminary

and we give some lemmas which are crucial to our proofs. Section 3 contains

the proofs of the Theorems 1.2 and 1.4. Section 4 is devoted to the proofs of the

Theorems 1.6 and 1.7. In Section 5, we prove Theorem 1.8.

Notations. Lp(RN ) (1 < p ≤ +∞) is the usual Lebesgue space with the

standard norm

‖u‖p =

(∫
RN

|u|p dx
)1/p

.

H1(RN ) is the usual Sobolev spaces with the standard norm

‖u‖H1 =

(∫
RN

|∇u|2 dx+

∫
RN

|u|2 dx
)1/2

.

2. Preliminaries

For convenience, we set

A(u) =

∫
RN

|∇u|2 dx, B(u) =

∫
RN

(Iα ∗ |u|p)|u|p dx
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then

E(u) =
a

2
A(u) +

b

4
A2(u)− 1

2p
B(u).

It follows from (1.9) that

(2.1) B(u) ≤ pcN+α−(N−2)p

‖Qp‖2p−2
2

(A(u))(Np−N−α)/2.

Therefore, for any u ∈ Sc, we have

E(u) ≥ a

2
A(u) +

b

4
(A(u))2 − cN+α−(N−2)p

2‖Qp‖2p−2
2

(A(u))(Np−N−α)/2(2.2)

= fc(t) ,
a

2
t+

b

4
t2 − cN+α−(N−2)p

2‖Qp‖2p−2
2

t(Np−N−α)/2,

where t = A(u).

The following lemma shows that problem (1.6) makes sense if (N + α)/N <

p < min{(N + α+ 4)/N, (N + α)/(N − 2)}.

Lemma 2.1. Assume that (N + α)/N < p < min{(N + α + 4)/N, (N + α)/

(N−2)}, then Ec2 ∈ (−∞, 0) if and only if c > c∗, where c∗ is defined by (1.11).

Proof. For each c > c∗ and u ∈ Sc, by (2.2) we know that

E(u) ≥ b

4
(A(u))2 − cN+α−(N−2)p

2‖Qp‖2p−2
2

(A(u))(Np−N−α)/2 > −∞

since (N + α)/N < p < min{(N + α + 4)/N, (N + α)/(N − 2)}, which means

that E is bounded from below on Sc and Ec2 is well defined.

For u ∈ Sc and λ > 0, we have λN/2u(λx) ∈ Sc and

(2.3) g(λ) , E
(
λN/2u(λx)

)
=
aλ2

2
A(u) +

bλ4

4
(A(u))2 − λNp−N−α

2p
B(u).

Hence Ec2 = inf
u∈Sc

E(u) ≤ E(λN/2u(λx))→ 0 as λ→ 0, so that Ec2 ≤ 0.

If (N +α)/N < p < (N +α+ 2)/N , then 0 < Np−N −α < 2, and it follows

from (2.3) that Ec2 < 0 for all c > 0. Note that cλN/2Qp(λx)/‖Qp‖2 ∈ Sc, by

(1.8), (1.9) and (2.3), we obtain that

g(λ) = E

(
cλN/2

‖Qp‖2
Qp(λx)

)
(2.4)

=
a

2
c2λ2 +

b

4
(c2λ2)2 − cN+α−(N−2)p

2‖Qp‖2p−2
2

(cλ)Np−N−α

=
a

2
c2λ2 +

b

4
(c2λ2)2 − c2p

2‖Qp‖2p−2
2

λNp−N−α.

If Np = N + α+ 2, then

g(λ) = λ2

(
ac2

2
− c2p

2‖Qp‖2p−2
2

)
+
b

4
(c2λ2)2,
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there exists λ0 > 0 such that g(λ) < 0 for λ ∈ (0, λ0) and c > a1/(2p−2)‖Qp‖2,

therefore we have Ec2 < 0.

If (N + α + 2)/N < p < min{(N + α + 4)/N, (N + α)/(N − 2)}, that is,

2 < Np−N − α < 4, by the Young inequality we have

a

2
c2λ2 +

b

4
(c2λ2)2 = η

(
a

2η
c2λ2

)
+ θ

(
b

4θ
(c2λ2)2

)
≥
(
a

2η

)η(
b

4θ

)θ
(c2λ2)(Np−N−α)/2,

where 2η = N + α + 4−Np and 2θ = Np−N − α − 2, and “ = ” holds if and

only if

ac2λ2

2η
=
b(c2λ2)2

4θ
, i.e. c2λ2 =

2aθ

bη
=

2a(Np−N − α− 2)

b(N + α+ 4−Np)
,

thus it is deduced from (2.4) that

g(λ) ≥ c
N+α−(N−2)p
∗∗ − cN+α−(N−2)p

2‖Qp‖2p−2
2

(cλ)Np−N−α,

where c∗∗ is given by (1.12). Therefore, set λ2
1 = 2a(Np−N − α− 2)/(c2b(N +

α+ 4−Np)), if c ∈ (0, c∗∗), then g(λ) > 0 for all λ > 0; if c = c∗∗, then g(λ) > 0

for all λ 6= λ1 and g(λ1) = 0; if c > c∗∗, then we obtain that

g(λ1) =
c
N+α−(N−2)p
∗∗ − cN+α−(N−2)p

2‖Qp‖2p−2
2

(cλ1)Np−N−α < 0

so that Ec2 < 0 for c > c∗. �

Remark 2.2. If 0 < N − α < 4, then (N + α + 4)/N < (N + α)/(N − 2).

For p = (N + α+ 4)/N , by (2.4), we have

g(λ) = E

(
cλN/2

‖Qp‖2
Qp(λx)

)
(2.5)

=
a

2
c2λ2 +

(
b

4
− c2(α+4−N)/N

2‖Qp‖2(α+4)/N
2

)(
c2λ2

)2
=
a

2
c2λ2 +

(
c
2(α+4−N)/N
∗ − c2(α+4−N)/N

) (c2λ2)2

2‖Qp‖2(α+4)/N
2

,

if c ∈ (0, c∗], then g(λ) > 0 for all λ > 0 and problem (1.6) has no minimizer,

if c > c∗, then it is deduced from (2.5) that g(λ) → −∞ as λ → +∞, therefore

Ec2 = −∞ and Problem (1.6) has no minimizer. For (N + α + 4)/N < p <

(N+α)/(N−2), by (2.3), we know that g(λ)→ −∞ as λ→ +∞, thus Ec2 = −∞
and problem (1.6) has no minimizer.

For (N +2+α)/N < p < min{(N +α+4)/N, (N +α)/(N −2)}, our another

aim is to find the constrained critical points of E on Sc. By (2.1) and (2.2), we

first study the properties of fc for t > 0 in the following lemmas.
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Lemma 2.3. Assume that (N + α + 2)/N < p < min{(N + α + 4)/N, (N +

α)/(N − 2)}. Then there exists c∗∗ > 0 such that :

(a) if c ∈ (0, c∗∗) then f ′c(t) > 0;

(b) if c = c∗∗ then there is a unique t0 > 0 such that f ′c(t0) = 0;

(c) if c > c∗∗ then there exist two positive constants t1, t2: 0 < t1 < t0 < t2
such that fc(t1) > 0, fc(t1) > fc(t2), f ′c(t1) = f ′c(t2) = 0, f ′′c (t1) < 0,

f ′′c (t2) > 0, where t1 is the unique local maximum point of fc and t2 is

the unique local minimum point of fc.

Proof. Recall that 2 < Np−N − α < 4 and

fc(t) =
a

2
t+

b

4
t2 − cN+α−(N−2)p

2‖Qp‖2p−2
2

t(Np−N−α)/2, t > 0

then we have

f ′c(t) =
a

2
+
b

2
t− (Np−N − α)cN+α−(N−2)p

4‖Qp‖2p−2
2

t(Np−N−α−2)/2.

Similar to the proof of Lemma 2.1, set 2η = N + α + 4 − Np and 2θ = Np −
N − α− 2, then η + θ = 1 and by the Young inequality we have

a

2
+
b

2
t = η

(
a

2η

)
+ θ

(
bt

2θ

)
≥
(
a

2η

)η(
b

2θ

)θ
tθ,

and “ = ” holds if and only if

a

2η
=
bt

2θ
, i.e. t , t0 =

aθ

bη
=
a(Np−N − α− 2)

b(N + α+ 4−Np)
,

we obtain

f ′c(t) ≥
(Np−N − α)

(
c
N+α−(N−2)p
∗∗ − cN+α−(N−2)p

)
4‖Qp‖2p−2

2

t(Np−N−α−2)/2,

where c∗∗ is given by (1.13). If c ∈ (0, c∗∗) then f ′c(t) > 0 for all t > 0; if

c = c∗∗ then f ′c(t0) = 0 and f ′c(t) > 0 for all t > 0 and t 6= t0; if c > c∗∗ then

f ′c(t0) < 0 and there exist two positive constants t1, t2: 0 < t1 < t0 < t2 such

that fc(t1) > 0, fc(t1) > fc(t2), f ′c(t1) = f ′c(t2) = 0, f ′′c (t1) < 0 and f ′′c (t2) > 0

since f ′c(0) = a/2 > 0 and f ′c(t) → +∞ as t → +∞. By standard arguments

we can show that the local maximum point t1 is unique and the local minimum

point t2 is unique. �

Remark 2.4. By Remark 1.1, we see that c∗∗ < c∗∗. Particularly, if c >

c∗∗, then by Lemma 2.1, we have fc(t2) = min
t>0

fc(t) < 0, where t2 is given in

Lemma 2.3.

Lemma 2.5. Assume that (N+α+4)/N≤p < (N+α)/(N−2) (0<N−α<4),

then there is a unique t3 ∈ (0,+∞) such that f ′c(t3) = 0 and f ′′c (t3) < 0 if and

only if c > c∗, where c∗ is given in (1.11).
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Proof. In the case Np = N + α+ 4, then

fc(t) =
a

2
t+

(
b

4
− c2(α+4−N)/N

2‖Q(N+α+4)/N‖
2(α+4)/N
2

)
t2,

f ′c(t) =
a

2
+
c
2(α+4−N)/N
∗ − c2(α+4−N)/N

‖Q(N+α+4)/N‖
2(α+4)/N
2

t.

Therefore, if c ∈ (0, c∗], then f ′c(t) > 0 for all t > 0; if c > c∗, then there exists a

unique t3 > 0 such that f ′c(t3) = 0 and f ′′c (t3) < 0.

In the case (N +α+ 4)/N < p < (N +α)/(N −2) and c > c∗, then fc(t) > 0

for t > 0 small and fc(t) → −∞ as t → +∞ and by a standard arguments, we

can show that there is a unique t3 > 0 such that f ′c(t3) = 0, fc(t3) = maxt>0 fc(t)

and f ′′c (t3) < 0. �

The following lemma reveals the relationship between the critical point of E

constrained on Sc and the critical point of fc, which plays a crucial role in our

proofs.

Lemma 2.6. Assume that c > 0 and t > 0 such that f ′c(t) = 0, then

Qλt
=
cλ
N/2
t

‖Qp‖2
Qp(λtx) ∈ Sc, µc = −

(
N + α− (N − 2)

)
c2p−2λNp−N−αt

2‖Qp‖2p−2
2

satisfy (1.1) and E(Qλt
) = fc(t), which means that (µc, Qλt

) ∈ R ×H1(RN ) is

a is a normalized solution of (1.1).

Proof. Since f ′c(t) = 0, we have

(2.6)
a

2
+
b

2
t− (NP −N − α)cN+α−(N−2)p

4‖Qp‖2p−2
2

t(Np−N−α−2)/2 = 0.

Set λt = t1/2/c, then λ2
t c

2 = t,

(2.7) A(Qλt) = λ2
t c

2, B(Qλt) =
pcN+α−(N−2)p

‖Qp‖2p−2
2

(λtc)
Np−N−α

and it can be deduced from (2.6) that

a+ bA(Qλt
) = (a+ bc2λ2

t ) =
(Np−N − α)c2p−2

2‖Qp‖2p−2
2

λNp−N−α−2
t ,

thus we have

−
(
a+ b

∫
RN

|∇Qλt
| dx
)

∆Qλt

= − (Np−N − α)c2p−2

2‖Qp‖2p−2
2

λNp−N−α−2
t ∆Qλt
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=
c2p−1

‖Qp‖2p−1
2

λ
Np−(N/2)−α
t

·
((
‖Qp‖2
cλ
N/2
t

)2p−1

λαt (Iα ∗ |Qλt
(x)|p)|Qλt

(x)|p−2Qλt
(x)

− ‖Qp‖2
cλ
N/2
t

N + α− (N − 2)p

2
Qλt

(x)

)
= (Iα ∗ |Qλt(x)|p)|Qλt(x)|p−2Qλt(x) + µcQλt(x),

where

µc = −c
2p−2λNp−N−αt

‖Qp‖2p−2
2

N + α− (N − 2)p

2
,

therefore we see that Qλt
(x) satisfies the equation

−
(
a+ b

∫
RN

|∇u|2 dx
)

∆u− (Iα ∗ |u|p)|u|p−2u = µcu

and Qλt
∈ Sc, i.e. (µc, Qλt

) is a normalized solution of (1.1). By (1.8), (1.9) and

(2.2), we can obtain that E(Qλt
) = fc(t). �

3. Existence of constrained critical points

Our goal in this section is to prove Theorems 1.2 and 1.4.

Proof of Theorem 1.2. (1) If (N + α)/N < p < (N + α + 2)/N , then

0 < Np−N −α < 2, it can be deduced from (2.2) that for each c > 0, fc(t) has

a unique global minimizer, denote by tc, thus by (2.2), we have

(3.1) Ec2 = inf
u∈Sc

E(u) ≥ fc(tc).

Let Qp be a positive ground state solution of (1.7), we set

Qλ(x) = cλN/2Qp(λx)/‖Qp‖2,

then Qλ(x) ∈ Sc, by (1.8), (1.9) and (2.7), we obtain

E(Qλ) =
a

2
c2λ2 +

b

4

(
c2λ2

)2 − cN+α−(N−2)p

2‖Qp‖2p−2
2

(
c2λ2

)(Np−N−α)/2
, fc(c

2λ2).

We set λc = t
1/2
c /c, then c2λ2

c = tc and Ec2 = inf
u∈Sc

E(u) ≤ E(Qλc
) = fc(tc).

This, together with (3.1), implies that

Ec2 = inf
u∈Sc

E(u) = fc(tc) = min
t>0

fc(t),

which means that Qλc(x) is a minimizer of problem (1.6)

If Np = N + α+ 2, then

fc(t) =

(
a

2
− c2p−2

2‖Qp‖2p−2
2

)
t+

b

4
t2.
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It is easy to see that if c ≤ a1/(2p−2)‖Qp‖2, then fc(t) > 0 for all t > 0, thus

we have E(u) ≥ fc(A(u)) > 0 for all u ∈ Sc. It follows from (2.3) that Ec2 ≤ 0

for all c > 0, therefore (1.6) has no minimizer for Np = N + α + 2 and c ∈
(0, a1/(2p−2)‖Qp‖2]. If c > a1/(2p−2)‖Qp‖2, then fc(t) has a unique minimizer

tc =
1

b

(
c2p−2

‖Qp‖2p−2
2

− a
)
.

Set λc = t
1/2
c /c, then we have

E(Qλc) = fc(tc) ≤ Ec2 = inf
u∈Sc

E(u) ≤ E(Qλc
)

and

Ec2 = E(Qλc
) = fc(tc) = −

(
a‖Qp‖2p−2

2 − c2p−2
)2

4b‖Qp‖2p−2
2

.

(2) For (N + α + 2)/N < p < min{(N + α + 4)/N, (N + α)/(N − 2)}, by

Lemma 2.1, we have

fc(t) ≥
c
N+α−(N−2)p
∗∗ − cN+α−(N−2)p

2‖Qp‖2p−2
2

t(Np−N−α)/2,

and “ = ” holds if and only if t4 = 2a(Np −N − α − 2)/(b(N + α + 4 −Np)),
where c∗∗ is defined by (1.12). Clearly, if c ∈ (0, c∗∗) then fc(t) > 0 for all t > 0

and problem (1.6) has no minimizer; if c = c∗∗ then fc(t4) = 0 and fc(t) > 0 for

all t > 0 and t 6= t4, therefore

0 = E(Qλt4
) = fc(t4) ≤ Ec2 = inf

u∈Sc

E(u) ≤ E(Qλt4
) = fc(t4) = 0,

which means that Qλt4
is a minimizer of Problem (1.6), where

(3.2) λt4 =
t
1/2
4

c∗∗
, Qλt4

=
cλ
N/2
t4

‖Qp‖2
Qp(λt4x).

If c > c∗∗, then it follows from Remark 2.4 that

E(Qλt2
) = fc(t2) = min

t>0
fc(t) ≤ Ec2 = inf

u∈Sc

E(u) ≤ E(Qλt2
) = fc(t2),

then problem (1.6) has a minimizer Qλt2
of the form (3.2). �

Proof of Theorem 1.4. We denote uc,i and µc,i (i = 0, 1, 2, 3) as

(3.3)

uc,i(x) =
cλ
N/2
c,ti

‖Qp‖2
Qp(λc,tix),

µc,i = −
c2p−2λNp−N−αti

‖Qp‖2p−2
2

N + α− (N − 2)p

2
,

then we have

(3.4) λc,ti =
t
1/2
i

c
, ‖uc,i(x)‖22 = c2, A(uc,i(x)) = c2λ2

c,ti = ti,
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where ti (i = 0, 1, 2, 3) are given in Lemmas 2.3 and 2.5, respectively.

(1) Assume that (N+2+α)/N < p < min{(N+4+α)/N, (N+α)/(N−2)}.
(a) Arguing by contradiction, if (µc, uc) ∈ R× Sc is a normalized solution of

(1.1) for some c ∈ (0, c∗∗), then we have

(3.5) aA(uc) + b
(
A(uc)

)2 −B(uc) = µc‖uc‖22

and it follows from [6] that the solution of (1.1) satisfies the following Pohozaev

identity:

(3.6)
(N − 2)

2

(
a+ bA(uc)

)
A(uc)−

Nµc
2
‖uc‖22 =

N + α

2p
B(uc),

thus we get

(3.7) 0 = aA(uc) + b(A(uc))
2 − Np−N − α

2p
B(uc).

By (2.1), (3.7) and Lemma 2.3, we obtain

0 ≥ aA(uc) + b(A(uc))
2 − (Np−N − α)cN+α−(N−2)p

2‖Qp‖2p−2
2

(A(uc))
(Np−N−α)/2

≥
(Np−N − α)

(
c
N+α−(N−2)p
∗∗ − cN+α−(N−2)p

)
2‖Qp‖2p−2

2

(A(uc))
(Np−N−α)/2 > 0,

this is a contradiction. Therefore, if c ∈ (0, c∗∗), then (1.1) does not admit

normalized solutions on the constraint Sc.

(b) It follows from Lemmas 2.3 and 2.6 that if c = c∗∗, then (1.1) has a nor-

malized solution (µc,0, uc,0) ∈ R×H1(RN ) with E(uc,0) > 0,

(c) It follows from Lemmas 2.3 and 2.6 that if c > c∗∗, then (1.1) has two

normalized solutions (µc,1, uc,1), (µc,2, uc,2) ∈ R×H1(RN ) with E(uc,1) > 0 and

E(uc,1) > E(uc,2).

Now we first show that (µc,1, uc,1) ∈ R × H1(RN ) is a mountain pass type

normalized solution of (1.1). Set K(c) = t1/2 and e = uc,2, then A(uc,2) =

c2λ2
c,t2 = t2 and for any h ∈ Γ(c), by (2.2), we have E(h(s)) ≥ fc(A(h(s))).

Since A(h(0)) ≤ K(c), we obtain that

max
s∈[0,1]

E(h(s)) ≥ max
t∈[t1/2,t2]

fc(t) = fc(t1) = E(uc,1).

Therefore it holds

(3.8) m(c) ≥ fc(t1) = E(uc,1),

where m(c) is defined in the Definition 1.3. On the other hand, set

t(s) =
2t2 − t1

2
s+

t1
2
, h(s) =

c(2−N)/2

t
(s)N/4‖Qp‖2Qp

(
t(s)1/2

c
x

)
,
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then

t(0) =
t1
2
, t(1) = t2, t

(
t1

2t2 − t1

)
= t1, ‖h(s)‖22 = c2, A(h(s)) = t(s),

thus we see that h(s) ∈ Γ(c) and

m(c) ≤ max
s∈[0,1]

E(h(s)) = max
s∈[0,1]

fc(t(s)) = fc(t1) = E(uc,1).

Combining with (3.8), we obtain that m(c) = fc(t1) = E(uc,1). Therefore

(µc,1, uc,1) ∈ R×H1(RN ) is a mountain pass type normalized solution of (1.1).

Now we show that uc,2 is a local minimizer. We define

(3.9) Ẽc2 = inf
{
E(u) | u ∈ Sc, ‖∇u‖22 > t1

}
.

It follows from (2.2), (3.4) and Lemma 2.3 that

E(uc,2) ≥ Ẽc2 ≥ inf
{
fc
(
‖∇u‖22

)
| u ∈ Sc, ‖∇u‖22 > t1

}
≥ inf

{
fc(t) | t > t1

}
≥ fc(t2) = E(uc,2),

hence we obtain Ẽc2 = E(uc,2), which means that uc,2 is a local minimizer of E

on Sc.

(2) If (N + 4 + α)/N ≤ p < (N + α)/(N − 2) (i.e. N < α + 4), then it

can be deduced from Lemmas 2.5 and 2.6 that (1.1) has a normalized solution

(µc,3, uc,3) ∈ R×H1(RN ) with E(uc,3) > 0 if and only if c > c∗. We can prove

that (µc,3, uc,3) ∈ R × H1(RN ) is a mountain pass type normalized solution of

(1.1) in the same way as above, here we omit it. �

Remark 3.1. It follows from Remark 2.4 and the definition of Ẽc2 that if

c > c∗∗, then Ec2 = Ẽc2 , which means that uc,2 is also a global minimizer of E

on Sc.

4. Asymptotic behavior

In this section, we consider the asymptotic behaviors of the Lagrange mul-

tiplier µc and the energy E(uc) as c → 0 and c → +∞. Let (µc, uc) be the

normalized solution of (1.1), where uc = cλ
N/2
c Qp(λcx)/‖Qp‖2, µc is the corre-

sponding Lagrange multiplier, then we have

Ec2 = E(uc) =
a

2
A(uc) +

b

4
(A(uc))

2 − 1

2p
B(uc)

=
a

2
c2λ2

c +
b

4

(
c2λ2

c

)2 − cN+α−(N−2)p

2‖Qp‖2p−2
2

(
c2λ2

c

)(Np−N−α)/2
.

By (3.5), we see that

ac2λ2
c + b

(
c2λ2

c

)2 − pcN+α−(N−2)p

‖Qp‖2p−2
2

(
c2λ2

c

)(Np−N−α)/2
= µcc

2,(4.1)
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which, together with (3.6), implies that

0 = aA(uc) + b(A(uc))
2 − Np−N − α

2p
B(uc)(4.2)

= ac2λ2
c + b

(
c2λ2

c

)2 − (Np−N − α)c2p

2‖Qp‖2p−2
2

λNp−N−αc ,

and

E(uc) =
a(Np−N − α− 2)

2(Np−N − α)
A(uc) +

b(Np−N − α− 4)

4(Np−N − α)
(A(uc))

2(4.3)

=
a(Np−N − α− 2)

2(Np−N − α)
c2λ2

c +
b(Np−N − α− 4)

4(Np−N − α)

(
c2λ2

c

)2
,

therefore we have

(4.4)
E(uc)

c2
=
a(Np−N − α− 2)

2(Np−N − α)
λ2
c +

b(Np−N − α− 4)

4(Np−N − α)
c2λ4

c .

For c > 0 and λ > 0, we set

(4.5) F (λ, c) = aλN+α+2−Np + bc2λN+α+4−Np − Np−N − α
2‖Qp‖2p−2

2

c2p−2,

by the definition of uc and (4.2), we obtain that F (λc, c)c
2λNp−N−αc = 0, which

implies that F (λc, c) = 0. Moreover, we have

Fc(λ, c) :=
∂F (λ, c)

∂c
= 2bcλN+α+4−Np − (p− 1)(Np−N − α)

‖Qp‖2p−2
2

c2p−3,

Fλ(λ, c) :=
∂F (λ, c)

∂λ
= a(N + α+ 2−Np)λN+α+1−Np

+ b(N + α+ 4−Np)c2λN+α+3−Np.

Proof of Theorem 1.6. (1) If (N + α)/N < p < (N + α + 2)/N , then

E(uc) = Ec2 and Fλ(λc, c) > 0 for all c > 0. It follows from the implicit

function theorem that for all c > 0, there exists a unique continuous function

λ( · ) : R→ R+, hereinafter we denote λ(c) by λc, such that F (λc, c) = 0 and

(4.6)
dλc
dc

= −Fc(λc, c)
Fλ(λc, c)

=

λN+α+2−Np
c

c

(
(p− 1)(Np−N − α)

‖Qp‖2p−2
2

c2p−2

λN+α+2−Np
c

− 2bc2λ2
c

)
a(N + α+ 2−Np)λN+α+1−Np

c + b(N + α+ 4−Np)c2λN+α+3−Np
c

.

We first claim that λc → 0 as c → 0. Otherwise, we assume that there exists

M > 0 such that λc ≥ M for all c > 0 small, then it follows from (4.2) that,

as c→ 0,

a ≤ a+ bc2λ2
c =

Np−N − α
2‖Qp‖2p−2

2

c2p−2

λN+α+2−Np
c

≤ Np−N − α
2‖Qp‖2p−2

2

c2p−2

MN+α+2−Np → 0,
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which contradicts a > 0, and our claim holds. By (4.2), (4.5) and F (λc, c) = 0,

we obtain that, as c→ 0,

c2p−2

λN+α+2−Np
c

→ 2‖Qp‖2p−2
2

Np−N − α
a > 0.

This, together with (4.6), implies that there exists c0 > 0 such that for each c ∈
(0, c0), dλc/dc > 0, that is, λc is monotone increasing for c ∈ (0, c0). Moreover,

we can deduce from (4.4) that Ec2/c
2 = E(uc)/c

2 → 0 as c → 0 and Ec2/c
2 is

monotone decreasing for c ∈ (0, c0).

By (3.5), (4.1) and (4.2), we have

bµcc
2 =

(
1− 2p

Np−N − α

)(
aA(uc) + b(A(uc))

2
)

=
(N − 2)p−N − α
Np−N − α

(
ac2λ2

c + bc4λ4
c

)
,

which means that µc < 0 and as c→ 0,

µc =
(N − 2)p−N − α
Np−N − α

(aλ2
c + bc2λ4

c)→ 0,

µc
λ2
c

=
(N − 2)p−N − α
Np−N − α

(a+ bc2λ2
c)→

(N − 2)p−N − α
Np−N − α

a.

(2) If (N + α + 4)/N < p < (N + α)/(N − 2) with N − α < 4, then

Fλ(λc, c) < 0. It follows from the implicit function theorem that for all c > 0,

there exists a unique continuous function λc > 0 such that F (λc, c) = 0 and

(4.7)
dλc
dc

= −Fc(λc, c)
Fλ(λc, c)

=

(
cλN+α+4−Np
c

)( (p− 1)(Np−N − α)

‖Qp‖2p−2
2

c2p−4

λN+α+4−Np
c

− 2b

)
a(N + α+ 2−Np)λN+α+1−Np + b(N + α+ 4−Np)c2λN+α+3−Np

c

.

We claim that λcc → +∞ as c → 0. Otherwise, we assume that there exists

M > 0 such that λcc ∈ (0,M ] for all c > 0 small, then it follows from (4.2) that,

as c→ 0,

b ≤ a

c2λ2
c

+ b =
Np−N − α
2‖Qp‖2p−2

2

c2p−4

λN+α+4−Np
c

≤ Np−N − α
2‖Qp‖2p−2

2

cN+α−(N−2)p

MN+α+4−Np → 0

since N +α− (N − 2)p > 0 and Np−N −α− 4 > 0, this contradicts b > 0, and

our claim holds, and we also obtain that λc → +∞ as c → 0. By (4.2), (4.5)

and F (λc, c) = 0, we obtain that, as c→ 0,

c2p−4

λN+α+4−Np
c

→ 2‖Qp‖2p−2
2

Np−N − α
b > 0.
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This, together with (4.7), implies that there exists c1 > 0 such that for each

c ∈ (0, c1), (dλc)/dc < 0, that is, λc is monotone decreasing for c ∈ (0, c1).

Moreover, we can deduce from (4.3) that E(uc)→ +∞ as c→ 0.

As in the above case (1), we have

µcc
2 =

(N − 2)p−N − α
Np−N − α

(ac2λ2
c + bc4λ4

c),

which means that µc < 0 and as c→ 0,

µc
c2λ4

c

=
(N − 2)p−N − α
Np−N − α

(
a

c2λ2
c

+ b

)
→ (N − 2)p−N − α

Np−N − α
b.

This completes the proof of Theorem 1.6. �

To prove Theorem 1.7, we define

G(t, c) = a+ bt− (Np−N − α)cN+α−(N−2)p

2‖Qp‖2p−2
2

t(Np−N−α−2)/2.

Set tc = c2λ2
c , then it follows from (4.2) that G(tc, c) = f ′c(tc) = 0. Moreover,

we have

Gt(t, c) :=
∂G(t, c)

∂t

= b− (Np−N − α)cN+α−(N−2)p

2‖Qp‖2p−2
2

Np−N − α− 2

2
t(Np−N−α−4)/2,

Gc(t, c) :=
∂G(t, c)

∂c

= − (Np−N − α)(N + α− (N − 2)p)

2‖Qp‖2p−2
2

cN+α−(N−2)p−1t(Np−N−α−2)/2.

Proof of Theorem 1.7. (1) If (N + α)/N < p < min{(N + 4 + α)/N,

(N + α)/(N − 2)} and (uc, µc) is obtained by Theorem 1.2 with c > c∗, then

it follows from the proof of Theorem 1.2 that tc = c2λ2
c is the unique global

minimizer of fc(t), that is, f ′c(tc) = 0 and f ′′c (tc) = Gt(tc, c) > 0. By the

implicit function theorem, we obtain that there exists a unique positive function

t( · ) : (c∗∗,+∞)→ R+, hereinafter we denote t(c) by tc, such that

dtc
dc

= −Gc(tc, c)
Gt(tc, c)

> 0,

i.e. tc is monotone increasing for all c > c∗.

We first claim that tc → +∞ as c→ +∞. Otherwise, we assume that there

exists M > 0 such that tc ≤ M for all c > c∗ and tc → M as c → +∞, then it

follows from (3.7) that

a+ bM ≥ a+ btc =
Np−N − α
2‖Qp‖2p−2

2

cN+α−(N−2)pt(Np−N−α−2)/2
c → +∞,
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as c → +∞. This is a contradiction and our claim holds. Therefore we have

cλc → +∞ as c→ +∞. Similar to the proof of Theorem 1.6, we obtain that

(4.8)

E(uc)→ −∞,

c2p−4

λN+4+α−Np
c

→ 2‖Qp‖2p−2
2

Np−N − α
b,

µ2
c

c2λ4
c

→ (N − 2)p−N − α
Np−N − α

b

as c→ +∞ since G(tc, c) = G(c2λ2
c , c) = 0.

If (N+α)/N < p < min{2, (N+2+α)/N, (N+α)/(N−2)}, then 2p−4 < 0

and N + α+ 4−NP > 0, and by (4.8), we see that λc → 0 as c→ +∞.

For α + 4 > N , if 2 < p < min{(N + 4 + α)/N, (N + α)/(N − 2)}, then

2p− 4 > 0 and N +α+ 4−Np > 0, by (4.8), we see that λc → +∞ as c→ +∞.

(2) If (uc, µc) is obtained by Theorem 1.4 with c > c∗∗ and E(uc) > 0,

then it follows from the proof of Theorem 1.4 that tc = c2λ2
c is the unique local

maximizer of fc(t), that is, f ′c(tc) = 0 and f ′′c (tc) = Gt(tc, c) < 0. By the implicit

function theorem, we obtain that there exists a unique positive function tc such

that
dtc
dc

= −Gc(tc, c)
Gt(tc, c)

< 0,

i.e. tc is monotone decreasing for all c > c∗.

We claim that tc → 0 as c → +∞. Otherwise, we assume that there exists

M > 0 such that tc ≥M for all c > c∗ and tc →M as c→ +∞, then it follows

from (4.2) that,

a+ bM ← a+ btc =
Np−N − α
2‖Qp‖2p−2

2

cN+α−(N−2)p t(Np−N−α−2)/2
c → +∞,

as c → +∞. This is a contradiction and our claim holds. Therefore we have

cλc → 0 and λc → 0 as c→ +∞. Similar to the proof of Theorem 1.6, we obtain

that

E(uc)→ 0,
c2p−2

λN+2+α−Np
c

→ 2‖Qp‖2p−2
2

Np−N − α
a,

µc
λ2
c

→ (N − 2)p−N − α
Np−N − α

a

as c→ +∞ since G(tc, c) = G(c2λ2
c , c) = 0. �

5. Relationship between global minimizers

on the constraint and ground states

In this section, we describe a relationship between the ground states of (1.1)

and the global minimizers of Ec2 when N = 3 or N = 4, α ∈ (0, N) and p ∈
((N+α)/N,min{(N+4+α)/N, (N+α)/(N−2)}). It follows from Theorem 1.2

that there exist a global minimizer uc of Ec2 and a Lagrange multiplier µc < 0

such that (µc, uc) is a solution of (1.1).
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Proof of Theorem 1.8. For each v ∈ Aµc
, then v satisfies the Pohozaev

identity (3.6). Set

ϕt(x) = v

(
x

t

)
for t > 0,

then ‖ϕt‖22 = tN‖v‖22 and, by (3.6),

I(ϕt(x)) =
atN−2

2
A(v) +

bt2(N−2)

4
A2(v)− µct

N

2
‖v‖22 −

tN+α

2p
B(v)

=

(
tN−2 − N − 2

N
tN
)
a

2
A(v)

+

(
t2N−4

2
− N − 2

N
tN
)
b

2
A2(v) +

(
N + α

Np
tN − tN+α

p

)
1

2
B(v).

Thus

d

t
I(ϕt(x)) =

(
1− t2

)a(N − 2)tN−3

2
A(v)

+
(
1− t4−N

)b(N − 2)tN−5

2
A2(v) +

(
1− tα

) (N + α)tN−1

2p
B(v).

This implies that for N = 3 or N = 4, I(ϕt(x)) ≤ I(v) for all t > 0. There exists

t0 > 0 such that ϕt0 ∈ Sc. Therefore we have I(uc) ≤ I(ϕt0(x)) ≤ I(v), which

means that uc is a ground state of (1.1) with µ = µc < 0. �

Acknowledgments. The author wishes to thank the anonymous referees

very much for the valuable suggestions and comments that greatly improve the

manuscript.

References

[1] C. Alves, F. Gao, M. Squassina and M. Yang, Singularly perturbed critical Choquard

equations, J. Differential Equations 263 (2017), 3943–3988.

[2] J. Bellazzini, L. Jeanjean and T. Luo, Existence and instability of standing waves

with prescribed norm for a class of Schrödinger-Poisson equations, Proc. Lond. Math.

Soc. 107 (2013), 303–339.

[3] J. Bellazzini and G. Siciliano, Scaling properties of functionals and existence of con-

strained minimizers, J. Funct. Anal. 261 (2011), 2486–2507.

[4] W. Chen, C. Li and B. Ou, Classification of solutions for an integral equation, Commun.

Pure Appl. Math. 59 (2006), 330–343.

[5] Y. Deng, L. Lu and W. Shuai, Constraint minimizers of mass critical hartree energy

functionals: Existence and mass concentration, J. Math. Phys. 56 (2015), 249–261.

[6] Y. Deng, S. Peng and W. Shuai, Existence and asymptotic behavior of nodal solutions

for the Kirchhoff-type problems in R3, J. Funct. Anal. 269 (2015), 3500–3527.

[7] G. Figueiredo, N. Ikoma and J. Santos Júnior, Existence and concentration result for

the Kirchhoff type equations with general nonlinearities, Arch. Ration. Mech. Anal. 213

(2014), 931–979.

[8] Y. He and G. Li, Standing waves for a class of Kirchhoff type problems in R3 involving

critical Sobolev exponents, Calc. Var. Partial Differential Equations 54 (2015), 3067–3106.



318 Z. Liu

[9] X. He and W. Zou, Existence and concentration behavior of positive solutions for a Kirch-

hoff equation in R3, J. Differential Equations 252 (2012), 1813–1834.

[10] L. Jeanjean, Existence of solutions with prescribed norm for semilinear elliptic equations,

Nonlinear Anal. 28 (1997), 1633–1659.

[11] L. Jeanjean, T. Luo and Z. Wang, Multiple normalized solutions for quasi-linear

Schrodinger equations, J. Differential Equations 259 (2016), 3894–3928.

[12] G. Kirchhoff, Mechanik, Leipzig, Teubner, 1883.

[13] G. Li and H. Ye, Existence of positive ground state solutions for the nonlinear Kirchhoff

type equations in R3, J. Differential Equations 257 (2014), 566–600.

[14] G. Li and H. Ye, The existence of positive solutions with prescribed L2-norm for non-

linear Choquard equations, J. Math. Phys. 55 (2014), 251–268.

[15] S. Li, J. Xiang and X. Zeng, Ground states of nonlinear Choquard equations with multi-

well potentials, J. Math. Phys. 57 (2016), 081515.

[16] Y. Li, F. Li and J. Shi, Existence of a positive solution to Kirchhoff type problems without

compactness conditions, J. Differential Equations 253 (2012), 2285–2294.

[17] E. Lieb, Existence and uniqueness of the minimizing solution of Choquard’s nonlinear

equation, Stud. Appl. Math. 57 (1977), 93–105.

[18] L. Ma and L. Zhao, Classification of positive solitary solutions of the nonlinear Choquard

equation, Arch. Ration. Mech. Anal. 195 (2010), 455–467.

[19] I. Moroz, R. Penrose and P. Tod, Spherically-symmetric solutions of the Schröinger–
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