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NONLINEAR VECTOR DUFFING INCLUSIONS

WITH NO GROWTH RESTRICTION

ON THE ORIENTOR FIELD

Nikolaos S. Papageorgiou — Calogero Vetro — Francesca Vetro

Abstract. We consider nonlinear multivalued Dirichlet Duffing systems.

We do not impose any growth condition on the multivalued perturbation.

Using tools from the theory of nonlinear operators of monotone type, we
prove existence theorems for the convex and the nonconvex problems. Also

we show the existence of extremal trajectories and show that such solutions

are C1
0 (T,RN )-dense in the solution set of the convex problem (strong re-

laxation theorem).

1. Introduction

In this paper, we continue our work on multivalued nonlinear Duffing systems

initiated in Papageorgiou–Vetro–Vetro [14]. So, the system under consideration

is the following:

(1.1)

−a(u′(t))′ − r(t)|u′(t)|p−2u′(t) ∈ F (t, u(t)) for a.a. t ∈ T = [0, b],

u(0) = u(b) = 0, 1 < p < +∞.

Here a : RN → RN is a monotone homeomorphism and incorporates as special

cases many differential operators of interest. In [14] we proved existence theorems

for both the convex and nonconvex problems (that is, F is convex valued and

respectively nonconvex valued). Also, we proved a relaxation theorem showing
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that the solutions of the nonconvex problem are C1
0 (T,RN )-dense in the solution

set of the convex problem. In [14] the hypotheses on the multivalued perturbation

F (t, x) (the orientor field), dictated a sublinear growth for F (t, · ). In contrast

here we do not impose any global growth condition on F (t, · ). Instead, we

employ a Hartman-type condition on F (t, · ). As in [14], we prove existence

theorems for the convex and nonconvex problems. We also show the existence

of “extremal solutions”, that is, solutions of (1.1) when F (t, x) is replaced by

extF (t, x) (= the extreme points of F (t, x)). In the context of control systems

such solutions correspond to states generated by “bang-bang controls”. Finally

we prove a “strong relaxation theorem” showing that the extremal solutions are

C1
0 (T,RN )-dense in the solution set of the convex problem. The last two results

were mentioned as open problems in [14].

The presence of the drift term r( · )|u′( · )|p−2u′( · ), characterizes problem (1.1)

as nonvariational. So, our method of proof is topological but it is different from

the one in [14]. There, the main tool was fixed point theory. Here our arguments

are based on the theory of nonlinear operators of monotone type.

We mention that the starting point for the work in [14], was the recent pa-

per of Kalita–Kowalski [10], where the authors studied scalar semilinear Duffing

inclusions (the convex problem only). Earlier results for single-valued such equa-

tions, can be found in Galewski [2], Kowalski [11], Tomiczek [15].

2. Mathematical background – hypotheses

Let X be a reflexive Banach space and X∗ its topological dual. By 〈 · , · 〉 we

denote the duality brackets for the pair (X∗, X). A multivalued map A : D ⊆
X → 2X

∗
is said to be monotone, if

〈u∗ − x∗, u− x〉 ≥ 0 for all (u, u∗), (x, x∗) ∈ GrA.

The map A( · ) is strictly monotone, if it is monotone and

〈u∗ − x∗, u− x〉 = 0 ⇒ u = x.

We say that A( · ) is maximal monotone, if it is monotone and

〈u∗ − x∗, u− x〉 ≥ 0 for all (u, u∗) ∈ GrA ⇒ (x, x∗) ∈ GrA.

This condition is equivalent to saying that GrA is maximal with respect to

inclusion among the graphs of all monotone maps.

A nonlinear operator K : X → X∗ is said to be of type (S)+, if the following

property holds

un
w−→ u in X and lim sup

n→+∞
〈K(un), un − u〉 ≤ 0 ⇒ un → u in X.

A multivalued map V : X → 2X
∗

is said to be pseudomonotone, if

(a) for every x ∈ X, V (x) ⊆ X∗ is nonempty, convex and w-compact;
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(b) for any sequences {un}n≥1 ⊆ X, {u∗n}n≥1 ⊆ X∗ such that

un
w−→ u in X, u∗n

w−→ u∗ in X∗, u∗n ∈ V (un) for all n ∈ N,

lim sup
n→+∞

〈u∗n, un − u〉 ≤ 0,

we have u∗ ∈ V (u) and 〈u∗n, un〉 → 〈u∗, u〉.
Pseudomonotone maps exhibit remarkable surjectivity properties. Recall

that a multivalued map V : X → 2X
∗ \ {∅} is said to be coercive, if

inf[〈u∗, u〉 : u∗ ∈ V (u)]

‖u‖
→ +∞ as ‖u‖ → +∞.

We have the following surjectivity result for pseudomonotone maps (see

Gasiński–Papageorgiou [3, Theorem 3.2.52, p. 336]), see also Francu̇ [1].

Theorem 2.1. If V : X → 2X
∗

is pseudomonotone and coercive, then V ( · )
is surjective.

Let Y be a separable Banach space. We introduce the following families of

subsets of Y :

Pf(c)(Y ) = {A ⊆ Y : A is nonempty, closed (and convex)},

P(w)k(c)(Y ) = {A ⊆ Y : A is nonempty, (w-) compact (and convex)}.

Let (Ω,Σ) be a measurable space and F : Ω → 2Y \ {∅}. We say that F

is graph measurable if GrF = {(ω, y) ∈ Ω × Y : y ∈ F (ω)} ∈ Σ ⊗ B(Y ) with

B(Y ) being the Borel σ-field of Y . Suppose that µ( · ) is a finite measure de-

fined on Σ. By the Yankov–von Neumann–Aumann selection theorem (see Hu

and Papageorgiou [8, Theorem 2.14, p. 158]), a graph measurable multifunction

F : Ω→ 2Y \ {∅} admits a measurable selection, that is, there exists a function

f : Ω→ Y which is (Σ, B(Y ))-measurable and f(ω) ∈ F (ω) µ-almost everywhere.

Given a graph measurable multifunction F : Ω→ 2Y \ {∅} and 1 ≤ p ≤ +∞ we

set

SpF = {f ∈ Lp(Ω, Y ) : f(ω) ∈ F (ω) µ-a.e. on Ω}.

It is easy to check that

SpF 6= ∅ if and only if inf[‖y‖ : y ∈ F (ω)] ≤ ψ(ω) µ-a.e., with ψ ∈ Lp(Ω).

The set SpF is decomposable, that is,

(A, f1, f2) ∈ Σ× SpF × S
p
F ⇒ χAf1 + χΩ\Af2 ∈ SpF .

Recall that for C ⊆ Ω, χC is the characteristic function of C defined by

χC(ω) =

1 if ω ∈ C,
0 if ω 6∈ C.
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On Pf (Y ) we can define an extended metric, known as the Hausdorff metric, by

setting

h(C,K) = max
{

max
c∈C

d(c,K),max
k∈K

d(k,C)
}

for all C,K ∈ Pf (Y ).

We know that (Pf (Y ), h) is a complete metric space. We say that a multifunction

F : Y → Pf (Y ) is h-continuous, if it is continuous from Y into (Pf (Y ), h).

Suppose that E, Z are Hausdorff topological spaces and G : E → 2Z \ {∅}
a multifunction. We say that G( · ) is upper semicontinuous (u.s.c.) (resp. lower

semicontinuous (l.s.c.)), if for all C ⊆ Z closed, G−(C) = {e ∈ E : G(e)∩C 6= ∅}
(resp. G+(C) = {e ∈ E : G(e) ⊆ C}) is closed in E.

For any A ⊆ RN , we set |A| = sup[|a| : a ∈ A] (hereafter | · | denotes the

Euclidean norm on RN ). Let T = [0, b]. By L1
w(T,RN ) we denote the Lebesgue

space L1(T,RN ) equipped with the weak norm ‖ · ‖w defined by

‖u‖w = sup

[∣∣∣∣ ∫ t

s

u(τ) dτ

∣∣∣∣ : 0 ≤ s ≤ t ≤ b
]
, u ∈ L1(T,RN ).

Equivalently, we can define the weak norm of u by

‖u‖w = sup

[∣∣∣∣ ∫ t

0

u(τ) dτ

∣∣∣∣ : 0 ≤ t ≤ b
]
.

On the other hand by Lθ(T,RN )w (1 ≤ θ < +∞), we denote the space Lθ(T,RN )

furnished with the weak topology. The following simple fact can be found in Hu

and Papageorgiou [9, Lemma 2.8, p. 24].

Proposition 2.2. If {un, u}n≥1 ⊆ Lp(T,RN ), 1 < p < +∞, un
‖·‖w−−−→ u

and sup
n≥1
‖un‖p < +∞, then un

w−→ u in Lp(T,RN ).

Consider the following nonlinear vector eigenvalue problem:

−(|u′(t)|p−2u′(t))′ = λ̂|u(t)|p−2u(t) a.e. on T, u(0) = u(b) = 0.

This problem has a smallest eigenvalue λ̂1 > 0, which admits the following

variational characterization

(2.1) λ̂1 = inf

[‖u′‖pp
‖u‖pp

: u ∈W 1,p
0 ((0, b),RN ), u 6= 0

]
(see Gasiński and Papageorgiou [3, p. 768]).

Now we introduce the hypotheses on the map a : RN → RN and on the drift

coefficient r( · ).

H(a) a : RN → RN is continuous, monotone, a(0) = 0 and

a(y) = ĉ(|y|)y for all y ∈ RN ,



Nonlinear Vector Duffing Inclusions 261

with ĉ : (0,+∞)→ (0,+∞) continuous, c0t
p ≤ ĉ(t)t2 for all t > 0, some

c0 > 0 and

|a(y)| ≤ c1
[
1 + |y|p−1

]
for some c1 > 0 and all y ∈ RN .

Remark 2.3. Evidently a : RN → RN is maximal monotone and

c0|y|p ≤ (a(y), y)RN for all y ∈ RN .

Hypotheses H(a) are more restrictive than those in [14], where no growth

restriction was imposed on a( · ). Nevertheless, as the examples which follow

illustrate, conditions H(a) are still very general and incorporate many differential

operators of interest.

Example 2.4. The following maps a : RN → RN satisfy hypotheses H(a):

a(y) = |y|p−2y for all y ∈ RN , 1 < p < +∞

(this map corresponds to the vector p-Laplacian),

a(y) = |y|p−2y + |y|q−2y for all y ∈ RN , 1 < q < p < +∞

(this map corresponds to the vector (p, q)-Laplacian),

a(y) = (1 + |y|2)(p−2)/2y for all y ∈ RN , 1 < p < +∞.

H(r) r ∈ L∞(T ) (T = [0, b]), r(t) ≥ 0 for almost all t ∈ T and ‖r‖∞ < c0λ̂
1/p
1 .

Finally, in what follows by ‖ · ‖, we denote the norm of the Sobolev space

W 1,p
0 ((0, b),RN ). On account of the Poincaré inequality, we have

‖u‖ = ‖u′‖p for all u ∈W 1,p
0 ((0, b),RN ).

In what follows to simplify our notation, we write

W 1,p
0 = W 1,p

0

(
(0, b),RN

)
.

Also we write

C0(T,RN ) = {u ∈ C(T,RN ) : u(0) = u(b) = 0},

C1
0 (T,RN ) = C1(T,RN ) ∩ C0(T,RN ).

Finally, if 1 ≤ p < +∞, then 1 < p′ ≤ +∞ is defined by 1/p+ 1/p′ = 1.

3. The convex problem

In this section we prove an existence theorem for the convex problem (that

is, F is convex valued). The precise hypotheses on F (t, x) are the following:

H(F )1 F : T × RN → Pkc(RN ) is a multifunction such that

(i) for all x ∈ RN , the multifunction t → F (t, x) admits a measurable

selection;
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(ii) for almost all t ∈ T , GrF (t, · ) ⊆ RN × RN is closed;

(iii) for every η > 0, there exists aη ∈ Lp
′
(T )+ such that

|F (t, x)| ≤ aη(t) for almost all t ∈ T , all |x| ≤ η

and there exists M > 0 such that

(h, x)RN < 0 for almost all t ∈ T , all |x| ≥M , all h ∈ F (t, x).

Remark 3.1. Hypothesis H(F )1 (i) is satisfied if for all x ∈ RN the multi-

function t→ F (t, x) is graph measurable. Hypotheses H(F )1 (ii), (iii) imply that

for almost all t ∈ T , F (t, · ) is usc (see Hu and Papageorgiou [8, Proposition 2.23,

p. 43]). The second part of hypothesis H(F )1 (iii) is a Hartman-type condition

on F (t, · ) (see Hartman [6], [7]). In the context of scalar, single-valued Duffing

equations, this hypothesis is in fact a sign condition saying that F (t, x) < 0 for

x ≥M and F (t, x) > 0 for x ≤ −M . We stress that no global growth condition

is imposed on F (t, · ). This distinguishes our work here from that in [14].

Consider the nonlinear operator A : W 1,p
0 →W−1,p′ = (W 1,p

0 )∗ defined by

〈A(u), y〉 =

∫ b

0

(a(u′), y′)RN dt for all u, y ∈W 1,p
0 .

From Gasiński and Papageorgiou [5, Problem 2.192, p. 279], we have:

Proposition 3.2. If hypotheses H(a) hold, then A( · ) is continuous, mono-

tone (hence maximal monotone too) and of type (S)+.

Then let V : W 1,p
0 →W−1,p′ be defined by

〈V (u), y〉 = 〈A(u), y〉 −
∫ b

0

r(t)|u′|p−2(u′, y)RN dt for all u, y ∈W 1,p
0 ,

that is,

(3.1) V (u) = A(u)− r( · )|u′( · )|p−2u′( · ) for all u ∈W 1,p
0 .

Proposition 3.3. If hypotheses H(a), H(r) hold, then V : W 1,p
0 → W−1,p′

is pseudomonotone and coercive.

Proof. Suppose that

(3.2)
un

w−→ u in W 1,p
0 , V (un)

w−→ u∗ in W−1,p′ ,

lim sup
n→+∞

〈V (un), un − u〉 ≤ 0.
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From (3.2) and since W 1,p
0 is embedded compactly in C0(T,RN ), we have

un → u in C0(T,RN ),

⇒
∫ b

0

r(t)|u′n|p−2(u′n, un − u)RN dt→ 0,

⇒ lim sup
n→+∞

〈A(un), un − u〉 ≤ 0 (see (3.1), (3.2)),

⇒ un → u in W 1,p
0 (see Proposition 3.2).(3.3)

From (3.3) it follows that u′n → u′ in Lp(T,RN ). So, by passing to a subsequence

if necessary, we may assume that

(3.4) u′n(t)→ u′(t), |u′n(t)|, |u′(t)| ≤ ξ(t)

for almost all t ∈ T and all n ∈ N, with ξ ∈ Lp(T )+. Then, from (3.4) and the

dominated convergence theorem, we have

(3.5)

∫ b

0

∣∣|u′n|p−2u′n − |u′|p−2u′
∣∣p′dt→ 0

⇒ r|u′n|p−2u′n → r|u′|p−2u′ in Lp
′
(T,RN )

(see H(r)). On account of (3.3) and Proposition 3.2, we have

(3.6) A(un)→ A(u) in W−1,p′ .

From (3.5) and (3.6) it follows that for the original sequence we have

〈V (un), un〉 → 〈V (u), u〉, V (u) = u∗ ⇒ V ( · ) is pseudomonotone.

Also, for all u ∈W 1,p
0 , we have

〈V (u), u〉 =

∫ b

0

(a(u′), u′)RN dt−
∫ b

0

r(t)|u′|p−2(u′, u)RN dt(3.7)

≥ c0‖u′‖pp − ‖r‖∞‖u′‖p−1
p ‖u‖p

(see hypothesis H(a) and use Hölder’s inequality)

≥
[
c0 −

‖r‖∞
λ̂

1/p
1

]
‖u′‖pp (see (2.1)),

⇒ V ( · ) is coercive (see H(r)). �

Let N : W 1,p
0 → 2L

p′ (T,RN ) be the multifunction defined by

N(u) = Sp
′

F ( · ,u( · )) for all u ∈W 1,p
0 .

From [14, Proposition 3], we have:

Proposition 3.4. If hypotheses H(r), H(F )1 hold, then the multifunction

N( · ) has values in Pwkc(L
p′(T,RN )) and it is usc from W 1,p

0 into Lp
′
(T,RN )w.
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Recall that W 1,p
0 ↪→ Lp(T,RN ) compactly. Hence

Lp
′
(T,RN ) ↪→W−1,p′ compactly

(see Gasiński and Papageorgiou [3, Lemma 2.2.27, p. 141] )

⇒ N : W 1,p
0 → Pkc(W

−1,p′) is compact

(that is, N( · ) maps bounded sets to relatively compact ones)

⇒ u→ V (u)−N(u) is pseudomonotone(3.8)

(see Gasiński and Papageorgiou [3, Proposition 3.2.51, p. 334]). Also for all

u ∈W 1,p
0 and all f ∈ Sp

′

F ( · ,u( · )) we have

〈V (u), u〉 −
∫ b

0

(f, u)RN dt

≥
[
c0 −

‖r‖∞
λ̂

1/p
1

]
‖u′‖pp −

∫
{|u|≥M}

(f, u)RN dt−
∫
{|u|<M}

(f, u)RN dt

(see (3.7))

≥
[
c0 −

‖r‖∞
λ̂

1/p
1

]
‖u′‖pp − c2 for some c2 > 0

(see hypothesis H(F )1 (iii))

⇒ u→ V (u)−N(u) is coercive.(3.9)

Theorem 3.5. If hypotheses H(a), H(r), H(F )1 hold, then problem (1.1) has

a solution u0 ∈ C1
0 (T,RN ).

Proof. On account of (3.8), (3.9) and Theorem 2.1, we can find u0 ∈W 1,p
0

such that

0 ∈ V (u0) −N(u0),

⇒ V (u0) = f for some f ∈ N(u0) = Sp
′

F ( · ,u0( · ))

⇒ 〈A(u0), y〉 −
∫ b

0

r(t)|u′0|p−2(u′0, y)RN dt

=

∫ b

0

(f, y)RN dt for all y ∈W 1,p
0

⇒ −a(u′0(t))′ − r(t)|u′0(t)|p−2u′0(t) = f(t)(3.10)

for almost all t ∈ T , u0(0) = u0(b) = 0. From (3.10) as in the proof of [14,

Proposition 2], we conclude that u0 ∈ C1
0 (T,RN ). �
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Remark 3.6. An interesting consequence of the above proof, is that if by

Ŝc ⊆ C1
0 (T,RN ) we denote the solution set of the convex problem, then Ŝc ∈

Pk(C1
0 (T,RN )) (see also [14]).

4. The nonconvex problem

In this section we prove an existence theorem for the nonconvex problem

(that is, F has nonconvex values). The precise hypotheses on the orientor field

F (t, x) are the following:

H(F )2 F : T × RN → Pf (RN ) is a multifunction such that

(i) (t, x)→ F (t, x) is graph measurable;

(ii) for almost all t ∈ T , x→ F (t, x) is l.s.c.

(iii) the same as hypothesis H(F )1 (iii).

Theorem 4.1. If hypotheses H(a), H(r), H(F )2 hold, then problem (1.1) has

a solution u0 ∈ C1
0 (T,RN ).

Proof. Consider the multifunction N : W 1,p
0 → Pf (Lp

′
(T,RN )) defined by

N(u) = Sp
′

F ( · ,u( · )) for all u ∈W 1,p
0 .

According to Theorem 7.27 of Hu and Papageorgiou [8, p. 237], N( · ) is l.s.c. and

of course it has decomposable values. So, we can apply Theorem 8.7 of Hu and

Papageorgiou [8, p. 245] and produce a continuous map g : W 1,p
0 → Lp

′
(T,RN )

such that

g(u) ∈ N(u) for all u ∈W 1,p
0 .

We consider the following nonlinear Duffing system−a(u′(t))′ − r(t)|u′(t)|p−2u′(t) = g(u)(t) for a.a. t ∈ T ,
u(0) = u(b) = 0.

Then this problem has a solution u0 ∈ C1
0 (T,RN ) (see Theorem 3.5). Evidently

u0 ∈ C1
0 (T,RN ) is a solution of (1.1).

5. Extremal solutions

Let extF (t, x) denote the set of extreme points of F (t, x). In this section we

deal with the following nonlinear multivalued Duffing system:

(5.1)

−a(u′(t))′ − r(t)|u′(t)|p−2u′(t) ∈ extF (t, u(t)) for almost all t ∈ T ,
u(0) = u(b) = 0.

The solutions of (5.1) are of course solutions of (1.1) and are known as “extremal

solutions”. To produce extremal solutions, first we prove an a priori pointwise

bound for the solutions of (1.1), using hypothesis H(F )1 (iii).
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Proposition 5.1. If H(a), H(r), H(F )1 (iii) hold and u ∈ C1
0 (T,RN ) is

a solution of problem (1.1), then ‖u‖∞ ≤M .

Proof. Let θ(t) = |u(t)|2/2 for all t ∈ T . Suppose that the proposition is

not true. Then

θ(t0) = max[θ(t) : t ∈ T ] >
1

2
M2.

Since θ(0) = θ(b) = 0, we see that we may assume that t0 ∈ (0, b). Then we can

find δ > 0 small such that

(5.2) |u(t)| ≥M and
d

dt
|u(t)|2 ≤ 0 for all t ∈ [t0, t0 + δ] ⊆ T.

We have −a(u′(t))′ − r(t)|u′(t)|p−2u′(t) = f(t) for almost all t ∈ T , u(0) =

u(b) = 0, with f ∈ Sp
′

F ( · ,u( · )).

We take inner product with u(t), integrate over [t0, t] with t ≤ t0 + δ and

perform integration by parts. We obtain

(5.3) (a(u′(t)), u(t))RN − (a(u′(t0)), u(t0))RN

−
∫ t

t0

(a(u′), u′)RN ds+

∫ t

t0

r(s)|u′|p−2(u′, u)RN ds =

∫ t

t0

(−f, u)RN ds.

Note that

d

dt
θ(t)

∣∣∣∣
t=t0

= 0 ⇒ 1

2

d

dt
|u(t)|2

∣∣∣∣
t=t0

= 0 ⇒ (u′(t0), u(t0))RN = 0.

Therefore we have

(5.4) (a(u′(t0)), u(t0))RN = ĉ(|u′(t0)|)(u′(t0), u(t0))RN = 0

(see hypothesis H(a)). Also we have

(5.5)

∫ t

t0

r(s)|u′|p−2(u′, u)RN ds =
1

2

∫ t

t0

r(s)|u′|p−2 d

ds
|u|2 ds ≤ 0

(see hypothesis H(r) and (5.2)). Finally, on account of (5.2) and hypothesis

H(F )1 (iii), we have

(5.6)

∫ t

t0

(−f, u)RN ds > 0.

Returning to (5.3) and using (5.4)–(5.6), we obtain

(a(u′(t)), u(t))RN −
∫ t

t0

(a(u′), u′)RN dt > 0

⇒ (a(u′(t)), u(t))RN > 0 for all t ∈ (t0, t0 + δ]
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(see hypothesis H(a))

⇒ ĉ(|u′(t)|)(u′(t), u(t))RN > 0 for all t ∈ (t0, t0 + δ],

⇒ (u′(t), u(t))RN =
1

2

d

dt
|u(t)|2 > 0 for all t ∈ (t0, t0 + δ],

a contradiction (see (5.2)). Therefore

θ(t0) =
1

2
|u(t0)|2 ≤ 1

2
M2 ⇒ |u(t)| ≤M for all t ∈ T. �

Let pM : RN → RN be the M -radial retraction defined by

pM (x) =

x if |x| ≤M,
Mx

|x|
if M < |x|,

for all x ∈ RN .

Evidently pM ( · ) is nonexpansive, that is,

|pM (x)− pM (v)| ≤ |x− v| for all x, v ∈ RN .

On account of Proposition 5.1, in (5.1) we may replace F by F0 defined by

F0(t, x) = F (t, pM (x)) for all t ∈ T and all x ∈ RN .

Note that F0(t, x) satisfies the same conditions as F (t, x) and in addition

|F0(t, x)| ≤ aM (t) for a.a. t ∈ T , all x ∈ RN , with aM ∈ Lp
′
(T )+.

Therefore without any loss of generality we may assume that

|F (t, x)| ≤ aM (t) for a.a. t ∈ T and all x ∈ RN .

Let D = {h ∈ Lp′(T,RN ) : |h(t)| ≤ aM (t) for almost all t ∈ T}. We consider

the following Duffing system

(5.7) −a(u′(t))′ − r(t)|u′(t)|p−2u′(t) = h(t)

for almost all t ∈ T , u(0) = u(b) = 0. Let

C0 = {u ∈ C1
0 (T,RN ) : u is a solution of (5.7) with h ∈ D}.

Proposition 5.2. If hypotheses H(a), H(r) hold, then C0 ⊆ C1
0 (T,RN ) is

compact.

Proof. Let {un}n≥1 ⊆ C0. We have

(5.8) −a(u′n)′ − r(t)|u′n|p−2u′n = hn, un(0) = un(b) = 0 for all n ∈ N.
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We act with un in (5.8) and after integration by parts, we obtain

c0‖u′n‖pp − ‖r‖∞‖u′n‖p−1
p ‖un‖p ≤

∫ b

0

(hn, un)RNdt ≤ c3‖u′n‖p(5.9)

for some c3 > 0,

⇒
[
c0 −

‖r‖∞
λ̂

1/p
1

]
‖u′n‖p−1

p ≤ c3 for all n ∈ N,

⇒ {un}n≥1 ⊆W 1,p
0 is bounded (see hypothesis H(r)),

⇒ {un}n≥1 ⊆ C0(T,RN ) is relatively compact.

From (5.8) we have

a(u′n(t)) = a(u′n(0))−
∫ t

0

r(s)|u′n|p−2u′n ds−
∫ t

0

hn ds(5.10)

for all t ∈ T and all n ∈ N,

⇒ u′n(t) = a−1

[
a(u′n(0))−

∫ t

0

[
r(s)|u′n|p−2u′n + hn

]
ds

]
(5.11)

for all t ∈ T and all n ∈ N.

Note that
∫ b

0
u′n(t) dt = 0. So, from (5.11) and Proposition 3.1 (ii) of Maná-

sevich and Mawhin [12], we have that

(5.12) {a(u′n(0))}n≥1 ⊆ RN is bounded.

Then, from (5.10), (5.12) and Arzelà–Ascoli theorem, it follows that

(5.13) {a(u′n( · ))}n≥1 ⊆ C(T,RN) is relatively compact.

Consider the map â−1 : C(T,RN)→ C(T,RN) defined by

â−1(u)( · ) = a−1(u( · )) for all u ∈ C(T,RN).

Evidently this map is continuous and bounded (that is, maps bounded sets to

bounded sets). So, from (5.13) it follows that

(5.14) {u′n}n≥1 ⊆ C(T,RN) is relatively compact.

From (5.9) and (5.14), we have that

{un}n≥1 ⊆ C1
0 (T,RN) is relatively compact.

So, we may assume that un → u in C1
0 (T,RN). Evidently D ⊆ Lp

′
(T,RN ) is

w-compact and so we may assume that hn
w−→ h in Lp

′
(T,RN ), for h ∈ D.

We have∫ b

0

(a(u′n), y′)RN dt−
∫ b

0

r(t)|u′n|p−2(u′n, y)RN dt =

∫ b

0

(hn, y)RN dt

for all y ∈W 1,p
0 and all n ∈ N.
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Passing to the limit as n→ +∞ and using (5.12) and (5.13), we obtain∫ b

0

(a(u′), y′)RN dt−
∫ b

0

r(t)|u′|p−2(u′, y)RN dt =

∫ b

0

(h, y)RN dt

for all y ∈W 1,p
0 , then u ∈ C0. Therefore C0 ⊆ C1

0 (T,RN ) is compact. �

Now let C = convC0 ∈ Pkc(C1
0 (T,RN )) (see Gasiński and Papageorgiou [4,

Theorem 5.86, p. 852]). If by Ŝc we denote the solution set of the convex problem,

then Ŝc ⊆ C.

To produce extremal solutions (that is, solutions of (5.1)), we introduce the

following conditions on the orientor field F (t, x).

H(F )3 F : T × RN → Pkc(RN ) is a multifunction such that

(i) for all x ∈ RN , t→ F (t, x) is graph measurable;

(ii) for almost all t ∈ T , x→ F (t, x) is h-continuous;

(iii) the same as hypothesis H(F )1 (iii).

Remark 5.3. Hypotheses H(F )3 (i), (ii) imply that (t, x)→ F (t, x) is graph

measurable (see Hu and Papageorgiou [8, Proposition 7.9, p. 229]). As we already

mentioned, by replacing F with F0 if necessary (see Proposition 5.1), without

any loss of generality we may assume that

(5.15) |F (t, x)| ≤ aM (t)

for almost all t ∈ T , all x ∈ RN , with aM ∈ Lp
′
(T )+.

Theorem 5.4. If hypotheses H(a), H(r), H(F )3 hold, then problem (5.1) has

a solution u0 ∈ C1
0 (T,RN ).

Proof. Recall that C = convC0 ∈ Pkc(C
1
0 (T,RN )) (see Proposition 5.2).

We consider the multifunction G : C → Pwkc(L
p′(T,RN )) defined by

G(u) = Sp
′

F ( · ,u( · )) for all u ∈ C.

Using Theorem 8.31 of Hu and Papageorgiou [8, p. 260], we can find a continuous

map g : C → L1
w(T,RN ) such that

(5.16) g(u) ∈ extG(u) = extSp
′

F ( · ,u( · )) = Sp
′

extF ( · ,u( · )) for all u ∈ C

(see Hu and Papageorgiou [8, Theorem 4.6, p. 192]). On account of (5.15) and

Proposition 2.2, we have that g : C → Lp
′
(T,RN )w is continuous. We consider

the following Duffing system:−a(u′(t))′ − r(t)|u′(t)|p−2u′(t) = g(u)(t) for a.a. t ∈ T,
u(0) = u(b) = 0.

By Theorem 3.5, this problem has a solution u0 ∈ C1
0 (T,RN ). Evidently (5.16)

implies that u0 is an extremal solution (that is, solves problem (5.1)). �
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6. Strong relaxation theorem

In this section, under stronger conditions on a( · ) and F ( · , · ) we prove

a strong relaxation theorem. Recall that if E ⊆ RN is compact, then convE ∈
Pkc(RN ) (see Gasiński–Papageorgiou [4, Problem 5.93, p. 889]). We consider the

following multivalued Duffing systems:

(6.1) −a(u′(t))′ − r(t)u(t) ∈ ext convF (t, u(t))

for almost all t ∈ T , u(0) = u(b) = 0,

(6.2) −a(u′(t))′ − r(t)u(t) ∈ convF (t, u(t))

for almost all t ∈ T , u(0) = u(b) = 0.

Let Ŝe ⊆ C1
0 (T,RN ) be the solution set of (6.1) and Ŝc ⊆ C1

0 (T,RN ) the

solution set of (6.2). We know that Ŝc ∈ Pk(C1
0 (T,RN )). Our aim is to show

that

Ŝ
C1

0 (T,RN )
e = Ŝc.

Such a density result is known as strong relaxation theorem. It is important in

control theory in connection with the “bang-bang principle”.

To have a strong relaxation theorem, we need stronger conditions on a( · )
and F ( · , · ).

H(a)′ a : RN → RN is continuous, monotone, a(0) = 0, a(y) = ĉ(|y|)y for all

y ∈ RN , with ĉ : (0,+∞) → (0,+∞) continuous, c0t
2 ≤ ĉ(t)t2 for all

t > 0, some c0 > 0, for every η > 0, there exists c̃η > 0 such that

c̃η|y − v|2 ≤ (a(y)− a(v), y − v)RN for all |y|, |v| ≤ η

and |a(y)| ≤ c1(1 + |y|) for some c1 > 0 and all y ∈ RN .

Remark 6.1. Evidently a( · ) is strictly monotone and maximal monotone.

Also a( · ) is a homeomorphism onto RN and |a−1(y)| → +∞ as |y| → +∞.

Example 6.2. The following maps satisfy hypotheses H(a)′:

a(y) = y for all y ∈ RN ,

a(y) = |y|q−2y + y for all y ∈ RN , with 1 < q < 2,

a(y) =

2|y|q−2y if |y| ≤ 1

2y if 1 < |y|
for all y ∈ RN , with 1 < q < 2,

a(y) = (1 + |y|q)(2−q)/q|y|q−2y for all y ∈ RN , with 1 < q ≤ 2.

H(F )4 F : T × RN → Pk(RN ) is a multifunction such that

(i) for all x ∈ RN , t→ F (t, x) is graph measurable;
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(ii) for every η > 0, there exists kη ∈ L1(T )+ such that

c̃η −
‖r‖∞
λ̂

1/p
1

− ‖kη‖∞b > 0,

and h(convF (t, x), convF (t, v)) ≤ kη(t)|x− v| for almost all t ∈ T ,

all |x|, |v| ≤ η;

(iii) the same as hypothesis H(F )1 (iii).

Remark 6.3. As before on account of Proposition 5.1 and by replacing F

with F0, without any loss of generality, we may assume that

(6.3) |F (t, x)| ≤ aM (t) for almost all t ∈ T , all x ∈ RN , with aM ∈ Lp
′
(T )+.

Hypotheses H(F )4 (i), (ii) imply that (t, x) → F (t, x) is graph measurable

and then so is (t, x)→ convF (t, x). Finally, note that

ext convF (t, x) ⊆ F (t, x) for all (t, x) ∈ T × RN .

Theorem 6.4. If hypotheses H(a)′, H(r), H(F )4 hold, then Ŝ
C1

0 (T,RN )
e = Ŝc.

Proof. As before C = convC0 ∈ Pkc(C1
0 (T,RN )) (see Proposition 5.2). Let

u ∈ Ŝc. We have

−a(u′)′ − r(t)|u′|p−2u′ = f with f ∈ Sp
′

convF ( · ,u( · )).

For v ∈ C and ε > 0, let Rvε : T → 2R
N \ {∅} be defined by

Rvε(t) = {h ∈ RN : |f(t)− h| < ε+ d(f(t), convF (t, v(t))), h ∈ convF (t, v(t))}.

Clearly Rvε( · ) is graph measurable. So, we can use the Yankov–von Neumann–

Aumann selection theorem (see Hu and Papageorgiou [8, Theorem 2.14, p. 158])

and infer that Rvε( · ) admits a measurable selection. Such a selection belongs in

Lp
′
(T,RN ) (see (6.3)).

Next let Lε : C → 2L
p′ (T,RN ) be defined by

Lε(v) = Sp
′

Rv
ε

for all v ∈ C.

From the previous argument, we see that Lε(v) 6= ∅ for all v ∈ C. Also v → Lε(v)

is l.s.c. (see Hu and Papageorgiou [8, Lemma 8.3, p. 239]). It follows that v →
Lε(v) is l.s.c. and has decomposable values. So, we can find lε : C → Lp

′
(T,RN )

continuous such that

lε(v) ∈ Lε(v) for all v ∈ C

(see Hu and Papageorgiou [8, Theorem 8.7, p. 245]). Then, on account of [8, The-

orem 8.31, p. 260], we can find a continuous map θε : C → Lp
′

w (T,RN ) such that

(6.4) θε(v) ∈ Sp
′

ext convF ( · ,v( · )), ‖θε(v)− lε(v)‖w < ε for all v ∈ C.
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Now, let εn → 0+ and set ln = lεn , θn = θεn for all n ∈ N. We consider the

following Duffing system

−a(u′(t))′ − r(t)u′(t) = θn(u)(t) for a.a. t ∈ T, u(0) = u(b) = 0, n ∈ N.

This problem has a solution un ∈ C1
0 (T,RN ) (see Theorem 3.5). Note that un ∈

C for all n ∈ N (see (6.3)) and C ∈ Pkc(C1
0 (T,RN )). So, we may assume that

(6.5) un → û in C1
0 (T,RN ).

We have

−a(u′n)′ + a(u′)′ − r(t)[u′n − u′] = θn(un)− f for all n ∈ N.

We act with un − u and after integration by parts, we have

(6.6)

∫ b

0

(a(u′n)− a(u′), u′n − u′)RN dt−
∫ b

0

r(t)(u′n − u′, un − u)RN dt

=

∫ b

0

(θn(un)− f, un − u)RN dt.

Let η = max
{

sup
n≥1
‖un‖C1

0 (T,RN ), ‖u‖C1
0 (T,RN )

}
< +∞ (see (6.5)). Hypothesis

H(a)′ implies that

(6.7) c̃η‖u′n − u′‖22 ≤
∫ b

0

(a(u′n)− a(u′), u′n − u′)RN dt.

Also, we have

(6.8)

∫ b

0

r(t)(u′n − u′, un − u)RN dt

≤ ‖r‖∞‖u′n − u′‖2‖un − u‖2 ≤
‖r‖∞
λ̂

1/2
1

‖u′n − u′‖22.

Finally, note that for all n ∈ N∫ b

0

(θn(un)− f, un − u)RN dt(6.9)

=

∫ b

0

(θn(un)− ln(un), un − u)RNdt+

∫ b

0

(ln(un)− f, un − u)RN dt

≤
∫ b

0

(θn(un)− ln(un), un − u)RN dt+ εnb+

∫ b

0

kη(t)|un − u|2 dt.

From (6.4) and Proposition 2.2, we have

(6.10)

∫ b

0

(θn(un)− ln(un), un − u)RN dt→ 0 as n→ +∞.
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We return to (6.6), use (6.7)–(6.9), pass to the limit as n→ +∞ and finally

use (6.5), (6.10) and Jensen’s inequality. Then[
c̃η −

‖r‖∞
λ̂

1/2
1

− ‖kη‖∞b
]
‖û′ − u′‖22 ≤ 0 ⇒ û = u

(see hypothesis H(F )4 (ii)). Since un ∈ Ŝe and un → u in C1
0 (T,RN ) (see (6.5)),

we conclude that Ŝe
C1

0 (T,RN ) = Ŝc. �

Remark 6.5. A careful inspection of the proofs, reveals that the positivity

of the drift coefficient r( · ) (see hypothesis H(r)) was first used in the proof of

Proposition 5.1. So, Theorems 3.5 and 4.1 are valid without the assumption

that r(t) ≥ 0 for almost all t ∈ T . It will be interesting to know if we can

remove this restriction also in Theorems 5.4 and 6.4. Theorems 5.4 and 6.4

provide answers to questions raised at the end of [14]. Extremal trajectories

and a strong relaxation theorem, were proved for a different class of multivalued

second order systems, in Papageorgiou, Vetro and Vetro [13].

We conclude with an example of a control system.

Example 6.6. Consider the following control system:

(6.11)

−a(u′(t))′ − r(t)|u′(t)|p−2u′(t) = f(t, u(t))v(t) a.e. on T,

u(0) = u(b) = 0, v(t) ∈ V (t) for a.a. t ∈ T.

In system (6.11), f : T × RN → L(Rm,RN ) is a Carathéodory function and

V : T → Pk(Rm) is graph measurable. We assume that

|f(t, x)| ≤ aη(t) for a.a. t ∈ T , all |x| ≤ η with aη ∈ Lp
′
(T ),

|U(t)| ≤ θ for a.a. t ∈ T , some θ > 0,

and there exists M such that

(f(t, x)u, x)RN < 0 for a.a. t ∈ T , all |x| ≥M and all u ∈ U(t).

Then the control system (6.11) has admissible state-control pairs and if f(t, · ) is

locally Lipschitz with local Lipschitz constant k̂η( · ) ∈ L1(T ), then the states of

the nonconvex problem are C1
0 (T,RN )-dense in those of the convexified system

(control constraint set convU(t) for all t ∈ T , see Theorem 6.4).
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