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INFINITELY MANY SOLUTIONS

FOR A CLASS OF CRITICAL CHOQUARD EQUATION

WITH ZERO MASS

Fashun Gao — Minbo Yang

Carlos Alberto Santos — Jiazheng Zhou

Abstract. In this paper we investigate the following nonlinear Choquard
equation

−∆u =

(∫
RN

G(y, u)

|x− y|µ
dy

)
g(x, u) in RN ,

where 0 < µ < N , N ≥ 3, g(x, u) is of critical growth in the sense of

the Hardy–Littlewood–Sobolev inequality and G(x, u) =
∫ u
0 g(x, s) ds. By

applying minimax procedure and perturbation technique, we obtain the
existence of infinitely many solutions.

1. Introduction and main results

The aim of the present paper is to consider the following nonlinear critical

Choquard equation with a subcritical nonlocal term

(1.1)


−∆u =

(∫
RN

δ|u(y)|2
∗
µ + λK(y)|u(y)|p

|x− y|µ
dy

)
(
δ|u|2

∗
µ−2u+

p

2∗µ
λK(x)|u|p−2u

)
in RN ,

u ∈ D1,2(RN ),
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where N ≥ 3, 0 < µ < N , max{(2N − µ)/2N, (µ − 4)/(N − 2)} < p < 1,

δ, λ are two positive parameters and 2∗µ = (2N −µ)/(N −2) is the upper critical

exponent in the sense of the Hardy–Littlewood–Sobolev inequality. Concerning

the function K(x), we assume 0 ≤ K(x) ∈ Lp
′
(RN ), where p′ = 2∗/(2∗µ − p),

2∗ = 2N/(N−2) is the critical exponent for the embedding H1(RN ) into Lq(RN ).

The nonlinear Choquard equation

(1.2) −∆u+ V (x)u =
(
|x|−µ ∗ |u|q

)
|u|q−2u in RN

arises in various domains of mathematical physics such as in the description of the

quantum theory of a polaron at rest by S. Pekar in 1954 [19] and in the modeling

of an electron trapped in its own hole in 1976 in the work of P. Choquard as

a certain approximation to Hartree–Fock theory of one-component plasma [11],

etc. The equation (1.2) is also known as the Schrödinger–Newton equation [20].

Lieb [11] proved the existence and uniqueness, up to translations, of the

ground state for (1.2) with µ = 1, q = 2 and V is a positive constant and

Lions [13] showed the existence of a sequence of radially symmetric solutions via

variational methods. Recently, a great deal of mathematical efforts have been

devoted to the study of existence, multiplicity and properties of the solutions of

the nonlinear Choquard equation (1.2). In [6], [15], [16], the authors showed the

regularity, positivity and radial symmetry of the ground states and derived decay

property at infinity as well. We also refer the readers to [1], [2], [5], [18] and [22]

for the existence and concentration behavior of the semiclassical solutions for

the singularly perturbed Choquard equation.

It is necessary to recall the well known Hardy-Littlewood-Sobolev inequality

(see for instance [12]).

Proposition 1.1 (Hardy–Littlewood–Sobolev inequality). Let t, r > 1 and

0 < µ < N with 1/t + µ/N + 1/r = 2, f ∈ Lt(RN ) and h ∈ Lr(RN ). There

exists a sharp constant C(t,N, µ, r), independent of f, h, such that

(1.3)

∫
RN

∫
RN

f(x)h(y)

|x− y|µ
dx dy ≤ C(t,N, µ, r)|f |t|h|r,

where | · |q stands for the Lq(RN )-norm for q ∈ [1,∞]. If t = r = 2N/(2N −µ),

then

C(t,N, µ, r) = C(N,µ) = πµ/2
Γ(N/2− µ/2)

Γ(N − µ/2)

{
Γ(N/2)

Γ(N)

}−1+µ/N

.

It is a consequence of Hardy-Littlewood-Sobolev inequality that the integral∫
RN

∫
RN

|u(x)|q|u(y)|q

|x− y|µ
dx dy, for u ∈ H1(RN ),

is well defined if
2N − µ
N

≤ q ≤ 2N − µ
N − 2

.
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Then number (2N − µ)/N is called the lower critical exponent and 2∗µ = (2N −
µ)/(N − 2) – the upper critical exponent. In [17], Moroz and Van Schaftingen

considered the nonlinear Choquard equation (1.2) in RN with lower critical ex-

ponent and obtained existence and nonexistence results if the potential 1 − V
does not decay to zero at infinity faster than the inverse square of |x|.

In order to study the critical nonlocal equation with upper critical expo-

nent 2∗µ, we will use SH,L to denote the best constant defined by

(1.4) SH,L := inf
u∈D1,2(RN )\{0}

∫
RN
|∇u|2 dx(∫

RN

∫
RN

|u(x)|2
∗
µ |u(y)|2

∗
µ

|x− y|µ
dx dy

)1/2∗µ

and note that SH,L is achieved if and only if

u(x) = C

(
b

b2 + |x− a|2

)(N−2)/2

,

where C > 0 is a fixed constant, a ∈ RN and b ∈ (0,∞) are parameters. More,

SH,L =
S

C(N,µ)(N−2)/(2N−µ)
,

where S is the best Sobolev constant and C(N,µ) is given in Proposition 1.1.

See [8]. In [8], [9] the authors considered the Brézis–Nirenberg type problem

(1.5) −∆u =

(∫
Ω

|u(y)|2
∗
µ

|x− y|µ
dy

)
|u|2

∗
µ−2u+ λu in Ω

and established the existence, multiplicity and nonexistence of solutions for the

nonlinear Choquard equation in bounded domain by perturbation method. In [3],

the authors studied the semiclassical limit problem for the singularly perturbed

Choquard equation in R3 and characterized the concentration behavior by vari-

ational methods. Gao and Yang in [10] investigated the existence result for the

strongly indefinite Choquard equation with upper critical exponent in the whole

space. In the present paper we are interested in the existence of infinitely many

solutions.

The main result reads as

Theorem 1.2. Assume max{(2N − µ)/2N, (µ − 4)/(N − 2)} < p < 1 and

the Lebesgue measure of {x ∈ RN/K(x) > 0} is positive. Then:

(a) for each δ > 0, there exists λ∗ such that for any λ ∈ (0, λ∗), problem (1.1)

has a sequence of solutions {um} with JK(um) < 0 and JK(um)→ 0 as

m→∞,

(b) for each λ > 0, there exists δ∗ such that for any δ ∈ (0, δ∗), problem (1.1)

has a sequence of solutions {um} with JK(um) < 0 and JK(um)→ 0 as

m→∞.
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To apply variational methods, we introduce the energy functional associated

to equation (1.1)

JK(u) =
1

2

∫
RN
|∇u|2 dx

− 1

2 · 2∗µ

∫
RN

∫
RN

(δ|u(x)|2
∗
µ + λK(x)|u(x)|p)(δ|u(y)|2

∗
µ + λK(y)|u(y)|p)

|x− y|µ
dx dy

and note that it is well defined on D1,2(RN ) and belongs to C1 due to the

assumption on K(x) (0 ≤ K(x) ∈ Lp
′
(RN )) and to the Hardy–Littlewood–

Sobolev inequality. Thus the weak solutions of (1.1) are precisely the critical

points of the action functional JK on D1,2(RN ).

The paper is organized as follows. In Section 2, we introduce a concentration-

compactness principle for nonlocal type problem and prove the (PS) condition.

In Section 3, we prove the existence of infinitely many solutions for (1.1).

2. Variational setting

Throughout this paper we write | · |q for the Lq(RN )-norm, q ∈ [1,∞], 0 <

µ < N and N ≥ 3. Different positive constants are denoted by C,C1, C2, . . ..

Let

‖u‖ :=

(∫
RN
|∇u|2 dx

)1/2

be the standard norm on D1,2(RN ) and denote by

‖u‖NL :=

(∫
RN

∫
RN

|u(x)|2
∗
µ |u(y)|2

∗
µ

|x− y|µ
dx dy

)1/(2·2∗µ)

.

The following splitting lemma was proved in Lemma 2.2 of [8].

Lemma 2.1. Let N ≥ 3 and 0 < µ < N . If {un} is a bounded sequence in

L2N/(N−2)(RN ) such that un → u almost everywhere in RN as n→∞, then

‖un‖
2·2∗µ
NL − ‖un − u‖

2·2∗µ
NL → ‖u‖

2·2∗µ
NL as n→∞.

Since the lack of compactness also occurs when one considers the critical

Choquard equation in unbounded domain, it is quite natural to apply the second

concentration-compactness principle involving convolution type nonlinearities to

overcome the difficulties. A version of the second concentration-compactness

principle for nonlocal convolution case was proved in [7].

Lemma 2.2 (see [7]). Let {un} be a bounded sequence in D1,2(RN ) converging

weakly and almost everywhere to some u0, |∇un|2 ⇀ ω, |un|2
∗
⇀ ζ weakly in the

sense of measures, where ω and ζ are bounded non-negative measures on RN .

Assume that (∫
RN

|un(y)|2
∗
µ

|x− y|µ
dy

)
|un(x)|2

∗
µ ⇀ ν
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weakly in the sense of measure, where ν is a bounded positive measure on RN

and define

ω∞ := lim
R→∞

lim
n→∞

∫
|x|≥R

|∇un|2 dx,

ζ∞ := lim
R→∞

lim
n→∞

∫
|x|≥R

|un|2
∗
dx,

ν∞ := lim
R→∞

lim
n→∞

∫
|x|≥R

(∫
RN

|un(y)|2
∗
µ

|x− y|µ
dy

)
|un(x)|2

∗
µ dx.

Then, there exists a countable sequence of points {zi}i∈I ⊂ RN and families of

positive numbers {νi : i ∈ I}, {ζi : i ∈ I} and {ωi : i ∈ I} such that

ν =

(∫
RN

|u0(y)|2
∗
µ

|x− y|µ
dy

)
|u0(x)|2

∗
µ +

∑
i∈I

νiδzi ,
∑
i∈I

ν
1/2∗µ
i <∞,(2.1)

ω ≥ |∇u0|2 +
∑
i∈I

ωiδzi ,(2.2)

ζ ≥ |u0|2
∗

+
∑
i∈I

ζiδzi ,(2.3)

and

(2.4) SH,Lν
1/2∗µ
i ≤ ωi, ν

N/(2N−µ)
i ≤ C(N,µ)N/(2N−µ)ζi,

where δx is the Dirac-mass of mass 1 concentrated at x ∈ RN . Furthermore, we

have

(2.5) limn→∞

∫
RN

∫
RN

|un(y)|2
∗
µ |un(x)|2

∗
µ

|x− y|µ
dy dx = ν∞ +

∫
RN

dν

and

(2.6)

C(N,µ)−2N/(2N−µ)ν2N/(2N−µ)
∞ ≤ ζ∞

(∫
RN

dζ + ζ∞

)
,

S2
H,Lν

2/2∗µ
∞ ≤ ω∞

(∫
RN

dω + ω∞

)
.

Moreover, if u0 = 0 and
∫
RN dω = SH,L(

∫
RN dν)1/2∗µ , then ν is concentrated at

a single point.

Let us show the following lemma.

Lemma 2.3. Suppose that max{(2N − µ)/2N, (µ − 4)/(N − 2)} < p < 1,

then:

(a) for each fixed δ > 0 and c < 0, there exists λ > 0 such that for any (PS)c-

sequence {un} contains a convergent subsequence for each λ ∈ (0, λ)

given,

(b) for each fixed λ > 0 and c < 0, there exists δ > 0 such that any (PS)c-

sequence {un} has a convergent subsequence for each δ ∈ (0, δ) given.
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Proof. Let {un} be a (PS)c-sequence, i.e. JK(un)→ c and

sup
{
|〈J ′K(un), ϕ〉| : ϕ ∈ E, ‖ϕ‖ = 1

}
→ 0

as n→ +∞. Then there exists a C1 > 0 such that

|JK(un)| ≤ C1 and |〈J ′K(un), un/‖un‖〉| ≤ C1

for all n large. Since (µ−4)/(N −2) < p < 1, we have p+ 2∗µ > 2. So, we obtain

C1(1 + ‖un‖) ≥ JK(un)− 1

p+ 2∗µ
〈J ′K(un), un〉

=

(
1

2
− 1

p+ 2∗µ

)
‖un‖2

+

(
1

p+ 2∗µ
− 1

2 · 2∗µ

)∫
RN

∫
RN

δ|un(x)|2
∗
µδ|un(y)|2

∗
µ

|x− y|µ
dx dy

− 1

2 · 2∗µ

(
1− 2p

p+ 2∗µ

)∫
RN

∫
RN

λK(x)|un(x)|pλK(y)|un(y)|p

|x− y|µ
dx dy

≥
(

1

2
− 1

p+ 2∗µ

)
‖un‖2 −

1

2 · 2∗µ

(
1− 2p

p+ 2∗µ

)
λ2|K|2p′ |un|

2p
2∗

≥
(

1

2
− 1

p+ 2∗µ

)
‖un‖2 −

1

2 · 2∗µ

(
1− 2p

p+ 2∗µ

)
λ2|K|2p′C2‖un‖2p

which implies that {un} is bounded in D1,2(RN ).

Since D1,2(RN ) is reflexive, up to a subsequence, we may assume that there

exists u ∈ D1,2(RN ) such that un ⇀ u in D1,2(RN ), un → u almost everywhere

in RN , |∇un|2 converges weakly to some nonnegative measure ω, (
∫
RN |un(y)|2

∗
µ/

|x− y|µ dy)|un(x)|2
∗
µ converges weakly to some nonnegative measure ν.

Let zi be a singular point of measure ω and ν. By taking a function

φ ∈ C∞0 (RN , [0, 1]) such that φ(x) = 1 in Bzi(ε), φ(x) = 0 in RN \ Bzi(2ε),
|∇φ| ≤ C/ε in RN , we infer that {φun} is bounded in D1,2(RN ). Evidently,

〈J ′K(un), φun〉 → 0, i.e.

0← 〈J ′K(un), unφ〉 =

∫
RN
|∇un|2φdx+

∫
RN

un∇un∇φdx

−
∫
RN

∫
RN

1

|x− y|µ
(
δ|un(x)|2

∗
µ + λK(x)|un(x)|p

)
×
(
δ|un(y)|2

∗
µφ(y) +

p

2∗µ
λK(y)|un(y)|pφ(y)

)
dx dy.

as n→∞.
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Applying Hölder’s inequality, we have, as ε→ 0+,

0 ≤ lim sup
n→∞

∣∣∣∣ ∫
RN

un∇un∇φdx
∣∣∣∣

≤ lim sup
n→∞

(∫
RN
|∇un|2 dx

)1/2(∫
RN
|un|2|∇φ|2 dx

)1/2

≤ C
(∫

Bzi (2ε)

|u|2N/(N−2) dx

)(N−2)/2N(∫
Bzi (2ε)

|∇φ|N dx
)1/N

≤ C
(∫

Bzi (2ε)

|u|2N/(N−2) dx

)(N−2)/2N

→ 0,

where we used the fact that |∇φ| ≤ C/ε and the sequence un is bounded. It

follows from the Hölder inequality and the Sobolev inequality that∫
Bzi (2ε)

|un|σ dx ≤ |Bzi(2ε)|1−σ/2
∗
(∫

Bzi (2ε)

|un|2
∗
dx

)σ/2∗

≤ C|Bzi(2ε)|1−σ/2
∗
(∫

Bzi (2ε)

|∇un|2 dx
)σ/2

= o(1)

as ε → 0+ holds for all σ ∈ [0, 2∗). Hence, by the Hardy–Littlewood–Sobolev’s

inequality, there holds∫
RN

∫
RN

|un(x)|2
∗
µK(y)|un(y)|pφ(y)

|x− y|µ
dx dy = o(1),∫

RN

∫
RN

K(x)|un(x)|pK(y)|un(y)|pφ(y)

|x− y|µ
dx dy = o(1),∫

RN

∫
RN

K(x)|un(x)|p|un(y)|2
∗
µφ(y)

|x− y|µ
dx dy = o(1),

as ε→ 0+. Therefore,

J ′K(un), unφ〉 =

∫
RN
|∇un|2φdx−

∫
RN

∫
RN

δ|un(x)|2
∗
µδ|un(y)|2

∗
µφ(y)

|x− y|µ
dx dy+o(1),

that is ∫
RN

φdω − δ2

∫
RN

φdν + o(1) = 0

as n → ∞. Let ε → 0, we obtain ωi − δ2νi = 0. Hence, it follows from (2.4) in

Lemma 2.2 that either

(i) νi = 0 or

(ii) νi ≥ (δ−2SH,L)(2N−µ)/(N−µ+2).

To examine a possible concentration of the sequence {un} at infinity, we

define φR ∈ C∞0 (RN , [0, 1]) such that

φR = 0 on |x| < R and φR = 1 on |x| > R+ 1.
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Since {unφR} is bounded in D1,2(RN ), we have 〈J ′K(un), unφR〉 → 0, i.e.

0← 〈J ′K(un), unφR〉 =

∫
RN
|∇un|2φR dx+

∫
RN

un∇un∇φR dx

−
∫
RN

∫
RN

1

|x− y|µ
(
δ|un(x)|2

∗
µ + λK(x)|un(x)|p

)
×
(
δ|un(y)|2

∗
µφR(y) +

p

2∗µ
λK(y)|un(y)|pφR(y)

)
dx dy.

Arguing as above, we have ω∞ − δ2ν∞ = 0. Again, by (2.6) in Lemma 2.2, we

know

S2
H,Lν

2/2∗µ
∞ ≤ ω∞

(∫
RN

dω + ω∞

)
,

i.e.

ω∞ ≥
1

2

(((∫
RN

dω

)2

+ 4S2
H,Lν

2/2∗µ
∞

)1/2

−
∫
RN

dω

)
and so, we get either

(iii) ν∞ = 0; or

(iv) δ4ν∞ + δ2

∫
RN

dω ≥ S2
H,Lν

(µ−4)/(2N−µ)
∞ .

Now we claim both (ii) and (iv) can not occur, if δ, λ are chosen properly. In

fact, from the weak lower semicontinuity of JK , we obtain

0 > c = lim
n→∞

[
JK(un)− 1

p+ 2∗µ
〈J ′K(un), un〉

]
= lim

n→∞

[(
1

2
− 1

p+ 2∗µ

)
‖un‖2

+

(
1

p+ 2∗µ
− 1

2 · 2∗µ

)∫
RN

∫
RN

δ|un(x)|2
∗
µδ|un(y)|2

∗
µ

|x− y|µ
dx dy

− 1

2 · 2∗µ

(
1− 2p

p+ 2∗µ

)∫
RN

∫
RN

λK(x)|un(x)|pλK(y)|un(y)|p

|x− y|µ
dx dy

]
≥ lim

n→∞

[(
1

2
− 1

p+ 2∗µ

)
‖un‖2 −

1

2 · 2∗µ

(
1− 2p

p+ 2∗µ

)
λ2|K|2p′ |un|

2p
2∗

]
≥
(

1

2
− 1

p+ 2∗µ

)
‖u‖2 − 1

2 · 2∗µ

(
1− 2p

p+ 2∗µ

)
λ2|K|2p′ |u|

2p
2∗

≥
(

1

2
− 1

p+ 2∗µ

)
S|u|22∗ −

1

2 · 2∗µ

(
1− 2p

p+ 2∗µ

)
λ2|K|2p′ |u|

2p
2∗ ,

which implies |u|2∗ ≤ Cλ1/(1−p). Hence

0 >c = lim
n→∞

[
JK(un)− 1

p+ 2∗µ
〈J ′K(un), un〉

]
≥ lim

n→∞

(
1

2
− 1

p+ 2∗µ

)∫
RN
|∇un|2φR dx−

1

2 · 2∗µ

(
1− 2p

p+ 2∗µ

)
λ2|K|2p′ |u|

2p
2∗
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≥
(

1

2
− 1

p+ 2∗µ

)
ω∞ − Cλ2p/(1−p)

≥
(

1

2
− 1

p+ 2∗µ

)
1

2

(((∫
RN

dω

)2

+ 4S2
H,Lν

2/2∗µ
∞

)1/2

−
∫
RN

dω

)
− Cλ2p/(1−p).

Combining this with (iv), for a given λ > 0 given, we obtain δ > 0 such that

for every 0 < δ < δ the last term on the right-hand side above is greater than

0, which is a contradiction. Similarly, for each δ fixed, there exists a λ so small

that for every 0 < λ < λ the last term on the right-hand side above is greater

than 0 as well, thus we have ν∞ = 0. Arguing with a similar process, we can

prove νi = 0, i ∈ I.

Now, applying Lemma 2.2 again, we have

lim
n→∞

∫
RN

∫
RN

|un(x)|2
∗
µ |un(y)|2

∗
µ

|x− y|µ
dx dy =

∫
RN

∫
RN

|u(x)|2
∗
µ |u(y)|2

∗
µ

|x− y|µ
dx dy

and we can deduce from Lemma 2.1 that

(2.7) lim
n→∞

∫
RN

∫
RN

|(un − u)(x)|2
∗
µ |(un − u)(y)|2

∗
µ

|x− y|µ
dx dy = 0.

Now we are ready to prove that un → u strongly in D1,2(RN ). Notice that

〈J ′K(un) − J ′K(u), un − u〉

=

∫
RN
|∇(un − u)|2 dx

−
∫
RN

∫
RN

δ2|un(x)|2
∗
µ |un(y)|2

∗
µ−2un(y)(un − u)(y)

|x− y|µ
dx dy

−
∫
RN

∫
RN

δ|un(x)|2
∗
µ(p/2∗µ)λK(y)|un(y)|p−2un(y)(un − u)(y)

|x− y|µ
dx dy

−
∫
RN

∫
RN

λK(x)|un(x)|pδ|un(y)|2
∗
µ−2un(y)(un − u)(y)

|x− y|µ
dx dy

−
∫
RN

∫
RN

λ2K(x)|un(x)|p(p/2∗µ)K(y)|un(y)|p−2un(y)(un − u)(y)

|x− y|µ
dx dy

+

∫
RN

∫
RN

δ2|u(x)|2
∗
µ |u(y)|2

∗
µ−2u(y)(un − u)(y)

|x− y|µ
dx dy

+

∫
RN

∫
RN

δ|u(x)|2
∗
µ(p/2∗µ)λK(y)|u(y)|p−2u(y)(un − u)(y)

|x− y|µ
dx dy

+

∫
RN

∫
RN

λK(x)|u(x)|pδ|u(y)|2
∗
µ−2u(y)(un − u)(y)

|x− y|µ
dx dy

+

∫
RN

∫
RN

λ2K(x)|u(x)|p(p/2∗µ)K(y)|u(y)|p−2u(y)(un − u)(y)

|x− y|µ
dx dy,
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On one hand, from the fact that {un} is bounded in L2∗(RN ) we have

|un|2
∗
µ ⇀ |u|2

∗
µ in L2N/(2N−µ)(RN )

as n → +∞. By the Hardy–Littlewood–Sobolev inequality, the Riesz potential

defines a linear continuous map from L2N/(2N−µ)(RN ) to L2N/µ(RN ), we know

that ∫
RN

|un(y)|2
∗
µ

|x− y|µ
dy ⇀

∫
RN

|u(y)|2
∗
µ

|x− y|µ
dy in L2N/µ(RN )

as n→ +∞. Combining this with the fact that

|un|2
∗
µ−2un ⇀ |u|2

∗
µ−2u in L2N/(N−µ+2)(RN )

as n→ +∞, we have∫
RN

|un(y)|2
∗
µ

|x− y|µ
dy|un(x)|2

∗
µ−2un(x) ⇀

∫
RN

|u(y)|2
∗
µ

|x− y|µ
dy|u(x)|2

∗
µ−2u(x)

in L2N/(N+2)(RN ) as n→ +∞. Since (2.7), we get∫
RN

∫
RN

|un(x)|2
∗
µ |un(y)|2

∗
µ−2un(y)(un − u)(y)

|x− y|µ
dx dy → 0.

Similarly, we have∫
RN

∫
RN

|un(x)|2
∗
µK(y)|un(y)|p−2un(y)(un − u)(y)

|x− y|µ
dx dy → 0,∫

RN

∫
RN

K(x)|un(x)|p|un(y)|2
∗
µ−2un(y)(un − u)(y)

|x− y|µ
dx dy → 0,∫

RN

∫
RN

K(x)|un(x)|pK(y)|un(y)|p−2un(y)(un − u)(y)

|x− y|µ
dx dy → 0,∫

RN

∫
RN

|u(x)|2
∗
µ |u(y)|2

∗
µ−2u(y)(un − u)(y)

|x− y|µ
dx dy → 0,∫

RN

∫
RN

|u(x)|2
∗
µK(y)|u(y)|p−2u(y)(un − u)(y)

|x− y|µ
dx dy → 0,∫

RN

∫
RN

K(x)|u(x)|p|u(y)|2
∗
µ−2u(y)(un − u)(y)

|x− y|µ
dx dy → 0,∫

RN

∫
RN

K(x)|u(x)|pK(y)|u(y)|p−2u(y)(un − u)(y)

|x− y|µ
dx dy → 0.

Since J ′K(un) → 0 and un ⇀ u, we have 〈J ′K(un) − J ′K(u), un − u〉 → 0, as

n→∞, that is ∫
RN
|∇(un − u)|2dx→ 0 as n→∞. �
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3. Infinitely many solutions for problem (1.1)

In this section we will use minimax procedure and perturbation technique

to prove the existence of infinitely many solutions of problem (1.1). Let X be

a Banach space and Σ = {A ⊂ X \ {0}, A is closed in X and symmetric with

respect to the orgin}. For A ∈ Σ, we define the genus γ as

γ(A) := inf{m ∈ N : ∃ϕ ∈ C(A,Rm \ {0}),−ϕ(x) = ϕ(−x)}.

If there is no mapping ϕ as above for any m ∈ N , then γ(A) := +∞. For future

use, we list some properties of the genus firstly.

Proposition 3.1 (see [21]). Let A,B ∈ Σ. Then:

(a) if there exists an odd map f ∈ C(A,B), then γ(A) ≤ γ(B),

(b) if A ⊂ B then γ(A) ≤ γ(B),

(c) γ(A ∪B) ≤ γ(A) + γ(B),

(d) if S is a sphere centered at the origin in Rm, then γ(S) = m,

(e) if A is compact, then γ(A) < +∞ and there exists δ > 0 such that

Nδ(A) ∈ Σ and γ(A) = γ(Nδ(A)), where Nδ(A)={x ∈ X : ‖x−A‖ ≤ δ}.

The technique has been used in [4], [14]. Applying Sobolev inequality and

the Hardy–Littlewood–Sobolev inequality, we have

JK(u) =
1

2

∫
RN
|∇u|2 dx− 1

2 · 2∗µ

∫
RN

∫
RN

1

|x− y|µ
(
δ|u(x)|2

∗
µ + λK(x)|u(x)|p

)
×
(
δ|u(y)|2

∗
µ + λK(y)|u(y)|p

)
dx dy

≥ 1

2
‖u‖2 − δ2C1‖u‖2·2

∗
µ − λ2C2‖u‖2p.

Given δ > 0, set t = ‖u‖. So,

JK(u) ≥ Q(t) :=
1

2
t2−δ2C1t

2·2∗µ−λ2C2t
2p = t2p

(
1

2
t2−2p−δ2C1t

2·2∗µ−2p−λ2C2

)
and so there exists λ∗ < λ so small that for every λ ∈ (0, λ∗), there exit 0 <

R0 < R1 such that Q(t) < 0 for 0 < t < R0, Q(t) > 0 for R0 < t < R1, Q(t) < 0

for t > R1. Clearly, Q(R0) = Q(R1) = 0.

Now, let χ : R+ → [0, 1] be a nonincreasing C∞ function such that χ(t) = 1

if t ≤ R0 and χ(t) = 0 if t ≥ R1. Let define φ(u) = χ(‖u‖) and consider the

perturbation of JK(u) given by

J(u) =
1

2

∫
RN
|∇u|2dx− 1

2 · 2∗µ
φ(u)

∫
RN

∫
RN

δ2|u(x)|2
∗
µ |u(y)|2

∗
µ

|x− y|µ
dx dy

− 1

2∗µ
φ(u)

∫
RN

∫
RN

δ|u(x)|2
∗
µλK(y)|u(y)|p

|x− y|µ
dx dy

− 1

2 · 2∗µ

∫
RN

∫
RN

λ2K(x)|u(x)|pK(y)|u(y)|p

|x− y|µ
dx dy.
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Similarly, for each λ > 0, we can find δ∗ > 0, R0, R1 as above for each 0 < δ < δ∗,

and define the perturbation of JK(u) as well.

From Lemma 2.3 and the discussion above, we have the following:

Lemma 3.2. If J(u) is defined as above, then:

(a) J ∈ C1(D1,2(RN ),R), J is even and bounded from below.

(b) If J(u) ≤ 0, then we have either ‖u‖ ≤ R0 or ‖u‖ ≥ R1. Furthermore,

JK(u) = J(u) if ‖u‖ ≤ R0.

(c) for any fixed δ there exists λ∗ such that for any λ ∈ (0, λ∗), J satisfies

a (PS) condition at c < 0.

(d) for any fixed λ there exists δ∗ such that for any δ ∈ (0, δ∗), J satisfies

a (PS) condition at c < 0.

Proof. It is easy to see (a) and (b). Conditiona (c) and (d) are consequences

of (b) and Lemma 2.3. �

Proposition 3.3. Denote by Jc = {u ∈ D1,2(RN )/J(u) ≤ c}. Then, for

any k ∈ N, there exists σ(k) > 0 such that γ(J−σ(k)) ≥ k.

Proof. Firstly, given k ∈ N , letEk be a k-dimensional subspace ofD1,2(RN ).

From the assumption on K(x), there exist dk > 0 such that

inf
u∈Ek, ‖u‖=1

∫
RN

∫
RN

K(x)|u(x)|pK(y)|u(y)|p

|x− y|µ
dx dy ≥ dk.

So, by using this information, the Hardy–Littlewood–Sobolev and Hölder’s in-

equalities, we have

J(ρu) =JK(ρu) =
ρ2

2

∫
RN
|∇u|2 dx− ρ2·2∗µ

2 · 2∗µ

∫
RN

∫
RN

δ2|u(x)|2
∗
µ |u(y)|2

∗
µ

|x− y|µ
dx dy

− ρ2∗µ+p

2∗µ

∫
RN

∫
RN

δ|u(x)|2
∗
µλK(y)|u(y)|p

|x− y|µ
dx dy

− ρ2p

2 · 2∗µ

∫
RN

∫
RN

λ2K(x)|u(x)|pK(y)|u(y)|p

|x− y|µ
dx dy

≤ ρ2

2
− δ2ρ2·2∗µC1 − λ2C2dkρ

2p ≤ −σ(k) < 0

for each ρ < R0 small enough (see definition of φ(u)) and ‖u‖ = 1. That is,

{u ∈ Ek, ‖u‖ = ρ} ⊂ {u ∈ D1,2(RN ), J(u) ≤ −σ(k)},

and consequently, we have γ(J−σ(k)) ≥ k. �

Remark 3.4. By Lemma 3.2 and Proposition 3.3 we can define

Γk = {A ∈ Σ : γ(A) ≥ k}

and let ck = inf
A∈Γk

sup
u∈A

J(u). It is obvious that −∞ < ck ≤ −σ(k), since J−σ(k) ∈

Γk and J is bounded from below.
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Proposition 3.5. Let δ, λ be as in (c) and (d) of Lemma 3.2. Then all cm
given by Remark 3.4 are critical values of J , and cm → 0.

Proof. It is clear that cm ≤ cm+1, cm < 0, hence cm → c ≤ 0. Moreover,

since all cm are critical values of J , (refer to [21]), we claim c = 0. If c < 0, then

Kc = {J ′(u) = 0, J(u) = c} is compact and Kc ∈ Σ. Hence γ(Kc) = m0 < ∞,

and there exists σ > 0, such that γ(Kc) = γ(Nσ(Kc)) = m0. By the deformation

lemma, there exists ε > 0 such that c + ε < 0 and an odd homeomorphism

η : D1,2(RN )→ D1,2(RN ) such that η(Jc+ε \Nσ(Kc)) ⊂ Jc−ε.
Since cm is increasing and converges to c, there exists m ∈ N such that

cm > c−ε and cm+m0
≤ c, and there is A ∈ Γm+m0

such that supu∈A J(u) < c+ε,

i.e. A ⊂ Jc+ε. Now it follows from the properties of the genus,

γ(A \Nσ(Kc)) ≥ γ(A)− γ(Nσ(Kc)) ≥ m,

hence γ(A \Nσ(Kc)) ≥ m, and therefore η(A \Nσ(Kc)) ∈ Γm. Consequently

sup
u∈η(A\Nσ(Kc))

J(u) ≥ cm > c̄− ε

but, by on the other hand, we have

η(A \Nσ(Kc)) ⊂ η
(
Jc+ε \Nσ(Kc)

)
⊂ Jc−ε,

which is a contradiction. �

Proof of Theorem 1.2. Now, by Lemma 3.2, Remark 3.4 and Proposi-

tion 3.5, it is easy to prove Theorem 1.2. �
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