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PERIODIC SOLUTIONS

FOR A SINGULAR LIÉNARD EQUATION

WITH INDEFINITE WEIGHT

Shiping Lu — Runyu Xue

Abstract. In this paper, the existence of positive periodic solutions is

studied for a singular Liénard equation where the weight function has an
indefinite sign. Due to the lack of a priori estimates over the set of all

possible positive periodic solutions in this equation, a new method is pro-

posed for estimating a priori bounds of positive periodic solutions. By
the use of a continuation theorem of the Mawhin coincidence degree, new

conditions for existence of positive periodic solutions to the equation are

obtained. The main results show that the singularity of coefficient function
associated to the friction term at x = 0 may help the existence of periodic

solutions.

1. Introduction

The purpose of this paper is to study the existence of positive T -periodic

solutions for a singular Liénard equation with indefinite weight

(1.1) x′′(t) + f(x(t))x′(t) +
α(t)

xµ(t)
= h(t),

where f ∈ C((0,+∞),R) may have a singularity at x = 0, µ ∈ (0,+∞) is

a constant, α and h are T -periodic functions with α, h ∈ L1([0, T ],R). Since the

weight function α may change sign on [0, T ], the singularity of the term α(t)/xµ
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at x = 0 can be regarded neither as attractive type nor as repulsive type. Just

for this reason, the singularity of (1.1) is named as indefinite type.

Periodic solutions to singular differential equation has a long history. The

first reference associated to it seems to be the paper of Nagumo [24] in 1943.

In [26], P.J. Torres presents many periodic problems associated with singular

models arising from physics, engineering, ecology and other applied sciences. In

the past years, the periodic problem for second order differential equations with

singularities was extensively studied, both, the case of Liénard type [9], [18], [29],

and the case without friction term [5], [10], [13], [14], [18]–[20], [25], [29]. We

notice that the weight function α(t) associated to the singular restoring force

term α(t)/xµ in the equation considered in [5], [9], [10], [13], [14], [18]–[20], [25],

[28], [29] does not change sign on [0, T ] and the coefficient function f(x) in the

friction term f(x)x′ is required to be continuous at x = 0 [9], [18], [28], [29].

In [7], [11], [12], [22], the authors considered periodic problem for the equation

as (1.1) in the case where the function f(x) has a singularity at x = 0 and the

weight function α(t) has a definite sign. However, although it is quite relevant

for applications, the study of periodic problem with singularity and indefinite

weight has not been sufficiently developed yet. We only find a few articles [2]–[4]

and [15] considering the problem of periodic solutions to the singular like

(1.2) x′′(t) =
α(t)

xµ
,

where the sign of weight function α(t) can change on [0, T ]. In [4], α(t) is required

to be piecewise-constant with two pieces, and in [15], α(t) is required to have

a finite number of sign-changes, i.e. there are pairwise disjoint intervals [ak, bk]

(k = 1, . . . , n) such that

α(t) ≥ 0 for a.e. t ∈
n⋃
k=1

[ak, bk],

α(t) ≤ 0 for a.e. t ∈ [0, T ] \
n⋃
k=1

[ak, bk].

Some relations between the order µ of the singularity of restoring force α(t)/xµ

and the order of the zeros of α(t) are needed [3], [15]. For other recent develop-

ments on the study of this topic, we refer the reader to [1], [6], [16], [17], [21].

As far as we know, there are no results on the existence of periodic solutions to

the singular Liénard equation of the form (1.1).

Motivated by this, the aim of this paper is to study the periodic problem

for (1.1). The proof of main results rely on a continuation theorem of the coinci-

dence degree theory established by Mawhin. Since the weight function α(t) has

indefinite sign, generally, there is lack of any a priori estimate over the set of all
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possible positive T -periodic solutions to equation (1.1) with a parameter λ

(1.3) x′′(t) + λf(x(t))x′(t) +
λα(t)

xµ(t)
= λh(t), λ ∈ (0, 1).

Such a priori estimate is crucial for us to apply some continuation theorem of

coincidence degree theory [23], [8]. To overcome these difficulties, we propose

a new method for estimating a priori bounds of all possible positive T -periodic

solutions to (1.3), where a priori estimates are treated on a suitable open subset V

of C1
T rather than on whole space C1

T (see Theorem 3.1), and so the requirements

on a priori estimates are weakened. We allow f(x) to have a singularity at x = 0,

and the relation between the order µ of the singularity of α(t)/xµ and the order

of singularity of f(x) at x = 0 is investigated. Such a relation plays an important

role in estimating a priori bounds of positive T -periodic solutions from below.

Moreover, in (1.1), the weak singularity condition µ ∈ (0, 1) is allowed, which

is essentially different from the strong singularity condition µ ∈ [1,+∞) needed

in [15] and [27].

2. Preliminaries

Throughout this paper, let CT = {x ∈ C(R,R) : x(t+T ) = x(t)for all t ∈ R}
with the norm ‖x‖∞ = max

t∈[0,T ]
|x(t)|, and C1

T = {x ∈ C1(R,R) : x(t + T ) =

x(t) for all t ∈ R} with the norm ||x||C1
T

= max{||x||∞, ||x′||∞}. For any T -

periodic function y(t) with y ∈ L1([0, T ],R), let y+(t) = max{y(t), 0}, y−(t) =

−min{y(t), 0}, and y = (1/T )
∫ T
0
y(s) ds. Clearly, y(t) = y+(t) − y−(t) for all

t ∈ R, y = y+ − y−.

Lemma 2.1 ([11]). Let u ∈ [0, ω] → R be an arbitrary absolutely continuous

function with u(0) = u(ω). Then the inequality(
max
t∈[0,ω]

u(t)− min
t∈[0,ω]

u(t)
)2
≤ ω

4

∫ ω

0

|u′(s)|2d s

holds.

Now, we introduce a continuation theorem of the coincidence degree estab-

lished by Mawhin, which is the theoretic basis of this paper.

Let X and Y be Banach spaces, and let L : D(L) ⊂ X → Y be a Fredholm

operator with index zero, where D(L) denotes the domain of the operator L.

Then, ImL is a closed subset of Y and dim kerL = codim ImL < ∞. This

implies that there are two continuous projectors P : X → kerL and Q : Y → Y

satisfying ImP = kerL, kerQ = ImL. Then we have

X = kerL⊕ kerP, Y = ImL⊕ ImQ.

Since kerL ∩ (D(L) ∩ kerP ) = {0}, the restriction LP := L|D(L)∩kerP → ImL

is invertible. Denote by KP the inverse of LP . Suppose that Ω ⊂ X is an open
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bounded subset, a continuous operator N : Ω→ Y is said to be L-compact on Ω,

provided that KP (I −Q)N : Ω→ X is compact and QN : Ω→ Y is bounded.

Lemma 2.2 ([8]). Let X and Y be two real Banach spaces. Suppose that

L : D(L) ⊂ X → Y is a Fredholm operator with index zero and N : Ω → Y is

L-compact on Ω, where Ω is an open bounded subset of X. Moreover, assume

that all the following conditions are satisfied :

(a) Lx 6= λNx, for all x ∈ ∂Ω ∩D(L), λ ∈ (0, 1);

(b) Nx /∈ ImL, for all x ∈ ∂Ω ∩ kerL′;

(c) The Brouwer degree deg{JQN,Ω∩kerL, 0} 6= 0, where J : ImQ→ kerL

is an isomorphism.

Then equation Lx = Nx has at least one solution on Ω.

In order to study the existence of positive periodic solutions to equation (1.1),

we list the following assumptions:

(H1) h > 0, α > 0, α(t) ≤ 0, t ∈ J ; α(t) > 0, t ∈ [0, T ] \ J , where J is a closed

subset of [0, T ].

(H2) h < 0, α < 0, α(t) ≥ 0, t ∈ I; α(t) < 0, t ∈ [0, T ] \ I, where I is a closed

subset of [0, T ].

Now, we embed equation (1.1) into the following equations family with a

parameter λ ∈ (0, 1)

(2.1) x′′(t) + λf(x(t))x′(t) + λ
α(t)

xµ(t)
= λh(t), λ ∈ (0, 1).

3. Main results

In this section, let

(3.1) F (x) =

∫ x

1

f(s) ds, x ∈ (0,+∞),

where f(x) is the coefficient function of the friction term f(x)x′ in (1.1).

Theorem 3.1. Suppose that assumption (H1) holds. If there are two con-

stants

ε ∈
(

0,

(
α

h

)1/µ)
(3.2)

γ1 ∈ (ε,A(ε)) ∩
(

0,

(
α

h

)1/µ)
,(3.3)

such that

(3.4) inf
x∈(0,γ1)

(
F (x)− T α−

xµ

)
> max
x∈[A(ε),M0]

F (x) + Th+
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or

(3.5) sup
x∈(0,γ1)

(
F (x) +

T α−
xµ

)
< min
x∈[A(ε),M0]

F (x)− Th+,

where F (x) is determined by (3.1), A(ε) = ε(α+/(α− + εµh))1/µ,

M0 :=

(
α+

h

)1/µ

+

√
T

2
A0,

A0 =
1

2

(
T α−
εµ

+ Th+

)√
T +

(
α+

h

)1/(2µ)(
T α−
εµ

+ Th+

)1/2

,

then equation (1.1) has at least one positive T -periodic solution.

Proof. Let us define V =
{
x ∈ C1

T : x(t) > 0, t ∈ [0, T ]; x(t) > ε, t ∈ J
}

,

where J ⊂ [0, T ] is determined in assumption (H1). Clearly, V ⊂ C1
T is an open

set. Suppose that u ∈ V and u is a positive T -periodic solution to equation (2.1).

Then

(3.6) u′′(t) + λf(u(t))u′(t) +
λα(t)

uµ(t)
= λh(t), λ ∈ (0, 1).

Integrating it over [0, T ], we obtain

(3.7)

∫ T

0

α(s)

uµ(s)
ds = Th,

i.e. ∫
J

α(s)

uµ(s)
ds+

∫
[0,T ]\J

α(s)

uµ(s)
ds = Th.

It follows from (H1) that

−
∫
J

α−(s)

uµ(s)
ds+

∫ T

0

α+(s)

uµ(s)
ds = Th,

which together with the definition of the set V yields∫ T

0

α+(s)

uµ(s)
ds =

∫
J

α−(s)

uµ(s)
ds+ Th(3.8)

≤
∫
J

α−(s)

εµ
ds+ Th =

∫ T

0

α−(s)

εµ
ds+ Th =

T

εµ
α− + Th.

Thus, there is a point ξ ∈ [0, T ] such that

α+

uµ(ξ)
≤ α−

εµ
+ h, i.e. u(ξ) ≥ ε

(
α+

α− + εµh

)1/µ

= A(ε).

The assumption ε ∈
(
0, (α/h)1/µ

)
in (3.2) implies that

(3.9) u(ξ) ≥ A(ε) > ε.

Furthermore, the inequality ∫ T

0

α+(s)

uµ(s)
ds ≥ Th,
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which can be obtained from (3.7), implies that there is a constant η > 0 such

that

(3.10) u(η) ≤
(
α+

h

)1/µ

.

On the other hand, multiplying (3.6) with u(t), and integrating it on [0, T ], we

have ∫ T

0

|u′(t)|2 dt = λ

∫ T

0

α(t)u(t)

uµ(t)
dt− λ

∫ T

0

u(t)h(t) dt,

i.e.∫ T

0

|u′(t)|2 dt = λ

∫
J

α(t)u(t)

uµ(t)
dt+ λ

∫
[0,T ]\J

α(t)u(t)

uµ(t)
dt− λ

∫ T

0

u(t)h(t) dt

≤
∫
[0,T ]\J

α(t)u(t)

uµ(t)
dt+

∫ T

0

u(t)h−(t) dt

≤ ||u||∞
(∫ T

0

α+(t)

uµ(t)
dt+

∫ T

0

h−(t) dt

)
,

which together with (3.8) yields

(3.11)

∫ T

0

|u′(t)|2 dt ≤ ||u||∞
(
T α−
εµ

+ Th+ Th−

)
= ||u||∞

(
T α−
εµ

+ Th+

)
.

Moreover, by using Lemma 2.1 and (3.10), we get

(3.12) ||u||∞ ≤
(
α+

h

)1/µ

+

√
T

2

(∫ T

0

|u′(s)|2 ds
)1/2

.

Substituting it into (3.11), we have∫ T

0

|u′(t)|2 dt

≤
[(

α+

h

)1/µ

+

√
T

2

(∫ T

0

|u′(s)|2 ds
)1/2](

Tα−
εµ

+ Th+

)
=

√
T

2

(
T α−
εµ

+ Th+

)(∫ T

0

|u′(s)|2 ds
)1/2

+

(
α+

h

)1/µ(
Tα−
εµ

+ Th+

)
.

If we set

X =

(∫ T

0

|u′(s)|2 ds
)1/2

,

A =

√
T

2

(
Tα−
εµ

+ Th+

)
and B =

(
α+

h

)1/µ(
Tα−
εµ

+ Th+

)
,

then the above inequality can be written as X2 ≤ AX + B, which results in

X ≤ (A+
√
A2 + 4B)/2 ≤ A+B1/2, i.e.(∫ T

0

|u′(s)|2ds
)1/2

≤ 1

2

(
T α−
εµ

+ Th+

)√
T +

(
α+

h

)1/(2µ)(
T α−
εµ

+ Th+

)1/2

.
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Thus, it follows from (3.12) that

(3.13) ||u||∞ ≤
(
α+

h

)1/µ

+

√
T

2
A0 := M0,

where

A0 =
1

2

(
T α−
εµ

+ Th+

)√
T +

(
α+

h

)1/(2µ)(
T α−
εµ

+ Th+

)1/2

.

Furthermore, we can conclude that there exist points t1, t2 ∈ R such that

u(t1) = max
t∈[0,T ]

u(t), u(t2) = min
t∈[0,T ]

u(t),

0 < t2 − t1 < T.(3.14)

In fact, if 0 < t1− t2 < T , (3.14) follows directly from the case that t2 is replaced

by t2 + T . From (3.9) and (3.13), we have A(ε) ≤ u(t1) ≤M0, and then

(3.15) A2 := min
x∈[A(ε),M0]

F (x) ≤ F (u(t1)) ≤ max
x∈[A(ε),M0]

F (x) := A1.

Integrating (3.6) over the interval [t1, t2], we obtain

(3.16) F (u(t2)) = F (u(t1))−
∫ t2

t1

α(s)

uµ(s)
ds+

∫ t2

t1

h(s) ds.

In virtue of (3.15), we get

F (u(t2)) ≤ A1 +

∫ t2

t1

α−(s)

uµ(s)
ds+

∫ t2

t1

h+(s) ds

≤ A1 +

∫ T

0

α−(s)

uµ(s)
ds+

∫ T

0

h+(s) ds ≤ A1 +
T α−
uµ(t2)

+ Th+.

i.e.

F (u(t2))− T α−
uµ(t2)

≤ A1 + Th+.

By using condition (3.4), we have

(3.17) min
t∈[0,T ]

u(t) = u(t2) > γ1.

In virtue of (3.15) again, (3.16) gives us that

F (u(t2)) ≥ A2 −
∫ t2

t1

α+(s)

uµ(s)
ds−

∫ t2

t1

h−(s) ds

≥ A2 −
∫ T

0

α+(s)

uµ(s)
ds−

∫ T

0

h−(s) ds

= A2 −
∫ T

0

α(s)

uµ(s)
ds−

∫ T

0

α−(s)

uµ(s)
ds− Th−.

It follows from (3.7) that

F (u(t2)) ≥ A2 − Th− Th− −
∫ T

0

α−(s)

uµ(s)
ds ≥ A2 − Th+ −

T α−
uµ(t2)

,
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i.e.

F (u(t2)) +
T α−
uµ(t2)

≥ A2 − Th+,

which together with (3.5) also yields (3.17). Hence, (3.17) is obtained under

either condition (3.4) or condition (3.5).

Next, if u attains its maximum over [0, T ] at t1 ∈ [0, T ], then u′(t1)=0 and

we see from (3.6) that

u′(t) = λ

∫ t

t1

[
− f(u(s))u′(s)− α(s)

uµ(s)
+ h(s)

]
ds, for all t ∈ [t1, t1 + T ].

Then, we have

|u′(t)| ≤ λ|F (u(t))− F (u(t1))|+ λ

∫ t1+T

t1

|α(s)|
uµ(s)

ds+ λ

∫ t1+T

t1

|h(s)| ds

≤ 2 max
γ1≤u≤M0

|F (u)|+
∫ T

0

|α(s)|
uµ(s)

ds+

∫ T

0

|h(s)| ds.

It follows from (3.17) that

|u′(t)| ≤ 2 max
γ1≤u≤M0

|F (u)|+ T |α|
γµ1

+ T |h| := M1, for all t ∈ [0, T ].

and then

(3.18) max
t∈[0,T ]

|u′(t)| ≤M1.

Let us define X = C1
T and Y = L1([0, T ],R). Define L : D(L) ⊂ X → Y by

Lx = x′′, where D(L) = {x ∈ X : x′′ ∈ L1([0, T ],R)}. kerL = R, ImL =
{
y ∈

Y :
∫ T
0
y(t) dt = 0

}
. It is easy to see that L is a Fredholm operator with index

zero. Define

V1 = {x ∈ C1
T : γ1 < x(t) < M0 + 1 := m1, t ∈ [0, T ]; ‖x′‖∞ < M1 + 1 := m2},

Ω = V ∩ V1 and N : Ω→ Y by

(Nx)(t) = −f(x(t))x′(t)− α(t)

xµ(t)
+ h(t), t ∈ [0, T ].

It is easy to see from (3.3) that (∂V ∩ V1) = ∅, which together with the fact

∂Ω ⊂ (∂V ∩ V1) ∪ (V ∩ ∂V1) gives ∂Ω ⊂ (V ∩ ∂V1). So we can prove that

condition (a) of Lemma 2.2 is satisfied. In fact, if condition (a) of Lemma 2.2

does not hold, then there are λ0 ∈ (0, 1) and x0 ∈ ∂Ω such that Lx0 = λ0Nx0.

It follows from the fact ∂Ω ⊂ (V ∩ ∂V1) that

(3.19) x0 ∈ (V ∩ ∂V1)

and Lx0 = λ0Nx0. However, from (3.13), (3.17) and (3.18), we see that, if

x0 ∈ V such that Lx0 = λ0Nx0, then

γ1 < x0(t) < m1, t ∈ [0, T ]; ‖x′‖∞ < m2.
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According to the definition of V1, we see that x0 /∈ ∂V1. This contradicts to the

above conclusion (3.19).

If x ∈ (V ∩ ∂V1) ∩ kerL, then x(t) ≡ γ1 or x(t) ≡ m1. By this, we have

QNγ1 =
1

T

∫ T

0

(
− α(t)

γµ1
+ h(t)

)
dt = − α

γµ1
+ h

and

QNm1 =
1

T

∫ T

0

(
− α(t)

mµ
1

+ h(t)

)
dt = − α

mµ
1

+ h.

It follows from assumption of γ1 ∈ (0, (α/h)1/µ) in (3.3) and the definition of m1

that

QN(γ1) < 0 and QN(m1) > 0,

which gives that

(3.20) QNx 6= 0 for all x ∈ ∂Ω ∩ kerL

and

(3.21) deg{JQN,Ω ∩ kerL, 0} 6= 0.

(3.20) and (3.21) imply that condition (b) and condition (c) of Lemma 2.2 are

satisfied. Thus, by using Lemma 2.2, we see that (1.1) has at least one positive

T -periodic solution. �

Corollary 3.2. Assume that α(t) ≥ 0 for almost every t ∈ [0, T ] with

α > 0, and

(3.22) lim
x→0+

|F (x)| = +∞.

Then, equation (1.1) has a positive T -periodic solution if and only if h > 0.

Proof. Let u(t) be a positive T -periodic solution to (1.1), then

(3.23) u′′(t) + f(u(t))u′(t) +
α(t)

uµ(t)
= h(t).

The necessity follows by integrating equation (3.23) over [0, T ] and using the

condition of α(t) ≥ 0 for almost every t ∈ [0, T ] with α > 0. Below, we will

prove the sufficiency. Suppose that h > 0. From the condition α(t) ≥ 0 for

almost every t ∈ [0, T ] with α > 0, we see that α− = 0, α+ = α, and assumption

(H1) holds, where J = {t ∈ [0, T ] : α(t) = 0}. Thus, the constants of A(ε) and

M0 in Theorem 3.1 are replaced by

A(ε) =

(
α

h

)1/µ

and M0 =

(
α

h

)1/µ

+

√
T

2

[
T 3/2h+

2
+

(
α

h

)1/(2µ)(
Th+

)1/2]
,
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which are all independent of ε. In addition, assumption (3.22) implies that there

is a constant

γ1 ∈
(

0,

(
α

h

)1/µ)
such that

inf
x∈(0,γ1)

(
F (x)− T α−

xµ

)
= inf
x∈(0,γ1)

F (x)(3.24)

> max
x∈
[
(α/h)1/µ,M0

]F (x) + Th+ = max
x∈[A(ε),M0]

F (x) + Th+

or

(3.25) sup
x∈(0,γ1)

(
F (x) +

Tα−
xµ

)
= sup
x∈(0,γ1)

F (x) < min
x∈[A(ε),M0]

F (x)− Th+.

Take ε = γ1/2, then conditions of (3.2) and (3.3) are satisfied. Furthermore,

(3.24) (or (3.25)) verifies condition (3.4) (or (3.5)). Thus, by using Theorem 3.1,

we see that there is a positive T -periodic solution to (1.1). �

Corollary 3.3. Assume that (H1) holds with α− > 0, and the function

G(x) := F (x)− T α−
xµ

is decreasing in (0,+∞) with

(3.26) lim
x→0+

G(x) = +∞,

If there is a constant σ0 ∈ (0, 1) such that

(3.27) lim
x→0+

f(x) +
µT α−
xµ+1

f(σ0A(x))

(
α−
α+

)1/µ

> σ0,

then equation (1.1) has a positive T -periodic solution, where

A(x) = x

(
α+

α− + xµh

)1/µ

.

Proof. From (3.26), one can easily find that F (x) is also decreasing in

(0,+∞), and

lim
x→0+

F (x) = +∞,

which together with

A′(x) =

(
α+

α− + xµh

)1/µ
α−

α− + xµh
> 0, x ∈ (0,+∞)

yields

lim
x→0+

F (σ0A(x)) = +∞.
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By using condition (3.27), we have

lim
x→0+

G(x)

F (σ0A(x)) + Th+
> 1.

Thus, there is a constant δ ∈
(
0, (α/h)1/µ

)
such that

(3.28) G(x) > F (σ0A(x)) + Th+ for all x ∈ (0, δ].

By using the monotonicity of G(x), F (x) and A(x), we have

(3.29) inf
x∈(0,δ)

G(x) = G(δ) > F (σ0A(δ)) + Th+ = sup
x∈[σ0A(δ),+∞)

(
F (x) + Th+

)
.

Since

(3.30) x < A(x) < x

(
α+

α−

)1/µ

, x ∈ (0, δ],

it follows that for the above constant δ ∈
(
0, (α/h)1/µ

)
, there exists an ε ∈ (0, δ),

which is very close to the number δ such that

(3.31) A(ε) > max{δ, σ0A(δ)}.

This implies that there are two constants ε and δ with

(3.32) ε ∈
(

0,

(
α

h

)1/µ)
and

(3.33) δ ∈ (ε,A(ε)) ∩
(

0,

(
α

h

)1/µ)
.

Furthermore, (3.31) and (3.29) gives

(3.34) inf
x∈(0,δ)

G(x) > sup
x∈[A(ε),+∞)

(
F (x) + Th+

)
.

Clearly, (3.32) implies that condition (3.2) holds, (3.33) implies that condition

(3.3) holds, and (3.34) implies that condition (3.4) holds. Thus, the conclusion

follows from Theorem 3.1 directly. �

Analogously to the proof of Corollary 3.3, we can obtain the following result.

Corollary 3.4. Assume that (H1) holds with α− > 0, and the function

F (x) +
Tα−
xµ

is increasing in (0,+∞) with

lim
x→0+

(
F (x) +

T α−
xµ

)
= −∞.
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If there is a constant σ ∈ (0, 1) such that

lim
x→0+

f(x)− µT α−
xµ+1

f(σA(x))

(
α−
α+

)1/µ

> σ,

then equation (1.1) has a positive T -periodic solution.

Theorem 3.5. Suppose that assumption (H2)holds. If there are two con-

stants

(3.35) ε0 ∈
(

0,

(
α

h

)1/µ)
and γ2 ∈ (ε0, B(ε0)) ∩

(
0,

(
α

h

)1/µ)
such that

(3.36) inf
x∈(0,γ2)

(
F (x)− Tα+

xµ

)
> max
x∈[B(ε0),M2]

F (x) + Th−

or

(3.37) sup
x∈(0,γ2)

(
F (x) +

Tα+

xµ

)
< min
x∈[B(ε0),M2]

F (x)− Th−,

where

B(ε0) = ε0

(
α−

α+ − εµ0h

)1/µ

, M2 :=

(
α−

|h|

)1/µ

+

√
T

2
B0,

B0 =

(
T α+

εµ0
+ Th−

)√
T

2
+

(
α−

|h|

)1/(2µ)(
T α+

εµ0
+ Th−

)1/2

,

then equation (1.1) has at least one positive T -periodic solution.

Since the argument works almost exactly as the proof of Theorem 3.1, we

omit it here.

By applying Theorem 3.5, and using the arguments which are similar to

the ones in the proofs of Corollaries 3.3 and 3.4, we obtain the following two

corollaries.

Corollary 3.6. Assume that (H2) holds with α+ > 0, and the function

G1(x) := F (x)− Tα+

xµ

is decreasing in (0,+∞) with lim
x→0+

G1(x) = +∞. If there is a constant σ1 ∈
(0, 1) such that

lim
x→0+

f(x) +
µT α+

xµ+1

f(σ1B(x))

(
α+

α−

)1/µ

> σ1,

then equation (1.1) has a positive T -periodic solution, where

B(x) = x

(
α−

α+ − xµh

)1/µ
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is determined in Theorem 3.5.

Corollary 3.7. Assume that (H2) holds with α+ > 0, and the function

F (x) +
T α+

xµ

is increasing in (0,+∞) with

lim
x→0+

(
F (x) +

T α+

xµ

)
= −∞.

If there is a constant σ2 ∈ (0, 1) such that

lim
x→0+

f(x)− µT α+

xµ+1

f(σ2B(x))

(
α+

α−

)1/µ

> σ2,

then equation (1.1) has a positive T -periodic solution.

Remark 3.8. From conditions of (3.4), (3.5) in Theorem 3.1, as well as

(3.26) in Corollary 3.3, one can find that the function F (x) has a singularity at

x = 0, and the order of singularity of function F (x) at x = 0 is required to be no

less than µ which is the order of singularity of restoring force α(t)/xµ at x = 0.

This relation is crucial for us to estimate a priori bounds of periodic solutions

from below. In this sense, the singularity associated to f(x) at x = 0 can help

periodic solutions to exist.

Example 3.9. Consider the following equation

(3.38) x′′(t)− 30x′(t)

x2(t)
+
α(t)

x1/2
= h(t),

where α, h : R→ R are 2π−periodic functions with

α(t) =

10π sin t for t ∈ [0, π],

π sin t for t ∈ [π, 2π],

and

h(t) =

2.4π sin t for t ∈ [0, π/2],

0.4π cos t for t ∈ [π/2, 2π].

We can chose J := [π, 2π] such that (H1) holds, and by simple calculating, we

have α+ = 10, α− = 1, h+ = 1.4 and h = 1. Corresponding to (1.1), we have

T = 2π, f(x) = −30/x2, µ = 1/2 and then

F (x) =

∫ x

1

f(s) ds =
30

x
− 30.

Since

A(ε) = ε

(
α+

α− + εµh

)1/µ

=
102ε

(1 + εµ)2
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and
(
0, (αh)1/µ

)
= (0, 81), the constant ε can be chosen as ε = 0.01 such that

ε ∈
(
0, (α/h)1/µ

)
and ε < A(ε) = 100/121. Furthermore,

A1 = max
x∈[A(ε),M0]

F (x) = F (A(ε)) = 6.3.

Now, we set γ1 = 0.02, then γ1 ∈ (0, 81) =
(
0, (α/h

)1/µ
), γ1 ∈ (ε,A(ε)) and

inf
x∈(0,γ1)

(
F (x)− Tα−

xµ

)
= inf
x∈(0,0.02)

(
30

x
− 2π

x1/2
− 30

)
= 1470− 20π√

2
> 1400,

A1 + Th+ = 6.3 + 2.8π.

Thus,

inf
x∈(0,0.02)

(
F (x)− Tα−

xµ

)
> A1 + Th+,

which implies that assumption (3.4) holds. Thus, by using Theorem 3.1, we have

that equation (3.38) has at least one positive 2π-periodic solution.

Example 3.10. Consider the following equation

(3.39) x′′(t)−
(

1

xη(t)
+

1

xµ+1(t)

)
x′(t) +

α(t)

xµ
= h(t),

where α, h : R→ R are T -periodic functions and in L1([0, T ],R) with α > 0 and

h > 0, η and µ are positive constants with η > µ+ 1. If 0 ≤ α− ≤ 1/(µT ), then

F (x)− T α−
xµ

=
1

(η − 1)xη−1
+

(
1

µ
− T α−

)
1

xµ
− 1

η − 1
− 1

µ
.

This gives that F (x)− T α−/xµ is decreasing in (0,+∞) and

lim
x→0+

(
F (x)− T α−

xµ

)
= +∞.

Besides, we can chose

σ0 ∈
((

α−
α+

)1/µ

, 1

)
such that

lim
x→0+

f(x) + µT α−
xµ+1

f(σ0A(x))

(
α−
α+

)1/µ

= ση0

(
α+

α−

)(η−1)/µ

> σ0.

Thus, by using Corollary 3.3, we see that (3.39) has a positive T -periodic solu-

tion.
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