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Abstract. In this paper, we study the following strongly coupled quasi-

linear elliptic system:
−∆pu+ λa(x)|u|p−2u =

α

α+ β
|u|α−2u|v|β , x ∈ RN ,

−∆pv + λb(x)|v|p−2v =
β

α+ β
|u|α|v|β−2v, x ∈ RN ,

u, v ∈ D1,p(RN ),

where N ≥ 3, λ > 0 is a parameter, p < α + β < p∗ := Np/(N − p).
Under some suitable conditions which are given in section 1, we use varia-
tional methods to obtain both the existence and multiplicity of solutions for

the system on an appropriated space when the parameter λ is sufficiently

large. Moreover, we study the asymptotic behavior of these solutions when
λ→∞.
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154 B. Gheraibia

1. Introduction and main results

In this paper, we study the existence, multiplicity and asymptotic behavior

of solutions for the strongly coupled quasilinear elliptic system

(1.1)


−∆pu+ λa(x)|u|p−2u =

α

α+ β
|u|α−2u|v|β , x ∈ RN ,

−∆pv + λb(x)|v|p−2v =
β

α+ β
|u|α|v|β−2v, x ∈ RN ,

u, v ∈ D1,p(RN ),

where N ≥ 3, λ > 0 is a parameter, p < α + β < p∗ := pN/(N − p). The

assumptions we imposed on a(x) and b(x) are as follows:

(H1) a, b ∈ C0(RN , [0,∞)),Ωa := int a−1(0) and Ωb := int b−1(0) have smooth

boundaries, Ωa := a−1(0),Ωb := b−1(0) and Ωa ∩ Ωb is a nonempty set;

(H2) there exists M0 > 0 such that the set F := {x ∈ RN : a(x)b(x) ≤ M0}
has finite Lebesgue measure.

Since we do not assume any positive lower bounds for the potentials a and b,

we can not expect to find solutions for (1.1) in the Sobolev space W 1,p(RN ).

However, the strong coupling of the system and the assumption (H2) suggest

that we can use variational methods to investigate (1.1) by considering the cor-

responding functional defined in a proper product space. Noting that the sets

Ωa and Ωb may be unbounded, Ωa ∩Ωb is a nonempty set is very crucial for our

results.

As we will see later, that the main results in this paper show that the quasi-

linear elliptic system

(1.2)


−∆pu =

α

α+ β
|u|α−2u|v|β , x ∈ Ωa,

−∆pv =
β

α+ β
|u|α|v|β−2v, x ∈ Ωb,

u ∈W 1,p
0 (Ωa), v ∈W 1,p

0 (Ωb),

may be seen as a limit problem for (1.1) when λ → ∞ goes to infinity. We

would like to emphasize that although Ωa and Ωb may be distinct open sets,

(1.3) is variational. Moreover, (H2) implies that Ωa and Ωb have finite Lebesgue

measure. Therefore, we have the Sobolev compact imbedding

W 1,p(Ωa)×W 1,p(Ωb) ↪→ Lr1(Ωa)× Lr2(Ωb), p− 1 ≤ r1, r2 < p∗.

We say that the following system

(1.3)


−∆u = Fu(x, u, v), x ∈ Ω,

−∆v = Fv(x, u, v), x ∈ Ω,

u = v = 0, x ∈ ∂Ω,



Solutions for Quasilinear Elliptic Systems with Vanishing Potentials 155

where Ω ⊂ RN is a bounded domain, is a gradient system if F : Ω×R×R→ R
is C1 class. The theory of gradient systems is sort of similar to that of scalar

equations

−∆u = f(x, u) in Ω.

The system (1.3) is variational and its solutions correspond to the critical points

of the following energy functional

(1.4) Φ(u, v) =
1

2

∫
Ω

|∇u|2 +
1

2

∫
Ω

|∇v|2 −
∫

Ω

F (x, u, v),

for all (u, v) ∈ H1
0 (Ω)×H1

0 (Ω).

In [2], Alves, de Morais Filho and Souto studied the existence and non-

existence of solutions for

(1.5)


−∆u = au+ bv +

2α

α+ β
|u|α−2u|v|β , x ∈ Ω,

−∆v = bu+ cv +
2β

α+ β
|u|α|v|β−2v, x ∈ Ω,

u = v = 0, x ∈ ∂Ω,

depending on the parameters a, b, c ∈ R, α, β > 1. They proved that when

α+ β = 2∗, (1.5) had nontrivial solution. Moreover they proved

Sα,β(Ω) =

((
α

β

)β/(α+β)

+

(
α

β

)−α/(α+β))
S,

where

Sα,β(Ω) = inf
u,v∈H1

0 (Ω)

∫
Ω

(
|∇u|2 + |∇v|2

)
dx(∫

Ω

|u|α|v|β dx
)2/(α+β)

,

and

S = inf
u∈H1

0 (Ω)

∫
Ω

|∇u|2dx(∫
Ω

|u|2
∗
dx

)2/2∗
.

This result combined effectively −∆u = u2∗−1 for x ∈ RN with

(1.6)


−∆u =

2α

α+ β
|u|α−2 u|v|β , x ∈ RN ,

−∆v =
2β

α+ β
|u|α|v|β−2 v, x ∈ RN ,

where α+β = 2∗. Guo and Liu in [21] proved the uniqueness of positive solutions

for (1.6).
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In [22], Han studied the existence of solutions for the system

(1.7)


−∆u =

2α

α+ β
|u|α−2u|v|β + λu, x ∈ Ω,

−∆v =
2β

α+ β
|u|α|v|β−2v + µv, x ∈ Ω,

u = v = 0, x ∈ ∂Ω,

on a non-contractible domain. He pointed out that when λ, µ were sufficiently

small, (1.7) had at least one solution.

Let be a bounded domain in RN with N ≥ 3 satisfying

(i) B1/ρ(0) \Bρ(0) ⊂ Ω,

(ii) Bρ(0) 6⊂ Ω,

and ρ is sufficiently small. In [24], He and Yang investigated the existence of

positive solutions for the following system of elliptic equations

(1.8)


−∆u =

p

p+ q
|u|p−2u|v|q, x ∈ Ω,

−∆v =
q

p+ q
|u|p|v|q−2v, x ∈ Ω,

u = v = 0, x ∈ ∂Ω,

as well as

(1.9)


−∆u =

p

p+ q
|u|p−2u|v|q + εf(x), x ∈ Ω,

−∆v =
q

p+ q
|u|p|v|q−2v + εg(x), x ∈ Ω,

u = v = 0, x ∈ ∂Ω,

where p > 1, q > 1 satisfying p+q = 2∗, 2∗ denotes the critical Sobolev exponent.

f, g ∈ C1(Ω), f 6≡ 0, g 6≡ 0. In [23], Han proved that when ε > 0 was small

enough, (1.9) had two solutions.

When p = 2 in (1.1), we observe that there exists an extensive bibliography

in the study of elliptic systems on bounded domains (see [12], [13], [15], [16],

[25], [27], [31] and references therein). In the case of gradient systems in the

whole RN , in [11] Costa proved the existence of a nonzero solution for{
−∆u+ a(x)u = Fu(x, u, v), x ∈ RN ,
−∆v + b(x)v = Fv(x, u, v), x ∈ RN ,

under the coercivity of the potentials a(x) and b(x), and a nonquadratic con-

dition on the nonlinearity. A related result for noncoercive potentials is proved

in [17] (see also [29] for the superlinear case). We should also mention [4], [28]

where some existence results of positive solutions for weakly coupled system are

established. We would like to emphasize that, instead of the aforementioned
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works, the coupling in our system (1.1) when p = 2 allows us to consider po-

tentials which are not bounded from below by positive constants. We may have

one of the potentials going to zero as |x| → ∞ provided the other one goes to

infinity at an appropriated rate.

The theory of gradient systems has also been considered in the framework

p-Lapacians

∆pu = div(|∇u|p−2∇u), p > 1.

For quasilinear elliptic systems, L. Baccardo and D.G. de Figueiredo in [9] studied

the following system −∆pu = Fu(x, u, v), x ∈ Ω,

−∆qv = Fv(x, u, v), x ∈ Ω,

where p and q are real numbers larger than 1, Ω is some bounded domain in RN ,

u and v are real-valued functions defined in Ω and belonging to appropriate

spaces of functions and F (sometimes referred as a potential) is a real-valued

differentiable function with domain Ω × R × R. They obtained nontrivial solu-

tions in W 1,p
0 (Ω)×W 1,q

0 (Ω) under the coercivity of F and some other technical

conditions.

When p = 2, for the scalar case, in [6]–[8] it is considered the potential

cλ(x) = λc(x)+1 with c being such that the set {x ∈ RN : c(x) ≤M0} has finite

Lebesgue measure, for some M0 > 0. In [8], Bartsch and Wang considered the

Lusternik–Schnirelmann category of some set related with the limit problem.

Recently in [19], Furtado, Silva and Xavier studied the existence and multi-

plicity of solutions for the system when the parameter λ is sufficiently large,

(1.10)


−∆u+ λa(x)u =

p

p+ q
|u|p−2u|v|q, x ∈ RN ,

−∆v + λb(x)v =
q

p+ q
|u|p|v|q−2v, x ∈ RN ,

u, v ∈ D1,2(RN ),

where N ≥ 3, λ > 0 is a parameter, 2 < p + q < 2∗ := 2N/(N − 2). a(x) and

b(x) satisfy (H1) and (H2). They also studied the asymptotic behavior of these

solutions when λ→∞. In this paper, we are mainly motivated by [19]. We want

to extend the results of (1.10) to (1.1).

In order to state our main results later, we introduce the spaces:

Xa :=

{
u ∈ D1,p

(
RN
)

:

∫
RN

a(x)|u|p dx <∞
}

and

Xb :=

{
u ∈ D1,p

(
RN
)

:

∫
RN

b(x)|u|p dx <∞
}
.
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For any given λ > 0, we consider the Banach space X := Xa×Xb endowed with

the norm

‖(u, v)‖pλ :=

∫
RN

(
|∇u|p + |∇v|p + λa(x)|u|p + λb(x)|v|p

)
dx.

Observe that ‖ · ‖0 is the usual norm of the space D1,p(RN )×D1,p(RN ).

The corresponding energy functional Iλ : X → R for (1.1) is given by

Iλ(u, v) :=
1

p
‖(u, v)‖pλ −

1

α+ β

∫
RN
|u|α|v|β dx, (u, v) ∈ X.

By (H1) and (H2), the functional Iλ is well defined and of class C1.

Our main results are as follows:

Theorem 1.1. Let (H1)–(H2) hold. Then there exists Λ > 0 such that, for all

λ ≥ Λ, the system (1.1) possesses a positive ground state solution zλ. Moreover,

if (λn) ⊂ R is such that λn →∞ and (zλn) is a sequence of positive ground state

solutions of (1.1) with λ = λn, then (zλn) converges in D1,p(RN ) × D1,p(RN )

along a subsequence to a positive ground state solution of (1.3).

A solution z = (u, v) of (1.1) is called a ground state solution if it a solu-

tion with the least energy of the functional Iλ. Applying the symmetry of our

problem, we obtain multiple solutions for large values of λ.

Theorem 1.2. Let (H1)–(H2) hold. Then, for any given m ∈ N, there exists

Λm > 0 such that, for each λ ≥ Λm, the system (1.1) possesses at least m pairs

of nonzero solutions.

Furthermore, we obtain the following concentration result.

Theorem 1.3. Let (λn) ⊂ R be such that λn →∞ and (zλn) be a sequence

of solutions of (1.1) with λ = λn such that lim inf
n→∞

Iλn(zλn) < ∞. Then (zλn)

converges in D1,p(RN )×D1,p(RN ) along a subsequence to a solution of (1.3).

The results presented in this article are motivated by that obtained in [19].

Theorems 1.1 to 1.3 extend the results in [19]. To the best knowledge of us,

the results we obtain are new. However, in order to obtain our results, we

have to overcome some difficulties. Firstly, since p-Laplacian is quasilinear, we

have to use some different techniques to prove that the sequence of solutions

of (1.1) converges in D1,p(RN ) × D1,p(RN ) along a subsequence to a solution

of (1.3). Lemma 3.1 is very crucial in the whole proof. Secondly, preliminaries

in Section 2 are very technical which are more complicated than [19]. We apply

the symmetry of the nonlinearity to obtain the existence of multiple solutions

as in [19]. We would like to point out that the coupling in our systems (1.3)

allows us to consider potentials which are not bounded from below by positive
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constants. We may have one of the potentials going to zero as |x| → ∞ provided

the other one goes to infinity at an appropriated rate.

Before ending this section, we give some notations. BR denotes the open

ball in RN of radius R and center at the origin. For any given set K, we set

KC := RN \ K and we use |K| for the Lebesgue of K whenever this set is

measurable. C∞0 (K) denotes the set of all functions u : K → R of class C∞ with

compact support contained in the open set K ⊂ RN . If u ∈ Ls(K), s ≥ 1, we

set u+ := max{u, 0}, u− := max{−u, 0} and write ‖u‖Ls(K) for Ls-norm of u.

We write
∫
K
u instead of

∫
K
u dx. We also omit the set K whenever K = RN .

Finally, we use the symbols ci(i ∈ N), C and C̃ to represent positive constants.

un → u in X denotes that un converges strongly to u in X and un ⇀ u in X

denotes that un converges weakly to u in X.

The paper is organized as follows. In Section 2 we give some preliminary

results which will be useful in our paper. We also study the behavior of the

Palais–Smale sequences when λ goes to infinity. In Section 3 we prove Theo-

rem 1.1. We give the proofs of Theorem 1.2 and 1.3 in Section 4.

2. Some preliminaries

In this section we give some preliminaries for the proof of Theorem 1.1.

Lemma 2.1. For any given measurable set K ⊂ RN there exists a constant

C > 0 such that∫
K

|u|α|v|β ≤ C‖(u, v)‖α+β−p+p∗t/r
0

(∫
K

|uv|p/2
)γ
, for all (u, v) ∈ X,

where r = p∗/(p∗ − (α+ β) + p) > 1 and t ∈ (0, 1) satisfies r = p∗t/p + (1 − t)
and γ = (1− t)/r.

Proof. Since r = p∗/(p∗ − (α+ β) + p), we have

α− p/2
p∗

+
β − p/2
p∗

+
1

r
= 1.

By Hölder inequality and the imbedding D1,p(RN ) ↪→ Lp
∗
(RN ), we have

(2.1)

∫
K

|u|α|v|β =

∫
K

|u|α−p/2|v|β−p/2|uv|p/2

≤
(∫

K

|u|p
∗
)(α−p/2)/p∗(∫

K

|v|p
∗
)(β−p/2)/p∗(∫

K

|uv|rp/2
)1/r

≤ C1‖(u, v)‖α+β−p
0

(∫
K

|uv|rp/2
)1/r

.

Noting that 1 < r < p∗/p, there exists t ∈ (0, 1) such that

r =
p∗

p
t+ (1− t).
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By Hölder inequality and the imbedding D1,p(RN ) ↪→ Lp
∗
(RN ) again, we have∫

K

|uv|rp/2 =

∫
K

|uv|p
∗t/2|uv|(1−t)p/2(2.2)

≤
(∫

K

|uv|p
∗/2

)t(∫
K

|uv|p/2
)1−t

≤
(∫

K

|u|p∗ + |v|p∗

2

)t(∫
K

|uv|p/2
)1−t

≤ C2‖(u, v)‖p
∗t

0

(∫
K

|uv|p/2
)1−t

.

Combining (2.1) and (2.2), we can complete the proof of the lemma. �

Lemma 2.2. There exists a constant C̃ > 0 such that∫
|u|α|v|β ≤ C̃‖(u, v)‖α+β

1 for all (u, v) ∈ X.

Proof. It follows from Lemma 2.1 that

(2.3)

∫
|u|α|v|β ≤ C‖(u, v)‖α+β−p+p∗t/r

0

(∫
|uv|p/2

)γ
.

We recall that the set F given in (H2) has finite measure and a(x)b(x) > M0

in FC . By Hölder’s inequality, we have∫
|uv|p/2 =

∫
F

|uv|p/2 +

∫
FC
|uv|p/2(2.4)

≤
(∫

F

|u|p
∗
)p/2p∗(∫

F

|v|p
∗
)p/2p∗

|F |1−p/p
∗

+
1√
M0

∫
FC

√
a(x)|u|p/2

√
b(x)|v|p/2

≤C3‖(u, v)‖p0 +
1√
M0

(∫
FC

a(x)|u|p
)1/2(∫

FC
b(x)|v|p

)1/2

≤C4‖(u, v)‖p1.

By (2.3) and (2.4), we have∫
|u|α|v|β ≤ C‖(u, v)‖α+β−p+p∗t/r

0

(
C4‖(u, v)‖p1

)(1−t)/r
≤ C‖(u, v)‖α+β−p+p(p∗t/p+(1−t))/r

1 = C‖(u, v)‖α+β
1 ,

where we have used that r = p∗t/p+ (1− t). �

Since we are interested in positive solutions of (1.1), we will work with a func-

tional slightly different from that defined in the introduction. Precisely, we con-

sider Φλ : X → R defined by

Φλ(u, v) :=
1

p
‖(u, v)‖pλ −

1

α+ β

∫
(u+)α(v+)β , (u, v) ∈ X.
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It follows from Lemma 2.2 that Φλ is well defined. Further, applying Lemma 2.2

and (H2), we can verify that Φλ ∈ C1(X,R) for any λ > 0.

Let E be a Banach space and I ∈ C1(E,R). First we recall that (zn) ⊂ E

is a Palais–Smale sequence at level c ((PS)c sequence for short) if I(zn) → c

and I ′(zn) → 0. I satisfies (PS)c if any (PS)c sequence possesses a convergent

subsequence.

Lemma 2.3. Let λ ≥ 1 and (zn) ⊂ X be a (PS)c sequence for Φλ.

(a) (zn) is bounded in X;

(b) lim
n→∞

‖zn‖pλ = lim
n→∞

∫
(un)α+(vn)β+ = c

(
1

p
− 1

α+ β

)−1

;

(c) if c 6= 0, then c ≥ γ0 > 0 for some γ0 independent of λ.

Proof. Since (zn) ⊂ X is a (PS)c sequence for Φλ, we have

(2.5)

(
1

p
− 1

α+ β

)
‖zn‖pλ = Φλ(zn)− 1

α+ β
Φ′λ(zn)zn = c+ o(1)‖zn‖λ,

as n→∞ and hence (a) holds.

Meanwhile, as n→∞, we get(
1

p
− 1

α+ β

)
‖zn‖pλ = Φλ(zn)− 1

α+ β
Φ′λ(zn)zn = c+ o(1)‖zn‖λ

= Φλ(zn)− 1

p
Φ′λ(zn)zn =

(
1

p
− 1

α+ β

)∫
(un)α+(vn)β+,

which implies that (b) holds.

By Lemma 2.2, for any λ ≥ 1 we have

Φ′λ(z)z = ‖z‖pλ −
∫

(u+)α(v+)β ≥ ‖z‖pλ − C̃‖z‖
α+β
λ ≥ 1

p
‖z‖pλ,

where ‖z‖λ ≤
(
(p− 1)/

(
pC̃
))1/(α+β−p)

:= p
√
δ.

Suppose that c < δ(1/p− 1/(α+ β)). By (b), there exists n0 ∈ N such that

‖zn‖λ < p
√
δ for any n ≥ n0. Therefore,

1

p
‖zn‖pλ ≤ Φ′λ(zn)zn ≤ o(1)‖zn‖λ, as , n→∞

and we infer that zn → 0 in X. Hence Φλ(zn)→ 0 = c it follows that (c) holds

for γ0 =: δ(1/p− 1/(α+ β)). �

Lemma 2.4. Given ε > 0 and C0 > 0, there exist Λε = Λ(ε, C0) > 0 and

Rε = R(ε, C0) such that if ((un, vn)) ⊂ X is a (PS)c-sequence for Φλ with c ≤ C0

and λ ≥ Λε, then

lim sup
n→∞

∫
BCRε

(un)α+(vn)β+ ≤ ε.
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Proof. Observing that ‖ · ‖0 ≤ ‖ · ‖λ, by Lemma 2.1 and Lemma 2.3 (a) we

have

(2.6)

∫
BCR

(un)α+(vn)β+ ≤ C
(∫

BCR

|unvn|p/2
)γ
, for any R > 0.

Then by Yong and Hölder’s inequalities, the imbedding D1,p(RN ) ↪→ Lp
∗
(RN )

and Lemma 2.3 (a), we get

(2.7)

∫
BCR∩F

|unvn|p/2 ≤
1

2

∫
BCR∩F

(|un|p + |vn|p)

≤ 1

2
|BCR ∩ F |p/N (‖un‖pLp∗ + ‖vn‖pLp∗ ) ≤ C|BCR ∩ F |p/N .

On the other hand, since ((un, vn)) is bounded and a(x)b(x) > M0 in BCR ∩ FC ,

we have ∫
BCR∩FC

|unvn|p/2 ≤
1

λ
√
M0

∫
BCR∩KC

√
λa(x)|un|p/2

√
λb(x)|vn|p/2(2.8)

≤ 1

2λM0

∫
BCR∩KC

(λa(x)|un|p + λb(x)|vn|p) ≤
C

λ
.

It follows from (2.6)–(2.8) that

(2.9)

∫
BCR

|unvn|p/2 ≤ C
(
C
∣∣BCR ∩ F ∣∣p/N +

C

λ

)γ
.

Since F has finite Lebesgue measure, we have that
∣∣BCR ∩ F ∣∣ → 0 as R → ∞.

Hence for R and λ sufficiently large, the right-hand of (2.8) is small. �

Lemma 2.5. There exist δ, ρ > 0 and z0 ∈ X, all of them independent of λ

such that

(a) Φλ(z) ≥ δ for ‖z‖λ = ρ.

(b) Φλ(z0) ≤ Φλ(0) = 0 and ‖z0‖ > ρ.

Proof. It follows from Lemma 2.2 that

Φλ(z) =
1

p
‖z‖pλ −

1

α+ β

∫
(u+)α(v+)β ≥ 1

p
‖z‖pλ −

C̃

α+ β
‖z‖α+β

λ ≥ 1

2p
ρp,

whenever ‖z‖λ = ρ :=
(
(α+ β)/

(
2pC̃

))1/(α+β−p)
.

However, if ϕ ∈ C∞0 (Ωa ∩ Ωb) \ {0} we have a(x)ϕ ≡ b(x)ϕ ≡ 0 on RN .

Therefore,

lim
t→∞

Φλ(t(ϕ,ϕ)) = lim
t→∞

(
2tp

p

∫
|∇ϕ|p − tα+β

α+ β

∫
(ϕ+)α+β

)
= −∞

uniformly on λ. It is sufficient to set z0 := t0(ϕ,ϕ) with t0 > 0 sufficiently

large. �
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Remark 2.6. Let z0 be given by Lemma 2.5. For each λ > 0, we may define

the mountain pass level of Φλ as

cλ := inf
γ∈Γ

max
t∈[0,1]

Φλ(γ(t)),

where Γ :=
{
γ ∈ C([0, 1], X), γ(0) = 0, γ(1) = z0

}
. For future reference we

observe that

(2.10) 0 < δ ≤ cλ ≤ ξ0 := max
t∈[0,1]

Φλ(tz0).

3. Least energy solutions

In this section, we mainly want to prove Theorem 1.1.

Lemma 3.1. If {zn} = {(un, vn)} is a (PS)c sequence of Iλ, then {∇un} and

{∇vn} has subsequences which converge to {∇u} and {∇v} respectively almost

everywhere for some (u, v) ∈ X in RN .

Proof. Assume that {zn} = {(un, vn)} ⊂ X is a (PS)c sequence of Iλ.

Then

(3.1) Iλ(zn)→ c and 〈I ′λ(zn), zn〉 → 0.

Since {zn} is bounded in X, there exists a z = (u, v) ∈ X such that

(un, vn) ⇀ (u, v) in X,(3.2)

(un, vn) → (u, v) a.e. in RN ,(3.3)

(un, vn)→ (u, v) strong in Lrloc(RN )× Lrloc(RN ), r ∈ [p, p∗).(3.4)

For each R > 0, fix η be a C∞ function satisfying η ≡ 1 in BR(0) and η ≡ 0 in

RN \B2R(0). By (3.1) and (3.2), we get 〈I ′λ(zn)− I ′λ(z), η(zn − z)〉 → 0, i.e.

o(1) = 〈I ′λ(zn)− I ′λ(z), η(zn − z)〉(3.5)

=

{∫
|∇un|p−2∇un(∇η(un − u) + η∇(un − u))

+

∫
|∇vn|p−2∇vn(∇η(vn − v) + η∇(vn − v))

+

∫ (
λa(x)|un|p−2unη(un − u) + λb(x)|vn|p−2vnη(vn − v)

)
− α

α+ β

∫
|un|α−2unη(un − u)|vn|β

− β

α+ β

∫
|un|α|vn|β−2vnη(vn − v)

}
−
{∫

|∇u|p−2∇u(∇η(un − u) + η∇(un − u))

+

∫
|∇v|p−2∇v(∇η(vn − v) + η∇(vn − v))
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+

∫ (
λa(x)|u|p−2uη(un − u) + λb(x)|v|p−2vη(vn − v)

)
− α

α+ β

∫
|u|α−2uη(un − u)|v|β

− β

α+ β

∫
|u|α|v|β−2vη(vn − v)

}
.

By (3.3), the boundedness of {zn} and Hölder’s inequality, we can prove

(3.6) lim
n→∞

∫
a(x)η(|un|p−2un − |u|p−2u)(un − u)

= lim
n→∞

∫
b(x)η(|vn|p−2vn − |v|p−2v)(vn − v) = 0,

(3.7) lim
n→∞

∫
|∇un|p−2∇un∇η(un − u) = lim

n→∞

∫
|∇vn|p−2∇vn∇η(vn − v) = 0

and

(3.8) lim
n→∞

∫
|∇u|p−2∇u∇η(un − u) = lim

n→∞

∫
|∇v|p−2∇v∇η(vn − v) = 0.

By (3.2), we have

(3.9) lim
n→∞

∫
η|∇u|p−2∇u∇(un − u) = lim

n→∞

∫
η|∇v|p−2∇v∇(vn − v) = 0.

By (3.3), (3.4) and Lebesgue Theorem, we have

(3.10) lim
n→∞

∫
η|un|α−2un(un − u)|vn|β = lim

n→∞

∫
η|un|α|vn|β−2vn(vn − v) = 0

and

(3.11) lim
n→∞

∫
η|u|α−2u(un − u)|v|β = lim

n→∞

∫
η|u|α|v|β−2v(vn − v) = 0.

Hence, from (3.5) to (3.10), we get

(3.12) lim
n→∞

∫
η
[
|∇un|p−2∇un(∇un −∇u) + |∇vn|p−2∇vn(∇vn −∇v)

]
= 0.

It follows from (3.9) and (3.12) that

lim
n→∞

∫
η
[(
|∇un|p−2∇un − |∇u|p−2∇u

)
(∇un −∇u)

+
(
|∇vn|p−2∇vn − |∇v|p−2∇v

)
(∇vn −∇v)

]
= 0.

By Lemma 2.2 in [1], we have

〈|x|p−2x− |y|p−2y, x− y〉 ≥ |x− y|p, for p ≥ 2, x, y ∈ RN .

Hence, we have

lim
n→∞

∫
η
(
|∇un −∇u|p + |∇vn −∇v|p

)
= 0.
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Therefore, we get

lim
n→∞

∫
BR(0)

(
|∇un −∇u|p + |∇vn −∇v|p

)
= 0,

i.e.

∇un → ∇u in Lp(BR(0)) and ∇un → ∇u in Lp(BR(0)).

Hence up to subsequences, there exists a (u, v) ∈ X such that

(∇un,∇vn)→ (∇u,∇v) a.e. in RN . �

We are now in position to prove Theorem 1.1.

Proof of Theorem 1.1. Let ε > 0 to be chosen later, C0: = ξ0 given

in (2.10) and consider Lambdaε, Rε provided in Lemma 2.4. By Remark 2.6, for

any fixed λ ≥ Λε, there exists a sequence (zn) ⊂ X such that

Φλ(zn)→ cλ ≥ δ and Φ′λ(zn)→ 0.

It follows from Lemma 2.3 (a) that (zn) is bounded. Then, up to a subsequence,

we have that zn ⇀ zλ := (uλ, vλ) weakly in X.

We shall prove that Φ′λ(zλ) = 0. Let φ ∈ C∞0 (RN ) and denote by K be the

support of φ. By the compact embedding D1,p(RN ) ↪→ Lα+β−1
loc (RN ), we have

(3.13)

(un, vn) → (uλ, vλ) in Lα+β−1(K)× Lα+β−1(K),

(un, vn) → (uλ, vλ) a.e. in K,

|un|, |vn| ≤ hK(x) ∈ Lα+β−1(K) a.e. in K.

Therefore, almost everywhere in K,

(3.14) (un)α−1
+ (vn)β−1

+ |φ| ≤ |un|α−1|vn|β |φ| ≤ hα+β−1
K |φ| ∈ L1(K).

By (3.14) and the Lebesgue Dominated Convergence Theorem, we have

(3.15) lim
n→∞

∫
(un)α−1

+ (vn)β+φ =

∫
(uλ)α−1

+ (vλ)β+φ, for all φ ∈ C∞0 (RN ).

Similarly, we get

(3.16) lim
n→∞

∫
(un)α+(vn)β−1

+ ψ =

∫
(uλ)α+(vλ)β−1

+ ψ, for all ψ ∈ C∞0 (RN ).

On one hand, as (un, vn) is bounded in Lploc(RN ) × Lploc(RN ), it follows from

a result due to Brezis and Lieb (see [10]),

λ

∫
a(x)|un|p−2unϕ → λ

∫
a(x)|uλ|p−2uλϕ, for ϕ ∈ C∞0 (RN ),(3.17)

λ

∫
b(x)|vn|p−2vnψ → λ

∫
b(x)|vλ|p−2vλψ, for ψ ∈ C∞0 (RN ).(3.18)

Similar to the proof of Lemma 3.1, we can prove

∇un → ∇uλ in Lp(suppϕ) and ∇vn → ∇vλ in Lp(suppψ).
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Therefore, we have∫
|∇un|p−2∇un∇ϕ →

∫
|∇uλ|p−2∇uλ∇ϕ for ϕ ∈ C∞0 (RN ),(3.19) ∫

|∇vn|p−2∇vn∇ψ →
∫
|∇vλ|p−2∇vλ∇ψ for ψ ∈ C∞0 (RN ).(3.20)

As a result, for each (ϕ,ψ) ∈ C∞0 (RN )× C∞0 (RN ), there holds

0 = lim
n→∞

I ′λ(zn)(ϕ,ψ) = I ′λ(zλ)(ϕ,ψ).

Therefore zλ is a critical point of Φλ.

Suppose that zλ ≡ 0. Since un, vn → 0 in Lp(BRε), we may use Lemma 2.1

the boundedness of zn in X and Young’s inequality, to get∫
BRε

(un)α+(vn)β+ ≤ C
(∫

BRε

(|un||vn|)
p
2

)γ
(3.21)

≤ C
(∫

BRε

|un|p + |vn|p
)γ
→ 0,(3.22)

as n→∞. It follows from Lemma 2.3 (b) and Lemma 2.4 that, for λ ≥ Λε,

cλ

(
1

p
− 1

α+ β

)−1

= lim
n→∞

∫
(un)α+(vn)β+

= lim
n→∞

(∫
BRε

(un)α+(vn)β+ +

∫
BCRε

(un)α+(vn)β+

)
≤ ε.

If we choose ε > 0 sufficiently small, then we conclude that cλ = 0, contradicting

cλ > 0. This shows that zλ 6≡ 0.

By Fatou’s Lemma, we get

cλ = lim
n→∞

(
Iλ(zn)− 1

p
I ′λ(zn)zn

)
= lim
n→∞

(
1

p
− 1

α+ β

)∫
(un)α+(vn)β+

≥
(

1

p
− 1

α+ β

)∫
(uλ)α(vλ)β = Iλ(zλ) ≥ cλ,

which implies that Iλ(zλ) = cλ. Hence, zλ is a ground state solution.

Since I ′λ(zλ)((uλ)−, (vλ)−) = ‖((uλ)−, (vλ)−)‖pλ = 0, we have that uλ, vλ ≥ 0

in RN . Furthermore, by the Vasquez Maximum Principle (see [34]) for the p-

Laplacian equation in each equation of (1.1) we conclude that uλ, vλ > 0 in RN .

This proves the first part of Theorem 1.1.

Now we consider the concentration behavior of the solutions. Suppose that

(λn) ⊂ R is such that λn → ∞ and let zλn = (uλn , vλn) be the associated

solution of (1.1) with λ = λn such that Iλn(zλn) = cλn . In what follows, we

write only zn, un and vn to denote zλn , uλn and vλn , respectively.

By (2.10), we have

(3.23)

(
1

p
− 1

α+ β

)
‖zn‖pλn = Iλn(zn) = cλn ≤ ξ0.
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Thus, up to a subsequence, we have that zn ⇀ z = (u, v) weakly in D1,p(RN )×
D1,p(RN ) and zn(x) → z(x) almost everywhere in RN . Given ϕ ∈ C∞0 (Ωa),

recalling that a ≡ 0 in Ωa and using (ϕ, 0) as a test function, we get

(3.24)

∫
|∇un|p−2∇un∇ϕ =

α

α+ β

∫
(un)α−1

+ (vn)β+ϕ.

Since ϕ has compact support, we may take the limit in (3.24) and argue as in

the proof (3.15) to get

(3.25)∫
Ωa∪Ωb

|∇u|p−2∇u∇ϕ =
α

α+ β

∫
Ωa∪Ωb

(u)α−1
+ (v)β+ϕ, for all ϕ ∈ C∞0 (Ωa).

Similarly, for all ψ ∈ C∞0 (Ωb), we have

(3.26)

∫
Ωa∪Ωb

|∇v|p−2∇v∇ψ =
β

α+ β

∫
Ωa∪Ωb

(u)α+(v)β−1
+ ψ.

We claim that u ≡ 0 in ΩCa . In order to see this, we take j ∈ N, denote

Cj :=

{
x ∈ Bj(0), a(x) >

1

j

}
and, by (3.24),

0 ≤
∫
Cj

|un|p ≤
j

λn

∫
Cj

λna(x)|un|p ≤
j

λn
‖zn‖pλn → 0,

as n → ∞. Noting that Cj is bounded and un → u in Lploc(RN ), we conclude

that
∫
Cj
|u|p dx = 0 for all j ∈ N. Thus u ≡ 0 almost everywhere in ΩCa =

n⋃
j=1

Cj .

Recalling that Ωa has smooth boundary, we infer that u ∈W 1,p
0 (Ωa). Similarly,

v ∈W 1,p
0 (Ωb). Thus u, v is a solution of the limiting problem (1.3).

In order to check that z 6= 0, we define

m := inf
z∈N

J(z),

where J : W 1,p
0 (Ωa)×W 1,p

0 (Ωb)→ R is given by

J(u, v) :=
1

p

∫
Ωa∪Ωb

(
|∇u|p + |∇v|p

)
− 1

α+ β

∫
Ωa∪Ωb

(u+)α(v+)β

and N is the Nahari manifold of J , namely

N :=
{

(u, v) ∈W 1,p
0 (Ωa)×W 1,p

0 (Ωb) : (u, v) 6= (0, 0), J ′(u, v)(u, v) = 0
}
.

Since W 1,p
0 (Ωa) × W 1,p

0 (Ωb) can be viewed as a subspace of X, we have that

cλ ≤ m, for all λ. On the other hand,

(3.27) m ≥ cλn = Iλn(zn)− 1

p
I ′λn(zn)zn =

(
1

p
− 1

α+ β

)∫
(un)α+(vn)β+.
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Taking n→∞, applying Fatou’s lemma and J ′(u, v) = 0 we obtain

m ≥ lim
n→∞

(
1

p
− 1

α+ β

)∫
(un)α+(vn)β+(3.28)

≥
(

1

p
− 1

α+ β

)∫
Ωa∪Ωb

(u+)α(v+)β = J(u, v) ≥ m.

Hence J(u, v) = m and therefore z 6= 0 is a ground state solution of (1.3). By

(3.26) and (3.27) we obtain ‖(u−, v−)‖0 = 0. Thus, u, v ≥ 0 and a Harnack-type

inequality given by Serrin (Theorem 5 in [30]) together with (3.26) and (3.27)

implies that u > 0 in Ωa and v > 0 in Ωb.

In order to complete the proof, by Lemma 3.1 and Brezis–Lieb lemma, the

fact that zn is a solution of (1.1) with λ = λn, (3.28) and (u, v) ∈ N , we get

‖zn − z‖pλ

=

∫ (
|∇(un − u)|p + |∇(vn − v)|p + λna(x)|un − u|p + λnb(x)|vn − v|p

)
=

∫ (
|∇un|p + |∇vn|p + λna(x)|un|p + λnb(x)|vn|p

)
−
∫ (
|∇u|p + |∇v|p

)
+ o(1)

=

∫
(un)α+(vn)β+ −

∫ (
|∇u|p + |∇v|p

)
+ o(1)

=

∫
(u)α+(v)β+ −

∫ (
|∇u|p + |∇v|p

)
+ o(1) = o(1),

as n→∞. Since ‖ · ‖0 ≤ ‖ · ‖λn , it follows that zn → z in D1,p(RN )×D1,p(RN ).

This finishes the proof of Theorem 1.1. �

4. Multiplicity of bound state solutions

In this section, we mainly prove Theorems 1.2 and 1.3. Since we are not

concerned the sign of solutions, we redefine the functional Iλ given by

Iλ(u, v) :=
1

p
‖(u, v)‖pλ −

1

α+ β

∫
|u|α|v|β , (u, v) ∈ X.

As in Section 2, the functional is of class C1 and its critical points are the weak

solutions of (1.1). For future reference, first we give the following inequalities:

(4.1)

∫
BCR

|u|α−1|v|β−1|ϕψ|

≤ C‖u‖α−1
Lp∗ (BCR )

‖v‖β−1

Lp∗ (BCR )
‖(ϕ,ψ)‖2−p+p

∗t/r
0

(∫
BCR

|ϕψ|p/2
)(1−t)/r
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and

(4.2)

∫
BCR

|ϕψ|p/2 ≤ C‖(ϕ,ψ)‖p0|BCR ∩ F |p/N

+
1√
M0

(∫
BCR∩FC

a(x)|ϕ|p
)1/2(∫

BCR∩FC
b(x)|ψ|p

)1/2

,

for any R > 0 and (u, v), (ϕ,ψ) ∈ X. Here r > 1, t ∈ (0, 1) and γ > 0 are given

by Lemma 2.1. In fact, we have∫
BCR

|u|α−1|v|β−1|ϕψ|

≤
(∫

BCR

|u|p
∗
)(α−1)/p∗(∫

BCR

|v|p
∗
)(β−1)/p∗(∫

BCR

|ϕψ|θ
)1/θ

≤‖u‖α−1
Lp∗ (BCR )

‖v‖β−1

Lp∗ (BCR )

(∫
BCR

|ϕψ|θ1 |ϕψ|θ2
)1/θ

≤‖u‖α−1
Lp∗ (BCR )

‖v‖β−1

Lp∗ (BCR )

(∫
BCR

|ϕψ|p
∗/2

)(2−p)/p∗+t/r(∫
BCR

|ϕψ|p/2
)(1−t)/r

≤‖u‖α−1
Lp∗ (BCR )

‖v‖β−1

Lp∗ (BCR )

(∫
BCR

|ϕ|p
∗
)(2−p)/(2p∗)+t/(2r)

·
(∫

BCR

|ψ|p
∗
)(2−p)/(2p∗)+t/(2r)(∫

BCR

|ϕψ|p/2
)(1−t)/r

≤C‖u‖α−1
Lp∗ (BCR )

‖v‖β−1

Lp∗ (BCR )
‖(ϕ,ψ)‖2−p+p

∗t/r
0

(∫
|ϕψ|p/2

)(1−t)/r

,

where

θ =
p∗

p∗ − (α+ β − 2)
, θ1 =

(
2− p

2
+
p∗t

2r

)
θ, θ2 =

p(1− t)
2r

θ.

Meanwhile, we get∫
BCR

|ϕψ|p/2 ≤
(∫

BCR∩F
|ϕ|p

∗
)p/(2p∗)(∫

BCR∩F
|ψ|p

∗
)p/(2p∗)∣∣BCR ∩ F ∣∣1−p/p∗

+
1√
M

∫
BCR∩FC

√
a(x)|ϕ|p/2

√
b(x)|ψ|p/2

≤C‖(ϕ,ψ)‖p0
∣∣BCR ∩ F ∣∣p/N

+
1√
M

(∫
BCR∩FC

a(x)|ϕ|p
)1/2(∫

BCR∩FC
b(x)|ψ|p

)1/2

.

In order to obtain multiple critical points for Iλ we shall use the following

version of the Symmetric Mountain Pass Theorem [5] (see also [32, Theorem 2.1]).
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Proposition 4.1. Let E be a real Banach space and W ⊂ E be a finite

dimensional subspace. Suppose that I ∈ C1(E,R) is an even functional satisfying

I(0) = 0 and

(a) there exists a constant ρ > 0 such that I|∂Bρ(0) ≥ 0;

(b) there exists M > 0 such that sup
z∈W

I(z) < M.

If I satisfies (PS)c for any 0 < c < M , then I possesses at least dimW pairs of

nontrivial critical points.

Now we give a similar Brezis–Lieb type lemma (see [10]).

Lemma 4.2. Let ((un, vn)) ⊂ X be such that (un, vn) ⇀ (u, v) weakly in X.

Then

lim
n→∞

∫ (
|un|α|vn|β − |un − u|α|vn − v|β

)
=

∫
|u|α|v|β .

Proof. By (4.1) and (4.2), we can finish the proof by the same argument

of Lemma 4.2 in [19]. Here we omit its proof.

Lemma 4.3. Let zn = ((un, vn)) ⊂ X be a (PS)c sequence for Iλ. Then, up

to a subsequence, zn ⇀ z := (u, v) weakly in X, where z is a critical point of Iλ.

Furthermore, z̃n := zn − z is a (PS)c′ sequence for Iλ, with c′ = c− Iλ(z).

Proof. Since zn is bounded in X, up to a subsequence, zn ⇀ z := (u, v)

weakly in X. Arguing as in the proof of Theorem 1.1 we can show that I ′λ(z) = 0.

By Lemma 3.1, Brezis–Lieb Lemma and Lemma 4.2, we have

Iλ(zn − z)

=

∫ (
|∇(un − u)|p + |∇(vn − v)|p + λa(x)|un − u|p + λb(x)|vn − v|p

)
− 1

α+ β

∫
|un − u|α|vn − v|β

=

∫ (
|∇un|p + |∇vn|p + λa(x)|un|p + λb(x)|vn|p

)
− 1

α+ β

∫
|un|α|vn|β

−
∫ (
|∇u|p + |∇v|p + λa(x)|u|p + λb(x)|v|p

)
+

1

α+ β

∫
|u|α|v|β + o(1)

= Iλ(zn)− Iλ(z) + o(1) = c− Iλ(z) + o(1),

as n→∞.

It remains to show that I ′λ(zn− z)→ 0. First, for any given (ϕ,ψ) ∈ X such

that ‖(ϕ,ψ)‖λ ≤ 1, we have

I ′λ(zn − z)(ϕ,ψ)

= I ′λ(zn)(ϕ,ψ)− I ′λ(z)(ϕ,ψ)− α

α+ β

∫
fnϕ−

β

α+ β
gnψ

+

∫ (
|∇(un − u)|p−2∇(un − u)− |∇un|p−2∇un + |∇u|p−2∇u

)
∇ϕ
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+

∫ (
|∇(vn − v)|p−2∇(vn − v)− |∇vn|p−2∇vn + |∇v|p−2∇v

)
∇ψ

+ λ

∫
a(x)

(
|un − u|p−2(un − u)− |un|p−2un + |u|p−2u

)
ϕ

+ λ

∫
b(x)

(
|vn − v|p−2(vn − v)− |vn|p−2vn + |v|p−2v

)
ψ,

where

fn(x) := |un − u|α−2(un − u)|vn − v|β − |un|α−2un|vn|β + |u|α−2u|v|β ,

gn(x) := |un − u|α|vn − v|β−2(vn − v)− |un|α|vn|β−2vn + |u|α|v|β−2v.

By Lemma 3.1 and Lemma 3.2 in [1], we can check that(∫ ∣∣|∇(un − u)|p−2∇(un − u)− |∇un|p−2∇un + |∇u|p−2∇u
∣∣p/(p−1)

)(p−1)/p

= on(1),

(∫ ∣∣|∇(vn − v)|p−2∇(vn − v)− |∇vn|p−2∇vn + |∇v|p−2∇v
∣∣p/(p−1)

)(p−1)/p

= on(1),∫
a(x)

∣∣|(un − u)|p−2(un − u)− |un|p−2un + |u|p−2u
∣∣p/(p−1)

= on(1),∫
b(x)

∣∣|(vn − v)|p−2(vn − v)− |vn|p−2vn + |v|p−2v
∣∣p/(p−1)

= on(1).

Therefore, we get

I ′λ(zn − z)(ϕ,ψ) = I ′λ(zn)(ϕ,ψ)− I ′λ(z)(ϕ,ψ)

− α

α+ β

∫
fnϕ−

β

α+ β

∫
gnψ + on(1).

Since I ′λ(zn)→ 0 and I ′λ(z) = 0, it is sufficient to show that

(4.3) lim
n→∞

sup
‖ϕ‖Xa≤1

∫
|fn||ϕ| = 0 = lim

n→∞
sup

‖ψ‖Xb≤1

∫
|gn||ψ|,

where we are denoting

‖ϕ‖pXa :=

∫
(|∇ϕ|p + λa(x)|ϕ|p), ‖ψ‖pXb :=

∫
(|∇ψ|p + λb(x)|ψ|p).

Since we can prove that (4.3) is true by the same argument of (4.12) in Lemma 4.3

in [19], we omit the detailed proof. �

The following result is a local compactness property for the functional Iλ.

Lemma 4.4. For any given C0 there exists Λ = Λ(α, β, C0) > 0 such that Iλ
satisfies (PS)c for any c ≤ C0 and λ ≥ Λ.
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Proof. Let γ0 be given by Lemma 2.3 (c) and fix ε > 0 such that

ε <
γ0

p

(
1

p
− 1

α+ β

)−1

.

Fixing C0 > 0, let Λε and Rε be given by Lemma 2.4. We will prove that

the this lemma holds for Λ := Λε. Let (zn) = ((un, vn)) ⊂ X be a (PS)c
sequence for Iλ with c ≤ C0 and λ ≥ Λ. By Lemma 4.3, we may suppose that

(un, vn) ⇀ z := (u, v) weakly in X and z̃n := (un−u, vn−v) is a (PS)c′ sequence

for Iλ, with c′ = c− Iλ(z). We claim that c′ = 0. If this is true, it follows from

Lemma 2.3 (b) that

lim
n→∞

‖z̃n‖pλ = c′
(

1

p
− 2

α+ β

)−1

= 0,

that is zn → z in X.

Suppose, by contradiction, that c′ 6= 0. Lemma 2.3 (c) implies that c′≥γ0>0.

Since ũn, ṽn → 0 in Lp(BRε), we may use Lemma 2.3 (b), Lemma 2.4, the same

calculation of (3.21) and the choice of ε > 0 to get

γ0

(
1

p
− 1

α+ β

)−1

≤ c′
(

1

p
− 1

α+ β

)−1

= lim
n→∞

∫
|ũn|α|ṽn|β

≤ lim
n→∞

(∫
BRε

|ũn|α|ṽn|β +

∫
BCRε

|ũn|α|ṽn|β
)

≤ ε ≤ γ0

p

(
1

p
− 1

α+ β

)−1

,

which contradicts γ0 > 0. �

Now we are in ready to prove Theorems 1.2 and 1.3.

Proof of Theorem 1.2. Take a bounded open smooth set Ω ⊂ Ωa ∩ Ωb.

Given m ∈ N we set H := span{(φ1, φ1), . . . , (φm, φm)}, where φi is an eigen-

function corresponding to the i-th eigenvalue of (−∆p,W
1,p
0 (Ω)) (see [27]). For

each i = 1, . . . ,m, we have that

lim
t→∞

Iλ(t(φi, φi)) = lim
t→∞

(
2tp

p

∫
|∇φi|p −

tα+β

α+ β

∫
|φi|α+β

)
= −∞,

uniformly on λ. Since dim(H) < ∞ , we obtain Mm > 0 independent of λ > 0,

such that

sup
z∈H

Iλ(z) < Mm.

Meanwhile, as in the proof of Lemma 2.5, we may obtain ρ > 0, independent of

λ > 0, such that

Iλ(z) ≥ 0 for any ‖z‖λ = ρ.
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By Lemma 4.4 there exists Λm > 0 such that Iλ satisfies (PS)c for any c ≤Mm

and λ ≥ Λm. Therefore, for any fixed λ ≥ Λm we may apply Theorem 1.1 to get

m pairs of nontrivial solutions. �

Proof of Theorem 1.3. Noting that(1

p
− 1

α+ β

)
‖zλn‖

p
λn

= Iλn(zλn)− 1

α+ β
I ′λn(zλn)zλn = Iλn(zλn),

since lim inf
n→∞

Iλ(zλn) < ∞ we may assume, up to a subsequence, that (zλn) is

bounded. Thus, up to a subsequence, we have that

(4.4)

zλn ⇀ z := (u, v) weakly in D1,p(RN )×D1,p(RN ),

(un, vn)→ (u, v) strongly in Lαloc(RN )× Lβloc(RN ),

(un, vn)→ (u, v) a.e. in RN .

Given ε > 0 we can argue as in the proof of Lemma 2.4 to conclude that, for

some R > 0 large, there holds

lim sup
n→∞

∫
(BR(0))C

|un|α|vn|β ≤ ε.

By taking R larger if necessary, we may suppose that∫
(BR(0))C

|u|α|v|β ≤ ε.

Meanwhile, (4.4) and the Lebesgue Dominated Convergence Theorem imply that∫
(BR(0))C

|un|α|vn|β →
∫

(BR(0))C
|u|α|v|β

as n→∞. Noting that∣∣∣∣ ∫ (|un|α|vn|β − |u|α|v|β)∣∣∣∣ ≤ ∫
(BR(0))C

|un|α|vn|β

+

∫
(BR(0))C

|u|α|v|β +

∣∣∣∣ ∫
BR(0)

(|un|α|vn|β − |u|α|v|β)

∣∣∣∣,
which implies that

lim sup
n→∞

∣∣∣∣ ∫ (|un|α|vn|β − |u|α|v|β)∣∣∣∣ ≤ 2ε

and therefore

lim
n→∞

∫
|un|α|vn|β =

∫
|u|α|v|β .

Hence, we can argue as in the end of the proof of Theorem 1.1 to conclude that

‖zλn − z‖0 ≤ ‖zλn − z‖λn → 0 as n → ∞. Therefore, zλn → z strongly in

D1,p(RN )×D1,p(RN ) and the theorem is proved. �
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equations, J. Lond. Math. Soc. 75 (2007), 67–82.

[5] A. Ambrosetti and P.H. Rabinwitz, Dual variational methods in critical point theory

and applications, J. Funct. Anal. 14 (1973), 349–381.

[6] T. Bartsch, A. Pankov and Z.Q Wang, Nonlinear Schrödinger equations with steep

potential well, Commun. Contemp. Math. 3 (2001), 549–569.

[7] T. Bartsch and Z.Q. Wang, Existence and multiplicity results for some superlinear

elliptic problems on RN , Comm. Partial Differential Equations 20 (1995), 1725–1741.

[8] T. Bartsch and Z.Q. Wang, Multiple positive solutions for a nonlinear Schrödinger

equation, Z. Angew. Math. Phys. 51 (2000), 366–384.

[9] L. Boccardo and D.G. de Figueiredo, Some remarks on a system of quasilinear elliptic

equations, NoDEA Nonlinear Differential Equations Appl. 9 (2002), 309–323.
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