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Abstract. We will prove, besides other things like localization and
(in)stability, that the differential equations x′+x3−λx = εr(t), λ > 0, and

x′′+x3−x = εr(t), where r : R→ R are uniformly limit-periodic functions,

possess for sufficiently small values of ε > 0 uniformly limit-periodic solu-
tions, provided r in the first-order equation is strictly positive. As far as

we know, these are the first nontrivial effective criteria, obtained for limit-

periodic solutions of nonlinear differential equations, in the lack of global
lipschitzianity restrictions. A simple illustrative example is also indicated

for difference equations.

1. Introduction

As our title indicates, the main aim of the present paper is to study limit-

periodic solutions of the first-order and the second-order differential equations

involving cubic nonlinearities and limit-periodic forcing terms. The investigation

of limit-periodic nonlinear oscillations is a delicate problem, especially because

the space of limit-periodic functions endowed with the sup-norm is complete,

but not linear. That is why the related results are, unlike those for periodic
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and almost-periodic oscillations, very rare (see e.g. [2], [6], [5], [19]). Moreover,

many well known obstructions even for linear almost-periodic oscillations cannot

be also avoided here (see e.g. [9], [16]). On the other hand, the class of limit-

periodic functions is an important subclass of almost-periodic functions which

generalizes in a natural way (like quasi-periodic functions) periodic functions.

As pointed out in [17, p. 113], Harald Bohr was the first who paid an attention

to it in [8].

For the first-order scalar differential equations of the form x′ = f(x)+p(t), an

interesting generic result was obtained in [2], provided f ∈ C2(R,R) is such that

the set {x ∈ R | f ′′(x) = 0} is totally disconnected and p is limit-periodic. If the

nonlinearities in given systems under consideration are globally lipschitzean with

sufficiently small Lipschitz constants, then the Banach contraction principle can

be easily applied to limit-periodic systems (see e.g. [6]). Otherwise, the situation

becomes subtle, as documented by the theorem of Seifert [19, Theorem 2] which

requires, besides other things, a finiteness of the number of entirely bounded

solutions (cf. Proposition 2.7 below). This serious obstruction can be omitted

for difference systems (see [5]). We also generalized in [5], under a slight growth

restriction imposed on nonlinearities, Seifert’s result by means of the Stepanov

norms. Nevertheless, there are so far no nontrivial illustrative examples of the ap-

plications of the Seifert’s theorem to our disposal. In fact, his unique illustrative

example in [19] “only” says that the Duffing-type equation x′′ + εx− x3 = r(t),

forced by a limit-periodic function r admits, for every sufficiently small ε > 0, an

almost-periodic but not necessarily a limit-periodic solution. As far as we know,

that is all what was done concerning nonlinear limit-periodic oscillations.

The same conclusion about almost-periodic solutions can be directly deduced,

as particular cases of the results for the Duffing-type almost-periodic equations

x′′ − x + x3 = εr(t), ε > 0 sufficiently small, and x′′ − x − x3 = r(t) in [22]

and [7], respectively, including the uniqueness result in [7]. Let us note that the

existence of infinitely many harmonic as well as subharmonic (periodic) solutions

was proved, in answering the Littlewood’s problem, to the periodic equation

x′′ + εx+ x3 = r(t), ε > 0, (see [10, Chapter 10], and the references therein).

Despite the numerical simulations (see e.g. [13, pp. 501–503]) for the 2π-

periodic equation x′′ − x + x3 = 0.2 cos t, resp. the equivalent planar system

x′ = y, y′ = x−x3 +0.2 cos t, whose all orbits are bounded, we are able to extend

in this paper the theorem of Zeng [22] in the sense that the limit-periodic equation

x′′−x+x3 = εr(t), ε > 0 sufficiently small, possesses a (uniformly) limit-periodic

solution. Let us note that the presence of a transversal homoclinic point in the

vicinity of the origin at the 2π-periodic system indicates a rather complicated

behaviour near the homoclinic loops of the unforced equation x′′−x+x3 = 0. In

particular, the cross section of the orbit starting at (0, 0) does not appear to lie
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on a closed invariant curve which signalizes that the orbit might not be periodic

or quasi-periodic.

The analogous extension can be done, via Seifert’s approach (i.e. by means of

Proposition 2.7 below) to the equation x′′ − x− x3 = r(t), considered by Berger

and Chen [7]. In view of the uniqueness theorem about at most one entirely

bounded solution in [1, Theorem 2.4], which applies for x′′ − x3 = r(t) (ε = 0),

it is a question whether or not the limit-periodic equation x′′ + εx − x3 = r(t)

considered by Seifert in [19] admits, for a sufficiently small ε > 0, a limit-

periodic solution, too. However, because of infinitely many periodic solutions

of the periodic equation x′′ + εx + x3 = r(t), ε > 0, one might not expect the

applicability of the same approach to this Duffing-type equation.

The equation x′′ − x + x3 = εr(t), ε > 0, with a negative linear stiffness

treated by Zeng [22] and ourselves, describes (according to [12, Chapter 2.2]) the

dynamics of a buckled beam or plate, when one mode vibration is considered.

In particular, it provides the simplest possible model for the forced vibration of

a cantilever beam in the nonuniform field of two permanent magnets.

Furthermore, since the forced mathematical (undamped) pendulum equation

x′′ + c sinx = r(t), c 6= 0, is a paradigmatic object in the theory of nonlinear

oscillations and classical mechanics, and since sinx was approximated just by

the two first terms in the series sinx = x − x3/3! + x5/5! − x7/7! + . . . by

Duffing [11], there is no doubt about the importance of the exploration of any

of the Duffing-type equations of the form x′′ + ax+ bx3 = r(t), b 6= 0, including

the limit-periodic case of r.

For the first-order differential equations, the situation seems to be partly

more promissible, because we have to our disposal the exact multicity results

about entirely bounded solutions due to Tineo [20], [21], required by Proposi-

tion 2.7 below. Moreover, the generic result of Alonso, Obaya and Ortega [2] en-

couraged us to consider again the equations with the “Duffing-type” cubic nonlin-

earities f(x) = ax+bx3, b 6= 0, because the set {x ∈ R | f ′′(x) = 6bx = 0} = {0}
is trivially totally disconnected.

In this way, we are able to extend the theorem of Haraux [14] (see Lemma 3.2

below) about the almost-periodic solutions of the equation x′ + x3 − λx = r(t),

λ > 0, in the sense that, besides other things, this equation possesses, under

the additional hypothesis inft∈R r(t) > 0 for a limit-periodic forcing r, a limit-

periodic solution, provided the amplitude of r is sufficiently small. Because of

the substitution t := −τ , the same is also true for x′ − x3 + λx = −r(t), λ > 0.

The easiest situation apparently appears for the limit-periodic difference

equations and systems, because as already pointed out the space of limit-periodic

sequences endowed with the sup-norm is this time Banach, and subsequently the

finiteness of the set of entirely bounded solutions is no longer required. In order
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to demonstrate its comparison with continuous analogies, we give in Concluding

remarks an illustrative example to the equation xt+1 − x3
t − λxt = rt, λ > 1.

Appart from the existence results, the localization and (in)stability analysis

is supplied in all our main statements. A certain sort of structural stability called

essentiality, which is important for the numerical stability, is investigated also

by our technique (see Proposition 2.15 below) for the second-order differential

equation and the first-order difference equation.

Let us finally note that the mentioned existence of a transversal homoclinic

point of the equivalent system to x′′−x+x3 = 0.2 cos t, for which our Theorem 4.5

below trivially applies, means the presence of deterministic chaos. For more

details, see e.g. [12], [18].

2. Preliminaries and auxiliary results

We will recall the notion of a limit-periodic function and its basic properties.

Hence, let C(R,Rn) denote the set of continuous functions from R into Rn;

BC(R,Rn) be the set of continuous functions which are bounded in the sup-

norm ‖ · ‖∞ : f → sup
t∈R
|f(t)|; CT (R,Rn) be the set of continuous T -periodic

(T > 0) functions. Then

Per(R,Rn) :=
⋃
T>0

CT (R,Rn)

denotes the subset of continuous (bounded) functions.

Definition 2.1. A function f ∈ C(R,Rn) is said to be (uniformly or Bohr)

almost-periodic (briefly: a.p.) if, for every ε > 0, there corresponds a relatively

dense set {τ}ε of ε-almost-periods τ of f (i.e. if there exists a number l > 0 such

that every interval [a, a+ l], a ∈ R, contains at least one point in {τ}ε) such that

‖f( · + τ)− f( · )‖∞ ≤ ε, for all τ ∈ {τ}ε.

Let us denote the Banach space of almost-periodic functions f : R → Rn,

endowed with the sup-norm ‖ · ‖∞, by AP(R,Rn).

Definition 2.2. A (bounded) continuous function f ∈ C(R,Rn) is said to

be (uniformly) limit-periodic (l.p.) if there exists a sequence {fk} of continuous

periodic functions fk ∈ Per(R,Rn), k ∈ N, converging uniformly to f .

Let us denote the set of limit-periodic functions f : R→ Rn by LPer(R,Rn).

Definition 2.3. A continuous function f ∈ C(R,Rn) is said to be semi-

periodic (s.p.) if

∀ε > 0 ∃T > 0 ∀j ∈ Z ∀t ∈ R |f(t+ jT )− f(t)| ≤ ε.

Such a number T will be called an ε-semi-period of f .

Let us denote the set of semi-periodic functions f : R→ Rn by S(R,Rn).
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It can be easily seen from the definition that every continuous periodic func-

tion is semi-periodic. Moreover, if f is semi-periodic, then it is uniformly (Bohr)

almost-periodic (i.e. f ∈ AP(R,Rn)) and, in particular, it is bounded. Thus, we

can rewrite Definition 2.3 as follows.

Definition 2.4. A (bounded) continuous function f ∈ C(R,Rn) is said to

be semi-periodic (s.p.) if

∀ε > 0 ∃T > 0 ∀j ∈ Z ‖f( · + jT )− f( · )‖∞ ≤ ε.

Definitions 2.2, 2.3 and 2.4 are equivalent (see e.g. [6], [17, p. 115]), i.e.

S(R,Rn) = LPer(R,Rn).

Moreover, we have

Per(R,Rn) ⊂ S(R,Rn) = LPer(R,Rn) ⊂ AP(R,Rn) ⊂ BC(R,Rn).

From this, we can also consider LPer(R,Rn) as a metric space with the metric

d(f, g) := sup
t∈R
|f(t)− g(t)| = ‖f − g‖∞.

On the other hand, unfortunately, LPer(R,Rn) is not a linear space, but

a complete metric space (see e.g. [6]) which brings some obstructions. Never-

theless, since LPer(R,Rn) is the closure of Per(R,Rn) in the sup-norm, we can

define a limit-periodic function as the uniform limit of a uniformly convergent

sequence of continuous periodic functions.

Remark 2.5. We have proved in [6] that limit-periodic functions which are at

the same time quasi-periodic are in fact periodic and that “pure” limit-periodic

functions can be therefore characterized as those which are limit-periodic, but

not periodic.

On this basis, we can already consider the differential system

(2.1) x′ = f(x) + p(t),

where f : Rn → Rn is a continuously differentiable function, i.e. f ∈ C1(Rn,Rn),

and p : R → Rn is a uniformly limit-periodic function, i.e. p ∈ LPer(R,Rn),

jointly with the associated systems

(2.2) x′ = f(x) + pN (t),

where the sequence {pN}, N ∈ N, of TN -periodic functions pN ∈ CTN
(R,Rn)

converges, according to Definition 2.2, uniformly to p.

For each N ∈ N, we assume that:

(H1) system (2.2) has a TN -periodic solution ϕN such that ‖ϕN‖∞ ≤ D,

where D > 0 is a common constant, for all N ∈ N,
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(H2) if AN (t) is the Jacobian matrix of f at ϕN (t), then there exist a non-

singular matrix solution UN of y′ = AN (t)y, and constants KN > 0,

αN > 0 such that, for every N ∈ N,

(2.3)
|UN (t)I1U

−1
N (s)|Mn1

≤ KNe
−αN (t−s), for t ≥ s,

|UN (t)I2U
−1
N (s)|Mn2

≤ KNe
αN (t−s), for t ≤ s,

where I1 = diag(E1, 0), I2 = diag(0, E2), E1 and E2 are the n1×n1 and

n2 × n2 unit matrices, respectively, and n1 + n2 = n. For n1 = 0 or

n2 = 0, the corresponding inequality in (2.3) can be omitted.

Substituting x := y + ϕN (t) into (2.1), we obtain

y′ = AN (t)y + g(t, y,N) + h(t,N),

where h(t,N) := p(t)−pN (t) and g(t, y,N) := f(y+ϕN (t))−f(ϕN (t))−AN (t)y.

Observe that h is almost-periodic, but not necessarily limit-periodic, and g is

TN -periodic. Moreover, for ε > 0, there exists δ = δ(ε) > 0 such that

(2.4) |g(t, y,N)| ≤ ε|y|,

and

(2.5) |g(t, y,N)− g(t, z,N)| ≤ ε|y − z|,

for |y| ≤ δ(ε), |z| ≤ δ(ε), N ∈ N, t ∈ R.

Remark 2.6. Let us note that condition (2.3) is called the exponential di-

chotomy for y′ = AN (t)y, and that AN need not be periodic in general. For

more details about exponential dichotomies, see e.g. [18].

The following theorem, which we state here in the form of a proposition, is

due to Seifert (see [19, Theorem 2]).

Proposition 2.7. Consider (2.1), where

f ∈ C1(Rn,Rn) and p ∈ LPer(R,Rn).

Let conditions (H1) and (H2) hold for (2.2), for each fixed N ∈ N, and suppose

that, for all N sufficiently large,

(2.6) 4KN‖pn − p‖∞ ≤ αnδ̃N ,

where δ̃N → 0 as N →∞, and δ̃N ≤ δ(αn/4KN ), δ being the function involved in

(2.4) and (2.5). Then if there exists a D1 > D such that (2.1) has at most a finite

number of solutions ϕ satisfying ‖ϕ‖∞ ≤ D1, then (2.1) possesses a uniformly

limit-periodic solution.

The following corollary allows us to avoid condition (2.6), provided the ex-

ponential dichotomy holds with common constants K > 0, α > 0.
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Corollary 2.8. Consider (2.1), where

f ∈ C1(Rn,Rn) and p ∈ LPer(R,Rn).

Let the conditions (H1) and (H2) hold for (2.2), for each fixed N ∈ N. Sup-

pose that, for all N sufficiently large, the exponential dichotomy (2.3) holds with

common constants K > 0 and α > 0, i.e. for sufficiently large values of N we

can put KN = K and αN = α. If system (2.1) has at most a finite number of

entirely bounded solutions ϕ such that ‖ϕ‖∞ ≤ D1, D1 > D, then (2.1) possesses

a uniformly limit-periodic solution.

Now, let us briefly turn to limit-periodic and semi-periodic sequences.

Definition 2.9. A sequence x := {xt} ∈ (Rn)Z is called (uniformly) limit-

periodic (l.p.) if there exists a sequence of periodic sequences xk := {xkt }, k ∈ N,

such that lim
k→∞

xkt = xt, uniformly with respect to t ∈ Z.

Definition 2.10. A sequence x := {xt} ∈ (Rn)Z is called semi-periodic

(s.p.) if

∀ ε > 0 ∃T ∈ N ∀m ∈ Z ∀ k ∈ Z |xk+mT − xk| ≤ ε.

The following proposition (see [6, Proposition 1]) relates the link between

semi-periodic sequences and functions. Given a sequence x := {xt}, t ∈ Z,

consider the function fx : R → Rn such that its restriction to Z is x and which

is linear on each interval [k, k + 1], k ∈ Z, namely

fx(u) := {u}xt+1 + (1− {u})xt, for all t ∈ Z,

where {u} is the fractional part of u, i.e. {u} ∈ [0, 1) and u− {u} ∈ N ∪ {0}.

Proposition 2.11. For x ∈ (Rn)Z, all the following statements are equiva-

lent :

(a) fx is semi-periodic with a semi-period in N,

(b) there exists a semi-periodic function with a semi-period in N whose re-

striction to Z is x,

(c) x is semi-periodic.

Remark 2.12. Quite analogously to the continuous case, one can prove the

equivalence of Definitions 2.9 and 2.10 (cf. [6]). Observe that Definition 2.10

easily implies Definition 2.9, by Proposition 2.11.

It is well known that (unlike in the continuous case) the set of uniformly limit-

periodic sequences x := {xt} ∈ (Rn)Z, endowed with the sup-norm ‖ · ‖∞, i.e.

‖x‖∞ = ‖{xt}‖∞ := sup
t∈Z
|xt|,

is a Banach space (see e.g. [6], and the references therein).
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Remark 2.13. We have proved in [6] that (like in the continuous case) limit-

periodic sequences which are at the same time quasi-periodic are in fact periodic

and that “pure” limit-periodic sequences can be therefore characterized as those

which are limit-periodic, but not periodic.

In Concluding remarks, we will indicate an easier application of a discrete

analogy of Corollary 2.8 to a scalar limit-periodic difference equation.

It will be also convenient to recall the notion of essentiality introduced by

Fort, Jr. (see e.g. [4], and the references therein).

Definition 2.14. Let X = (X,d) be a metric space, f : X → X be a contin-

uous mapping and x0 be an isolated fixed point of f , i.e. x0 = f(x0). We say that

x0 ∈ X is an essential fixed point of f if, for every open ε-neighbourhood (ε > 0)

U of x0, there exists δ = δ(ε) > 0 such that any continuous map g : X → X

which is δ-near to f , i.e. sup
x∈X

d(f(x), g(x)) < δ, has a fixed point in U .

The following proposition was given in [4, Theorem 3].

Proposition 2.15. Let X be a metric absolute retract, i.e. up to a home-

omorphism and up to a retraction a convex set, and f : X → X be a compact

(continuous) mapping. Assume that the set Fix(f) of fixed points of f satis-

fies dim Fix(f) = 0, where dim stands for the topological (coverging) dimension.

Then f admits an essential fixed point.

3. Limit-periodic solutions of the first-order equation

At first, we will show that the equation x′ + x3 − λx = r(t), λ > 0, admits,

for a strictly positive limit-periodic forcing r such that ‖r‖∞ is sufficiently small

(namely ‖r‖∞ < 2 · 3−3/2 · λ3/2), an unstable limit-periodic solution. Hence,

consider the equation

(3.1) x′ + x3 − λx = r(t),

where r : R→ R is a continuous bounded function.

Let us note that the related case of the equation x′ − x3 + λx = −r(t),
λ > 0, will be also considered in Remark 3.9 below. The following Ambrosetti–

Prodi type lemma is a particular case of [21, Theorem 5.1 and Corollary 1.1] due

to Tineo.

Lemma 3.1. Let r : R→ R be a bounded continuous function such that

(3.2) inf
t∈R

r(t) > 0.

Then there exists a critical value λ∗ ∈ R such that equation (3.1) has

(a) exactly three separate, entirely bounded solutions u1, u2, u3 such that

(3.3) u3(t) < u2(t) < 0 < u1(t), t ∈ R, for λ > λ∗,
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(b) exactly two separate, entirely bounded solutions u1, u2 such that

u2(t) < 0 < u1(t), t ∈ R, for λ = λ∗,

(c) exactly one entirely bounded solution u1 such that

0 < u1(t), t ∈ R, for λ < λ∗.

In particular, equation (3.1) has, for any λ ∈ R, a finite number of entirely

bounded solutions.

For λ > 0, and a uniformly almost-periodic (a.p.) forcing r, the following

result was obtained by Haraux in [14, Example 5.1].

Lemma 3.2. Let r : R→ R be a uniformly almost-periodic function such that

(3.4) ‖r‖∞ <
2

3
λ

√
λ

3
, λ > 0.

Then equation (3.1) has exactly three uniformly (Bohr) almost-periodic solutions

u1, u2, u3. These solutions satisfy the inequalities

(3.5) u3(t) ≤ −
√
λ

3
≤ u2(t) ≤

√
λ

3
≤ u1(t), t ∈ R.

Moreover, u1 and u3 are (positively) stable, while u2 is (positively) unstable.

If r is, in particular, T -periodic (T > 0), then the solutions u1, u2, u3 are also

T -periodic.

Remark 3.3. In view of Lemma 3.1, the critical value λ∗ must be, under (3.2)

and (3.4), non-positive, i.e. λ∗ ≤ 0.

Lemmas 3.1 and Lemma 3.2 can be easily matched as follows.

Lemma 3.4. Let r : R→ R be a uniformly almost-periodic function, satisfy-

ing (3.2) and (3.4). Then equation (3.1) has exactly three separate, uniformly

(Bohr) almost periodic solutions u1, u2, u3. These solutions satisfy at the same

time the inequalities (3.3) and (3.5). In particular, u2 satisfies the inequalities

(3.6) −
√
λ

3
≤ u2(t) < 0 <

√
λ

3
, t ∈ R.

Moreover, u1 and u3 are (positively) stable, while u2 is (positively) unstable. If r

is still T -periodic (T > 0), then the solutions u1, u2, u3 are also T -periodic.

Now, consider the linear homogenous equation

(3.7) x′ + [3q2
T (t)− λ]x = 0, λ > 0,

where qT := u2 is a T -periodic solution of (3.1), guaranteed by Lemma 3.4.

We will prove that the equation (3.7) possesses, under the above assump-

tions (3.4) and (3.6), an exponential dichotomy with suitable constants K > 0

and α > 0.
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Setting a(t) := 3q2
T (t)− λ, we have a(t) ≤ 0, for t ∈ [0, T ], because ‖qT ‖∞ ≤√

λ/3, according to (3.6). If a = 0, on a nondegenerated subinterval J ⊂ [0, T ],

then

r(t) := q3
T (t)− λq(t) = −2

3
λ

√
λ

3

on J , which is impossible, because ‖r‖∞ < (2/3)λ
√
λ/3, according to (3.4).

Thus, the mean value M{a} of a is negative, i.e. M{a} < 0.

Every solution x of (3.7) takes the form

x(t) = x(s) exp

(
−
∫ t

s

a(u) du

)
.

Let us put

F (t) :=

∫ t

0

[M{a} − a(u)] du.

SinceM{a}−a is periodic with the mean value equal to zero, F must be bounded.

Subsequently,

−
∫ t

s

a(u) du = F (t)− F (s)−M{a}(t− s) ≤ 2‖F‖∞ −M{a}(t− s),

for t < s, and so

|x(t)| ≤ |x(s)|e2‖F‖∞e−M{a}(t−s), for t < s.

In this way, the exponential dichotomy for (3.7) occurs with the constants K =

e2‖F‖∞ , α = −M{a} > 0, and I2 = 1. Therefore, we can formulate the following

lemma.

Lemma 3.5. Equation (3.7), where qT : R → R is a continuous T -periodic

(T > 0) function such that (cf. (3.6))

−
√
λ

3
≤ qT (t) < 0, t ∈ [0, T ],

exhibits an exponential dichotomy with the constants K = e2‖F‖∞ , α = −M{a},
defined above.

Since it is not evident whether the constants K, α, characterizing the expo-

nential dichotomy (since a depends on T , so do ‖F‖∞ andM{a}), can be taken

uniformly, for any qT such that

‖qT ‖∞ ≤
√
λ

3
, T > 0,

we cannot apply Corollary 2.8. On the other hand, we can apply Proposition 2.7,

for which we need, however, to make some further calculations.

Hence, let us consider the one-parameter family of equations

(3.8) x′ + x3 − λx = rk(t), k ∈ N, λ > 0,
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where rk : R→ R are continuous Tk-periodic functions such that

(3.9) lim
k→∞

‖r − rk‖∞ = 0,

where r : R → R is a limit-periodic function in (3.1), satisfying (3.2) and (3.4).

It follows from the definition of a limit-periodic function r that if (3.2) and

(3.4) hold, then there always exists a sequence {rk} of Tk-periodic functions,

converging uniformly to r, i.e. (3.9), such that

sup
k∈N

inf
t∈R

rk(t) > 0,(3.10)

sup
k∈N
‖rk‖∞ <

2

3
λ

√
λ

3
, i.e. sup

k∈N
max
t∈[0,Tk]

|rk(t)| < 2

3
λ

√
λ

3
.(3.11)

Thus, according to Lemma 3.4, equation (3.8) admits, for every k ∈ N, a Tk-

periodic solution ϕk such that ‖ϕk‖∞ ≤
√
λ/3.

Now, after the substitution x := y + ϕk into (3.1), we receive the equation

(3.12) y′ = −3ϕ2
k(t)y + λy − g(t, y, k) + h(t, k),

where g(t, y, k) := y3 + 3y2ϕk(t) and h(t, k) := r(t)− rk(t), and so

|g(t, y, k)| ≤ |y|(y2 + 3|y| ‖ϕk‖∞),

|g(t, y, k)− g(t, z, k)| = |(y − z)(y2 + yz + z2) + 3ϕk(t)(y + z)(y − z)|

≤ |y − z|(y2 + |yz|+ z2 + 3|ϕk(t)| |y + z|).

Subsequently,

|g(t, y, k)| ≤ |y|δ
(
δ +
√

3λ
)
, for ‖ϕk‖∞ ≤

√
λ

3
and |y| ≤ δ,

|g(t, z, k)| ≤ |z|δ
(
δ +
√

3λ
)
, for ‖ϕk‖∞ ≤

√
λ

3
and |z| ≤ δ,

|g(t, y, k)− g(t, z, k)| ≤ |y − z|δ
(
3δ + 2

√
3λ
)
, for ‖ϕk‖∞ ≤

√
λ

3

and |y| ≤ δ, |z| ≤ δ.

Setting, for ε > 0, δ = δ(ε) > 0 in order ε = δ
(
3δ + 2

√
3λ
)

to be satisfied, i.e.

δ =

√
3

3

(√
λ+ ε−

√
λ
)
,

we can see that δ → 0, when ε→ 0. Moreover,

‖r − rk‖∞ ≤ εδ(ε) = δ2(ε)
(
3δ(ε) + 2

√
3λ
)

=

√
3

3
ε
(√
λ+ ε−

√
λ
)

holds, for a given ε > 0, whenever k ≥ kε, when kε ∈ N is a sufficiently large

integer. Summing up, we can formulate the following lemma.
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Lemma 3.6. For a given limit-periodic function r : R → R, satisfying (3.2)

and (3.4), there exist a sequence {rk} of Tk-periodic continuous functions, satis-

fying (3.9)–(3.11), and a sequence {ϕk} of related Tk-periodic solutions of (3.8),

satisfying

max
t∈[0,Tk]

|ϕk(t)| ≤
√
λ

3
,

for all k ∈ N. Furthermore, for a given ε > 0, the inequalities∣∣y3 + 3y2ϕk(t)
∣∣ ≤ ε

2
|y| and

∣∣y3 − z2 + 3ϕk(t)
(
y2 − z2

)∣∣ ≤ ε|y − z|
hold, for t ∈ [0, Tk], whenever

|y| ≤
√

3

3

(√
λ+ ε−

√
λ
)
, |z| ≤

√
3

3

(√
λ+ ε−

√
λ
)
,

and a positive integer kε exists such

(3.13) ‖r − rk‖∞ ≤
√

3

3
ε
(√
λ+ ε−

√
λ
)

is satisfied, for all k ≥ kε.

Remark 3.7. As a consequence of Lemma 3.6, i.e. under (3.2) and (3.4), for

k ≥ kε, there exists a sequence {yk} of limit-periodic solutions to (3.12) such

that

‖yk‖∞ ≤ δ(ε) =

√
3

3

(√
λ+ ε−

√
λ
)
,

and so lim
k→∞

‖yk‖∞ = 0, for ε → 0 ( ⇒ δ(ε) → 0). For more details, see the

arguments in the proof of [19, Theorem 2]. Consequently, equation (3.1) has a

uniformly limit-periodic solution

u = lim
k→∞

yk + lim
k→∞

ϕk = lim
k→∞

ϕk

such that ‖u‖∞ ≤
√
λ/3.

We are ready to formulate the first main theorem.

Theorem 3.8. Equation (3.1), where r : R→ R is a uniformly limit-periodic

function such that (3.2) and (3.4) is satisfied, i.e.

inf
t∈R

r(t) > 0 and ‖r‖∞ <
2

3
λ

√
λ

3
,

admits a uniformly almost-periodic solution u such that (3.6) holds, i.e.

−
√
λ

3
≤ u(t) < 0 <

√
λ

3
, t ∈ R.
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This solution is positively unstable, but negatively asymptotically stable. More-

over, equation (3.1) admits exactly two further entirely bounded solutions u−,

u+ such that

u−(t) ≤ −
√
λ

3
, u−(t) < u(t) and

√
λ

3
≤ u+, t ∈ R.

These solutions are both uniformly almost-periodic and positively stable.

Proof. Since we apply Proposition 2.7, let us check its assumptions. It

follows from Definition 2.9 that, to a given r, a sequence {rk} of Tk-periodic

functions rk exists such that conditions (3.9)–(3.11) are satisfied. Then hypoth-

esis (H1) is implied by Lemma 3.4, because Tk-periodic solutions uk of (3.8)

exist such that ‖uk‖∞ ≤
√
λ/3 := D, for all related k ∈ N. Hypothesis (H2)

is ensured by Lemma 3.5. Condition (2.6), which takes here the form (3.13), is

implied by Lemma 3.6. At most a finite number of entirely bounded solutions v

of (3.1), satisfying ‖v‖∞ ≤ D1, D1 > 0, follows trivially from Lemma 3.1. Thus,

in view of Remark 3.7, equation (3.1) possesses, according to Proposition 2.7,

a uniformly limit-periodic solution u such that ‖u‖∞ ≤
√
λ/3.

According to Lemma 3.4, the localization of u can be still improved (see (3.6)),

and completed by the exact multiplicity result (see (3.3) and (3.5)). The (in)sta-

bility properties follow from Lemma 3.2 and the analysis performed before Lem-

ma 3.5. �

Remark 3.9. Because of the substitution t := −τ into (3.1), one can easily

check that, under the assumptions of Theorem 3.8, the same conclusion, except

(in)stability, is true for the equation x′ − x3 + λx = −r(t), λ > 0, because then

the solution u becomes positively asymptotically stable and negatively unstable.

4. Limit-periodic solutions of the second-order equation

Now, we will show that the limit-periodic equation x′′+x3−x = r(t) admits,

for a sufficiently small value of ‖r‖∞ (namely ‖r‖∞ < 8/27), an essential limit-

periodic solution. Hence, consider the Duffing-type differential equation

(4.1) x′′ + x3 − x = r(t),

where r : R → R is a continuous bounded function. Consider also the one-

parameter family of linearized equations

(4.2) x′′ + ϕ2(t)x− x = r(t),

obtained from (4.1) by the Schauder-like parametrization, for

ϕ ∈ B1 :=

{
p1 ∈ C(R,R)

∣∣∣∣ ‖p1‖∞ ≤
1

3

}
,
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jointly with the equivalent linear system

(4.3)

(
x′

y′

)
=

(
0 1

1− ϕ2(t) 0

)(
x

y

)
+

(
0

r(t)

)
.

Finally, consider the homogeneous system

(4.4)

(
x′

y′

)
=

(
0 1

1− Cϕ2(t) 0

)(
x

y

)
, C > 0,

which is, for C = 1, associated with (4.3).

The following lemma is a slight generalization of [22, Theorem 1], and its

proof is quite analogous to the one, for C = 1, done by Zeng.

Lemma 4.1. System (4.4), where 9 > C > 0, exhibits, for any ϕ ∈ B1, an

exponential dichotomy on R with common constants KC , αC such that 2K1/α1 ≤
9/8 (C = 1).

The following lemma is a slight modification of [22, Theorem 2].

Lemma 4.2. Equation (4.1) possesses an entirely bounded solution u such

that ‖(u, u′)‖∞ ≤ 1/3− 9∆/8, when ‖r‖∞ ≤ 8/27−∆, where (8/27>) ∆ > 0 is

a small constant. This solution is unique in the ball B1.

Proof (sketch). The (unique) entirely bounded solution u of (4.1) can be

equivalently considered as the first component of the (unique) fixed point of the

solution operator T : B → B, associated with (4.3), where

B :=

{
(p1, p2) ∈ C(R,R2)

∣∣∣∣ ‖p1‖∞ ≤
1

3
, ‖p2‖∞ ≤

2K1

α1
‖r‖∞

}
,

and T : ψ → Tψ, where

Tψ :=

∫ t

−∞
Xψ(t)PψX

−1
ψ (s)

(
0

r(s)

)
ds−

∫ ∞
t

Xψ(t)(I − Pψ)X−1
ψ (s)

(
0

r(s)

)
ds,

Xψ is the fundamental matrix to (4.3), I is the unit matrix and Pψ (= P 2
ψ) is

the projection. In view of the exponential dichotomy for (4.4), where C = 1, this

solution operator prescribes, for any ψ ∈ B, a unique bounded solution (x, y)

of (4.3). Furthermore, T is compact in the Fréchet topology and such that

T (B) ⊂ B∆ :=

{
p ∈ C(R,R2)

∣∣∣∣ ‖p‖∞ ≤ 1

3
− 9

8
∆

}
(⊂ B).

Therefore, according to the Schauder–Tikhonov fixed point theorem (see e.g.

[3, Theorem I.1.38]), it has a fixed point p̄ = (u, u′) in B∆, i.e. ‖(u, u′)‖∞ ≤
1/3− 9∆/8, as claimed.

Its uniqueness on B can be proved by a contradiction, when assuming that

we have two different fixed points, say (u1, u
′
1) and (u2, u

′
2), where

(4.5) ui(t) =

∫ ∞
−∞

G(t, s)
[
r(s)− u3

i (s)
]
ds, i = 1, 2,
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G denotes the Green function associated to the homogenous equation x′′−x = 0

such that (see e.g. [3, p. 553])

sup
t∈R

∫ ∞
−∞
|G(t, s)| ds ≤ 2.

Thus,

‖u1 − u2‖∞ ≤ ‖u3
1 − u3

2‖∞
∫ ∞
−∞

∣∣G(t, s)
∣∣ ds

≤ 2‖u1 − u2‖∞
(
‖u2

1‖∞ + ‖u1u2‖∞ + ‖u2
2‖∞

)
≤ 2

3
‖u1 − u2‖∞,

which is a contradiction. �

The existence part of Lemma 4.2 can be easily reformulated for a T -periodic

forcing r as follows.

Lemma 4.3. Equation (4.1), where r is a T -periodic (T > 0) continuous

function satisfying ‖r‖∞ ≤ 8/27 − ∆, (8/27 >) ∆ > 0, possesses a T -periodic

solution u such that

max
t∈[0,T ]

∣∣(u(t), u′(t))
∣∣ ≤ 1

3
− 9

8
∆.

Proof (sketch). We can proceed quite analogously as in the proof of Lem-

ma 4.2 but, instead of the Schauder–Tikhonov theorem, it is enough to apply

the Schauder fixed point theorem. For more details, see e.g. [3, Chapter III.5].�

Remark 4.4. As already pointed out, it follows from the definition of a limit-

periodic function, say r, that if ‖r‖∞ < R, then there exists a sequence {rk} of

Tk-periodic functions, converging uniformly to r, such that

sup
k∈N
‖rk‖∞ < R, i.e. sup

k∈N
max
t∈[0,Tk]

|rk(t)| < R.

We are ready to formulate the second main theorem.

Theorem 4.5. Equation (4.1), where r : R→ R is a uniformly limit-periodic

function such that ‖r‖∞ < 8/27, admits a uniformly limit-periodic solution u,

satisfying ‖u‖∞ < 1/3, which is positively as well as negatively unstable. This

solution is unique on the ball

B1 :=

{
p1 ∈ C(R,R)

∣∣∣∣ ‖p1‖∞ ≤
1

3

}
,

and subsequently it is essential with respect to the integral operator T |B1
: B1 →

B1, where

Tϕ :=

∫ ∞
−∞

G(t, s)
[
r(s)− ϕ3(s)

]
ds

was defined in (4.5).
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Proof. Since we apply Corollary 2.8, let us check its assumptions. It follows

from Definition 2.9 that, to a given r, a sufficiently small constant (8/27 >) ∆ > 0

and a sequence {rk} of Tk-periodic functions rk exist such that ‖rk‖∞ ≤ 8/27−∆

holds, for all related k ∈ N (see Remark 4.4). Hypothesis (H1) is, therefore,

implied by Lemma 4.3, where D := 1/3− 9∆/8. Hypothesis (H2) is ensured by

Lemma 4.1. At most a finite number of entirely bounded solutions v of (4.1),

satisfying ‖(v, v′)‖∞ ≤ D1 := 1/3 > D := 1/3− 9∆/8, follows from Lemma 4.2.

Thus, equation (4.1) possesses, according to Corollary 2.8, a uniformly limit-

periodic solution u such that ‖u‖∞ < 1/3. Since the exponential dichotomy

(2.3) holds for (4.4) with n1 = n2 = 1 (n = n1 + n2 = 2), this solution is

positively as well as negatively unstable.

Its uniqueness on the ball B1 is ensured by Lemma 4.2, and its essentiality

subsequently by Proposition 2.15. �

Remark 4.6. It can be checked, when following the arguments of the proof

of Theorem 4.5, that the analogous conclusion also holds for the equation x′′ −
x3 − x = r(t), which justifies the main result in [7] in the particular case of

a limit-periodic forcing r.

5. Concluding remarks (discrete case)

As already pointed out, the situation is significantly easier in the discrete case

of difference systems, because the assumption about a finite number of entirely

bounded solutions of given systems is no longer required. For the proof of the

following discrete analogy of Corollary 2.8, see [6, Corollary 3.3].

Hence, consider the difference system

(5.1) xt+1 = f(xt) + pt,

where f ∈ C1(Rn,Rn) and {pt} ∈ (Rn)Z is a limit-periodic sequence, jointly

with the associated systems

(5.2) xt+1 = f(xt) + pNt ,

where the family {pNt } ∈ (Rn)Z, N ∈ N, of TN -periodic (TN > 0) sequences

converges, according to Definition 2.9, uniformly to {pt}.

Proposition 5.1. Assume still that

(a) for each fixed N , system (5.2) admits a TN -periodic solution {xNt },
(b) sup

N∈N

∥∥{xNt }∥∥∞ <∞,

(c) if ANt is the Jacobian matrix of f at xNt , then there exists a non-singular

solution of the homogeneous system yt+1 = ANt yt which satisfies the ex-

ponential dichotomy, for all sufficiently large values of N , with common

constants K and α.
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Then system (5.1) possesses a uniformly limit-periodic solution.

Remark 5.2. The exponential dichotomy for yt+1 = ANt yt can be defined

quite analogously as in the continuous case (see e.g. [6], [15], [18]).

We will finally give a simple illustrative example of the application of Propo-

sition 5.1.

Example 5.3. Consider the difference equation

(5.3) xt+1 − x3
t − λxt = rt, λ > 1,

where r = {rt} : Z → R is a limit-periodic sequence, and its Schauder-like

parametrization

(5.4) xt+1 −
(
q2
t + λ

)
xt = rt, λ > 1,

where q ∈ Q :=
{
p ∈ RZ

∣∣ ‖p‖∞ ≤ D
}

, D > 0 is a suitable constant which will

be specified below.

Consider still the homogeneous equation

(5.5) xt+1 = (Cq2
t + λ)xt, C > 0, λ > 1,

associated for C = 1 with (5.4), where {rt} ≡ 0. Since Cq2
t + λ ≥ λ > 1, for all

t ∈ Z, we obtain that

(5.6) |xt| = |xs|
t−1∏
j=s

(Cq2
j + λ) ≥ λt−s|xs|, for all t ≥ s.

Therefore, |xs| ≤ λ−(t−s)|xt|, for s ≤ t. Hence, an exponential dichotomy holds

for (5.5) on Z with the constants K = K(λ) = 1, α = α(λ) = 1/λ, which are

independent of C > 0 (see e.g. [15], [18]), and subsequently (5.4) possesses a

unique entirely bounded solution u such that

(5.7) ‖u‖∞ ≤ K
1 + α

1− α
‖r‖∞.

This solution takes the form

ut =
∑
l∈Z

Gq(t, l) rl−1,

where Gq denotes the Green function for (5.5), when C = 1. Moreover, u

becomes Tk-periodic, Tk ∈ N, k ∈ N, whenever r is so.

Furthermore, the operator Tk : Qk → RZ∩Tk , k ∈ N, where

Qk :=
{
p ∈ RZ∩Tk

∣∣ ‖p‖RZ∩Tk ≤ D
}
, Tk(q) :=

∑
l∈Z∩Tk

Gq(t, l)rl−1,

can be easily checked, by the standard arguments, to be compact and such that

Tk(Qk) ⊂ Qk, provided r satisfies (cf. (5.7))

(5.8) ‖r‖∞ = ‖r‖RZ∩Tk <
1− α
1 + α

D

K
:= R.
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In other words, for a given r such that ‖r‖∞ < R, D in the definitions of Q

and Qk can be always taken as D = RK(1 + α)/(1 − α), in order (5.8) to be

satisfied. Hence, applying the Brouwer fixed point theorem, Tk admits a fixed

point {ϕk} ∈ Qk, k ∈ N, representing a Tk-periodic solution of (5.3), where r is

Tk-periodic. Moreover,

sup
k∈N
‖{ϕk}‖∞ ≤ D.

Now, taking q := ϕ
k
, k ∈ N, equation (5.5) with C = 3 was already shown

to exhibit an exponential dichotomy with common constants K = 1, α = 1/λ,

for all k ∈ N. Let us note that, by the definition of a limit-periodic sequence r

satisfying ‖r‖∞ < R, there exists a sequence {rk} of Tk-periodic sequences rk,

converging uniformly to r, such that

sup
k∈N
‖rk‖∞ < R.

Since all the assumptions of Proposition 5.1 are in this way (i.e. for any

λ > 1 and any r) satisfied, (5.3) possesses accordingly a uniformly limit-periodic

solution, say z, such that

‖z‖∞ ≤ RK
1 + α

1− α
= R

λ+ 1

λ− 1
= D.

Moreover, this solution is positively unstable and negatively asymptotically sta-

ble (see (5.6)).

Remark 5.4. Since

‖ϕ
1
− ϕ

2
‖∞ ≤ ‖ϕ3

1
− ϕ3

2
‖∞
∑
l∈Z
|G0(t, l)|

≤ ‖ϕ
1
− ϕ

2
‖∞ 3D2K

1 + α

1− α
≤ ‖ϕ

1
− ϕ

2
‖∞ 3R2K3

(
1 + α

1− α

)3

holds, for all ϕ
1
, ϕ

2
∈ Q, where G0 is the Green function for the equation xt+1 =

λxt, equation (5.3) has a unique limit-periodic solution on Q, provided

3R2K3

(
1 + α

1− α

)3

< 1,

i.e. whenever

R <

√
K−3

3

(
1− α
1 + α

)3

holds. Thus, if

‖r‖∞ <

√
K−3

3

(
1− α
1 + α

)3

=

√
1

3

(
λ− 1

λ+ 1

)3

,
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then equation (5.3) has a unique uniformly limit-periodic solution on Q. Con-

sequently, this solution is, according to Proposition 2.15, essential on Q with

respect to the operator T ϕ|Q : Q→ Q, where

T ϕ :=
∑
l∈Z

G0(t, l)
(
rl−1 + ϕ3

l−1

)
and G0 stands for the Green function of xt+1 = λxt, λ > 1.
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