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A WEIGHTED TRUDINGER–MOSER TYPE INEQUALITY

AND ITS APPLICATIONS

TO QUASILINEAR ELLIPTIC PROBLEMS

WITH CRITICAL GROWTH

IN THE WHOLE EUCLIDEAN SPACE

Francisco S.B. Albuquerque — Sami Aouaoui

Abstract. We establish a version of the Trudinger–Moser inequality in-

volving unbounded or decaying radial weights in weighted Sobolev spaces.
In the light of this inequality and using a minimax procedure we also study

existence of solutions for a class of quasilinear elliptic problems involving

exponential critical growth.

1. Introduction and main results

We recall that if Ω is a bounded domain in Rn (n ≥ 2), the classical

Trudinger–Moser inequality (cf. [31], [38]) asserts that eα|u|
n′ ∈ L1(Ω), for all

u ∈W 1,n
0 (Ω) and α > 0 and there exists a constant C(n) > 0 such that

(1.1) sup
‖u‖n≤1

∫
Ω

eα|u|
n′

dx ≤ C(n)|Ω|, if α ≤ αn,

where n′ = n/(n− 1), αn = nω
1/(n−1)
n−1 , ‖u‖n :=

( ∫
Ω
|∇u|n dx

)1/n
and ωn−1

is the surface area of the unit sphere in Rn. Moreover, the inequality (1.1)
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is sharp in the sense that if α > αn the correspondent supremum is +∞ and

clearly as the Lebesgue’s measure |Ω| → +∞ no uniform bound can be retained

in (1.1). In recent years, related inequalities for unbounded domains have been

proposed by D. Cao [18] and B. Ruf [33] in two dimensions and by S. Adachi and

K. Tanaka [1], J.M. do Ó [23] and Y. Li and B. Ruf [30] in high dimensions. See

also R. Adams [2]. On the other hand, Adimurthi and K. Sandeep in [4] extended

the Trudinger–Moser inequality (1.1) for singular weights. More precisely, they

have proved that if Ω is a smooth bounded domain in Rn containing the origin,

u ∈W 1,n
0 (Ω) and β ∈ [0, n), then there exists a constant C(n, β) > 0 such that

(1.2) sup
‖∇u‖n≤1

∫
Ω

eα|u|
n′

|x|β
dx < C(n, β)|Ω| if and only if 0 < α ≤ αn

(
1− β

n

)
.

Note that the supremums in inequalities (1.1) and (1.2) become infinite for do-

mains Ω which do not have finite measure, and therefore the Trudinger–Moser

inequality is not available for this class of domains in the classical formulation.

In [23], the author has proved that if ‖∇u‖n ≤ 1, ‖u‖n ≤ M < ∞ and

0 < α < αn, then there exists a constant C(n,M,α) > 0 such that∫
Rn

Φα(u) dx ≤ C(n,M,α), where Φα(s) := eα|s|
n′

−
n−2∑
j=0

αj |s|jn′

j!
.

A further result in this direction was obtained by S. Adachi and K. Tanaka in [1]

who proved that for any 0 < α < αn, there exists a constant C(n, α) > 0 such

that ∫
Rn

Φα

(
|u|
‖∇u‖

)
dx ≤ C(n, α)

‖u‖nn
‖∇u‖nn

, for all u ∈W 1,n
0 (Rn).

In [30], the authors have proved that if the Dirichlet norm ‖∇u‖n is replaced by

the standard Sobolev norm

‖u‖1,n :=

[ ∫
Ω

(|∇u|n + |u|n) dx

]1/n

,

then there exists a constant dn(α) > 0 (independent of Ω) such that for any

domain Ω ⊂ Rn,

(1.3) sup
‖u‖1,n≤1

∫
Ω

Φα(u) dx ≤ dn(α),

where

dn(α) =

<∞ if α ≤ αn,
= +∞ if α > αn.

Moreover, this inequality (1.3) is sharp in the sense that the correspondent supre-

mum becomes infinite as α > αn. Finally, in [5], the inequality (1.2) has been
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generalized to the whole space Rn, n ≥ 2, as follows

sup
‖u‖1,τ≤1

∫
Rn

Φα(u)

|x|β
dx <∞ if and only if 0 < α ≤ αn

(
1− β

n

)
,

where τ > 0 and

‖u‖1,τ =

(∫
Rn

(
|∇u|n + τ |u|n

)
dx

)1/n

, u ∈W 1,n(Rn).

Throughout this work, we consider some weight functions V (|x|) and Q(|x|)
satisfying the following assumptions:

(V) V ∈ C(0,∞), V (r) > 0 and there exist a, a0, a1 > −n such that

lim inf
r→+∞

V (r)

ra
> 0, lim inf

r→0+

V (r)

ra0
> 0 and lim sup

r→0+

V (r)

ra1
<∞.

(Q) Q ∈ C(0,∞), Q(r) > 0 and there exist b < a, b0 > −n such that

lim sup
r→0+

Q(r)

rb0
<∞ and lim sup

r→+∞

Q(r)

rb
<∞.

Example 1.1. (a) The standard models of potentials V and Q satisfying (V)

and (Q), respectively, are of the form

V (x) =

|x|γ1 if |x| ≤ 1,

|x|γ2 if |x| ≥ 1,
and Q(x) = |x|γ3 ,

with γ1 > 0, γ2 > −n and 0 < γ3 < γ2. Indeed, take a = γ2, a0 = a1 = γ1,

b0 = γ2 and b = γ3.

(b) The potentials introduced by Ambrosetti, Felli and Malchiodi in [11] in

the frame of nonlinear Schrödinger equations,

A1

1 + |x|γ1
≤ V (|x|) ≤ A2 and 0 < Q(|x|) ≤ A3

1 + |x|γ2
,

for positive constants A1, A2, A3, with γ1 ∈ (0, n) and γ2 ≥ 0 also satisfy (V)

and (Q), respectively.

In order to state our results, we need to introduce some notations. If 1 ≤
p <∞ we define the weighted Lebesgue spaces

Lp(Rn;Q) :=

{
u : Rn → R : u is measurable and

∫
Rn
Q(|x|)|u|p dx <∞

}
,

Lp(Rn;V ) :=

{
u : Rn → R : u is measurable and

∫
Rn
V (|x|)|u|p dx <∞

}
,

endowed, respectively, with the norms

‖u‖Lp(Rn;Q) =

(∫
Rn
Q(|x|)|u|p dx

)1/p
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and

‖u‖Lp(Rn;V ) =

(∫
Rn
V (|x|)|u|p dx

)1/p

.

Let C∞0 (Rn) be the set of smooth functions with compact support and

C∞0,rad(Rn) = {u ∈ C∞0 (Rn) : u is radial}.

Here, we define the energy space W 1,n
rad (Rn;V ) as the subspace of radially sym-

metric functions in the completion of C∞0 (Rn) with respect to the norm

‖u‖ =

[ ∫
Rn

(
|∇u|n + V (|x|)|u|n

)
dx

]1/n

.

Equivalently, W 1,n
rad (Rn;V ) can be considered as the Sobolev space modeled on

the Lebesgue space Lnrad(Rn;V ) = {u ∈ Ln(Rn;V ) : u is radial} defined by

W 1,n
rad (Rn;V ) :=

{
u ∈ Lnrad(Rn;V ) : |∇u| ∈ Lnrad(Rn)

}
,

where the derivative above is understood in the sense of distributions. We use

the notation E = W 1,n
rad (Rn;V ).

Remark 1.2. Under the hypothesis (V) we can show that

‖u‖n =

∫
Rn

(
|∇u|n + V (|x|)|u|n

)
dx

is a norm in E. In fact, if ‖u‖ = 0, then∫
Rn
|∇u|n dx = 0

and so u is a constant. But from behaviour of V at infinity, we should have

u = 0.

With the aid of inequalities (1.1), (1.2) and inspired by similar arguments de-

veloped in [18], [23], [33], we establish in this work a Trudinger–Moser inequality

in the functional space E. More precisely, one has:

Theorem 1.3. Assume that (V) and (Q) hold. Then, for any u ∈ E and

α > 0, we have that Φα(u) ∈ L1(Rn;Q). Furthermore, if

α < λ := min{αn, αn(1 + b0/n)},

there holds

(1.4) sup
u∈E:‖u‖≤1

∫
Rn
Q(|x|)Φα(u) dx <∞.

Moreover, if the function Q is nonincreasing in |x|, then

sup
u∈E:‖u‖≤1

∫
Rn
Q(|x|)Φλ(u) dx <∞.
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Furthermore, if we also assume that −n < b0 ≤ 0 and lim inf
r→0+

Q(r)/rb0 > 0, then

the value λ is optimal, that is

sup
u∈E:‖u‖≤1

∫
Rn
Q(|x|)Φα(u) dx = +∞, for all α > λ.

Remark 1.4. Here, we point out that in general, due to technical reasons,

the inequality (1.4) holds for α < λ but not necessarily for α = λ. In fact,

the space E consists of radial functions that are not necessarily nonincreasing

in |x|, x ∈ Rn. Thus, in general (i.e. without the additional condition that the

radial weight Q is nonincreasing in |x|) the “radial lemma” (see inequality (2.16)

below), which also has been used in [5] and [33], is not true.

We quote that inequality (1.4) is a natural generalization for high dimensions

to the one obtained in [8, Theorem 1.1] when n = 2. See also [6, Theorem 2.1] for

the sharpness and the existence of extremal function for this inequality. Here,

we have to highlight the fact that, in contrast with [8] and [6] (where it was

assumed that b < (a− 2)/2), we only assume that b < a. Thus, even in the case

where n = 2, there is some novelty in the result proved in the present paper.

Also, in two dimensions, do Ó, Sani and Zhang in [28] have obtained a similar

inequality in the nonradial case but considering only the potentials introduced

by Ambrosetti, Felli and Malchiodi in [11] and in the subcritical case, that is, in

the sense that the range of the exponent is the open interval (0, λ).

As an application of the previous theorem and using a minimax procedure,

we will study the existence of a nontrivial solution for the following quasilinear

elliptic problem:

(1.5)

−div(|∇u|n−2∇u) + V (|x|)|u|n−2u = Q(|x|)f(u) in Rn,
u(x)→ 0 as |x| → ∞,

n ≥ 2, when the nonlinear term f(s) is allowed to enjoy an exponential critical

growth. When n = 2, problem (1.5) has been treated in [8, 36]. In [36] the au-

thors considered the nonlinearity f(s) = |s|p−2s, with 2 < p < 2? = 2n/(n− 2)

for n ≥ 3 and 2 < p <∞ if n = 2, and in [8] the authors have studied the critical

case suggested by the classical Trudinger–Moser inequality (1.1).

Here, we are interested in the case where the nonlinearity f(s) has maximal

growth on s which allows us to treat the problem (1.5) variationally. Explicitly,

in view of the classical Trudinger–Moser inequality (1.1) and [19], we say that

f(s) has α0-exponential critical growth at +∞ if there exists α0 > 0 such that

(1.6)

lim
s→+∞

f(s)e−α|s|
n′

= 0, for all α > α0,

lim
s→+∞

f(s)e−α|s|
n′

= +∞, for all α < α0.

Similarly, we define α0-exponential critical growth at −∞.
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We would like to mention that problems involving exponential critical growth

have received a special attention in last years, see for example, [7]–[10], [13], [16],

[18]–[20], [27] for semilinear elliptic equations, and [3], [14], [15], [17], [21]–[23],

[25], [39], [40] for quasilinear equations.

In order to perform the minimax approach to the problem (1.5), we also need

to make some suitable assumptions on the behaviour of f(s). More precisely, we

shall assume the following conditions:

(f1) f : [0,+∞)→ R is continuous and f(s)/|s|n−1 → 0 as s→ 0+;

(f2) there exists θ > n such that

0 < θF (s) := θ

∫ s

0

f(t) dt ≤ sf(s), for all s > 0;

(f3) there exist θ0 > n and µ > 0 such that

F (s) ≥ µ

θ0
sθ0 , for all s ≥ 0.

We observe that the hypotheses (f1)–(f3) have been used in many papers

to find a solution using the classical Mountain Pass Theorem introduced by

Ambrosetti and Rabinowitz in the celebrated paper [12], see for instance [24],

[26] and their references.

In this work, we say that a function u : Rn → R is a weak solution of (1.5)

if u ∈ E and it holds the identity∫
Rn

(
|∇u|n−2∇u∇ϕ+ V (|x|)|u|n−2uϕ

)
dx =

∫
Rn
Q(|x|)f(u)ϕdx,

for all ϕ ∈ E. We point out that from (f1) the identically zero function is

the trivial solution of (1.5). So, our goal is to show the existence of nontrivial

solution for (1.5).

Next, we state our existence result.

Theorem 1.5. Suppose that (V) and (Q) hold. If f has α0-exponential cri-

tical growth at +∞ and (f1)–(f3) are satisfied, then there exists µ0 > 0 such that

problem (1.5) has a nontrivial nonnegative weak solution u in E for all µ > µ0.

Example 1.6. Let q > n and α0 > 0 be constants. The hypotheses of

Theorem 1.5 are satisfied by the nonlinearity

f(s) =

(
qsq−1 +

α0n

n− 1
sq+1/(n−1)

)
eα0s

n/(n−1)

, s ≥ 0.

For this example, we have: F (s) = sqeα0s
n/(n−1)

, s ≥ 0.

Remark 1.7. Our existence result complements the study made in [8], [36]

in the sense that, in this paper, we study a class of problems involving the n-

Laplacian (n ≥ 2) with exponential critical growth and in [36] only the Sobolev
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subcritical growth was considered. Moreover, the conditions taken on the be-

haviour of the weight Q and the nonlinearity f are less restrictive. In fact, in

contrast with [8], we only assume that b < a. Furthermore, we no longer as-

sume the existence of a positive constant M0 such that F (s) ≤ M0|f(s)| for s

sufficiently large.

Remark 1.8. If the nonlinearity f has exponential subcritical growth at +∞
(or −∞), that is, if f satisfies the condition

lim
s→+∞

f(s)e−α|s|
n′

= 0

for all α > 0, it is standard to check that the problem (1.5) has a Mountain Pass

type solution.

Remark 1.9. The difficulties in treating this class of problems (1.5) are the

possible lack of compactness due to the unboundedness of the domain besides

the fact that the nonlinear term f(s) is allowed to enjoy the exponential critical

growth and the behaviour of the nonlinear operator div(|∇u|n−2∇u).

The outline of the paper is as follows: Section 2 contains some embedding

results and the proof of our Trudinger–Moser inequality; Theorem 1.3. In Sec-

tion 3, we set up the setting which will allow us to follow a variational approach.

Specifically, we check the geometric conditions of the associated functional, we

treat with the Palais–Smale sequences and we get a more precise information

about the minimax level obtained by the Mountain Pass Theorem. Finally,

in Section 4, we prove our existence result; Theorem 1.5.

2. Embedding results and proof of Theorem 1.3

In order to prove the Theorem 1.3, we need to establish some embeddings

from E into the Lebesgue weighted spaces Lp(Rn;Q) beginning by introducing

a radial lemma in the spirit of that due to W. Strauss [35] (see also [34]). In the

following, we denote by B(x,R) ⊂ Rn the open ball centered at x ∈ Rn with

radius R > 0 and, to simplify notations, we set BR := B(0, R), BcR := Rn \ BR
and BR \ Br denotes the annulus with interior radius r and exterior radius R.

We use C,C0, C1, C2, . . . to denote (possibly different) positive constants.

Lemma 2.1. Suppose that (V) holds. Then there exist C > 0 and R > 1 such

that, for all u ∈ E, we have

|u(x)| ≤ C‖u‖|x|−(n−1)(a+n)/n2

, for |x| ≥ R.

The proof is very much similar to the case of n = 2 which is given in [8], and

is omitted.
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Next, we recall some basic embeddings (see J. Su et al. [37]). Let A ⊂ Rn

and define

W 1,n
rad (A;V ) = {u|A : u ∈ E}.

Lemma 2.2. Assume (V) and (Q). For any fixed 0 < r < R < ∞, the

embeddings

W 1,n
rad (BR \Br;V ) ↪→ Lp(BR \Br;Q), 1 ≤ p ≤ ∞

are compact.

Remark 2.3. For R � 1, the embedding W 1,n
rad (BR;V ) ↪→ W 1,n(BR) is

continuous. That last result can be obtained by proceeding exactly as in [36,

Lemma 4].

Lemma 2.4. Assume that (V) and (Q) hold. Then the embeddings E ↪→
Lp(Rn;Q) are compact for all n ≤ p <∞.

Proof. We first show the continuity of the embeddings. That is to show

Sp(V ;Q) := inf
u∈E\{0}

∫
Rn

(
|∇u|n + V (|x|)|u|n

)
dx(∫

Rn
Q(|x|)|u|p dx

)n/p > 0.

Suppose by contradiction that Sp(V ;Q) = 0. Thus, there exists (uk) ⊂ E such

that

(2.1)

∫
Rn
Q(|x|)|uk|p dx = 1, for all k ∈ N,

lim
k→∞

∫
Rn

(
|∇uk|n + V (|x|)|uk|n

)
dx = 0.

By (V) and (Q), there exist constants R0 > r0 > 0 and C0 > 0 such that

V (|x|) ≥ C0|x|a, Q(|x|) ≤ C0|x|b, for all |x| ≥ R0,

V (|x|) ≥ C0|x|a0 , Q(|x|) ≤ C0|x|b0 , for all 0 < |x| ≤ r0.

Now for R > R0, by Lemma 2.1, we have∫
BcR

Q(|x|)|uk|p dx ≤
∫
BcR

C0|x|b|uk|p dx

=

∫
BcR

|x|b−a|uk|p−nC0|x|a|uk|n dx

≤ C1‖uk‖p−n
∫
BcR

|x|b−a−(n−1)(p−n)(a+n)/n2

V (|x|)|uk|n dx.
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Since a > −n, b < a and p ≥ n, we have that b−a−(n− 1)(p− n)(a+ n)/n2 < 0.

Thus, we obtain∫
BcR

Q(|x|)|uk|p dx ≤ C1R
b−a−(n−1)(p−n)(a+n)/n2

‖uk‖p(2.2)

= C1R
b−a−(n−1)(p−n)(a+n)/n2

ok(1), as k →∞.

Now, we estimate the integral on ball Br, for 0 < r < min{r0, 1/2}. To reach

this aim, we introduce a cutoff function ϕ ∈ C∞0,rad(B1) such that

0 ≤ ϕ ≤ 1 in B1, ϕ ≡ 1 in B1/2, ϕ ≡ 0 in B1 \B3/4 and |∇ϕ| ≤ C in B1.

Then ϕuk ∈ W 1,n
0 (B1). Let σ > 1 be such that b0σ > −n. So, by Hölder’s

inequality, we have∫
Br

Q(|x|)|uk|p dx ≤ C0

∫
Br

|x|b0 |uk|p dx = C0

∫
Br

|x|b0 |ϕuk|p dx(2.3)

≤ C0

(∫
Br

|x|b0σ dx
)1/σ(∫

Br

|ϕuk|pσ/(σ−1) dx

)(σ−1)/σ

≤ C2 r
b0σ+n

(∫
B1

|ϕuk|pσ/(σ−1) dx

)(σ−1)/σ

≤ C3 r
b0σ+n

(∫
B1

|∇(ϕuk)|n dx
)p/n

≤ C4 r
b0σ+n

(∫
B1

|uk∇ϕ|n dx+

∫
B1

|ϕ∇uk)|n dx
)p/n

≤ C5 r
b0σ+n

(∫
B3/4\B1/2

|uk|n dx+

∫
B1

|∇uk|n dx
)p/n

≤ C6 r
b0σ+n

(∫
B3/4\B1/2

V (|x|)|uk|n dx+

∫
B1

|∇uk|n dx
)p/n

≤ C6 r
b0σ+n‖uk‖p = C6 r

b0σ+nok(1),

as k →∞, where we have used the fact that min
B3/4\B1/2

V (|x|) > 0. Now, writing

∫
Rn
Q(|x|)|uk|p dx =

∫
Br

Q(|x|)|uk|p dx

+

∫
BR\Br

Q(|x|)|uk|p dx+

∫
BcR

Q(|x|)|uk|p dx,

using (2.2), (2.3) and Lemma 2.2 we get

lim
k→∞

∫
Rn
Q(|x|)|uk|p dx = 0,

which contradicts the fact that
∫
Rn Q(|x|)|uk|p dx = 1. This proves the continuity

of the embedding. For the compactness, let (uk) be a sequence in E such that
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‖uk‖ ≤ C. Without loss of generality, we may assume that uk ⇀ 0 weakly in E.

We need to prove that, up to a subsequence, uk → 0 strongly in Lp(Rn;Q) for

all n ≤ p <∞. As in (2.2), we infer∫
BcR

Q(|x|)|uk|p dx ≤ C7R
b−a−(n−1)(p−n)(a+n)/n2

‖uk‖p

≤ C8R
b−a−(n−1)(p−n)(a+n)/n2

.

Since b − a − (n− 1)(p− n)(a+ n)/n2 < 0, given ε > 0, for R > 0 sufficiently

large we deduce

(2.4)

∫
BcR

Q(|x|)|uk|p dx ≤ C8R
b−a−(n−1)(p−n)(a+n)/n2

<
ε

3
.

On the other hand, as in (2.3) and by choosing r small enough, it yields

(2.5)

∫
Br

Q(|x|)|uk|p dx ≤ C9r
b0σ+n <

ε

3
.

Now, from Lemma 2.2, uk → 0 strongly in Lp(BR \ Br;Q) for all 1 ≤ p < ∞.

Thus, for k ∈ N large enough,

(2.6)

∫
BR\Br

Q(|x|)|uk|p dx <
ε

3
.

Combining (2.4), (2.5) and (2.6), we get

lim
k→∞

‖uk‖pLp(Rn;Q) = lim
k→∞

∫
Rn
Q(|x|)|uk|p dx = 0,

and this ends the proof of Lemma 2.4. �

Proof of Theorem 1.3. Let α < λ. Recall that by the hypothesis (Q), we

have

(2.7)
Q(|x|) ≤ C0|x|b for |x| ≥ R0,

Q(|x|) ≤ C0|x|b0 for 0 < |x| ≤ r0.

Let R > 0 to be chosen later during the proof independently of u. We write∫
Rn
Q(|x|)Φα(u) dx = I1(α, u) + I2(α, u),

where

I1(α, u) =

∫
BR

Q(|x|)Φα(u) dx, I2(α, u) =

∫
BcR

Q(|x|)Φα(u) dx.

We shall estimate I1(α, u) and I2(α, u). For the integral I1(α, u), we have two

cases to analyze.

Case 1. b0 ≥ 0. Since Q is a positive continuous function, then there exists

C > 0 such that

(2.8) I1(α, u) ≤ C
∫
BR

eα|u|
n′

dx.
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Let us recall two elementary inequalities. There exists a positive constant A =

A(n) such that

(2.9) (s1 + s2)n
′
≤ sn

′

1 +As
1/(n−1)
1 s2 + sn

′

2 , for all s1, s2 ≥ 0.

If γ and γ′ are positive real numbers such that γ + γ′ = 1, then for all ε > 0, we

have

(2.10) sγ1s
γ′

2 ≤ εs1 + ε−γ/γ
′
s2, for all s1, s2 ≥ 0.

Let v(x) = u(x) − u(R) for x ∈ BR. Note that by Remark 2.3, v ∈ W 1,n
0 (BR).

Then by (2.9) and (2.10), for each ε > 0 given, we have

(2.11) |u|n
′
≤ (1 + ε)|v|n

′
+ Cn

(
|u(R)|n

ε

)1/(n−1)

.

Thus, by Lemma 2.1, there exists a positive constant Cε,n such that

|u|n
′
≤ (1 + ε)|v|n

′
+ Cε,nR

−(a+n)/n‖u‖n
′
.

Then, fixing R� max
{

1, R0, (Cε,n)n/(a+n)
}

, we get |u|n′ ≤ (1 + ε)|v|n′ +‖u‖n′ .
Hence,

(2.12)

∫
BR

eα|u|
n′

dx ≤ eα‖u‖
n′
∫
BR

eα(1+ε)|v|n
′

dx <∞,

by the classical Trudinger–Moser inequality (1.1). Furthermore, taking ε > 0

such that α(1 + ε) ≤ λ ≤ αn there exists C = C(n,R) > 0 such that

sup
v∈W 1,n

0 (BR):‖v‖
W

1,n
0 (BR)

≤1

∫
BR

eα(1+ε)|v|n
′

dx ≤ C.

From this, (2.8) and (2.12) we obtain

sup
u∈E:‖u‖≤1

I1(α, u) ≤ C.

Case 2. −n < b0 < 0. We write∫
BR

Q(|x|)eα|u|
n′

dx =

∫
Br0

Q(|x|)eα|u|
n′

dx+

∫
BR\Br0

Q(|x|)eα|u|
n′

dx

≤ C0

∫
Br0

|x|b0eα|u|
n′

dx+ C

∫
BR\Br0

eα|u|
n′

dx

≤ C0

∫
BR

|x|b0eα|u|
n′

dx+ C

∫
BR

eα|u|
n′

dx.

By similar computations done above, we obtain

(2.13)

∫
BR

|x|b0eα|u|
n′

dx ≤ eα‖u‖
n′
∫
BR

eα(1+ε)|v|n
′

|x|−b0
dx.
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Having in mind that α < αn(1 + b0/n), then we can take ε > 0 such that

α(1 + ε) ≤ αn(1 + b0/n). Thus, since v ∈W 1,n
0 (BR),

‖v‖W 1,n
0 (BR) = ‖∇v‖Ln(BR) ≤ ‖u‖ ≤ 1

and −b0 ∈ (0, n), thanks to (1.2)

sup
v∈W 1,n

0 (BR):‖v‖
W

1,n
0 (BR)

≤1

∫
BR

eα(1+ε)|v|n
′

|x|−b0
dx ≤ C.

Using that inequality together with (2.13), we obtain

sup
u∈E:‖u‖≤1

∫
BR

|x|b0eα|u|
n′

dx ≤ C.

Therefore, in both cases we have

sup
u∈E:‖u‖≤1

∫
BR

Q(|x|)eα|u|
n′

dx <∞,

and consequently

(2.14) sup
u∈E:‖u‖≤1

I1(α, u) <∞.

Next, we will estimate the integral I2(α, u). It follows from the first inequality

in (2.7), Lemma 2.4 and the Monotone Convergence Theorem that, for any

u ∈ E,

I2(α, u) =

∫
BcR

Q(|x|)
∞∑

j=n−1

αj |u|jn′

j!
dx

=

∫
BcR

Q(|x|)
∞∑
j=n

αj |u|jn′

j!
dx+

αn−1

(n− 1)!

∫
BcR

Q(|x|)|u|n dx

≤ C0

∞∑
j=n

αj

j!

∫
BcR

|x|b|u|jn
′
dx+ C1‖u‖n.

Using Lemma 2.1, we can estimate the last integral above as follows∫
BcR

|x|b|u|jn
′
dx ≤ (C‖u‖)n

′j

∫
BcR

|x|b−j(a+n)/n dx

= ωn−1(C‖u‖)n
′j

∫ ∞
R

tb−j(a+n)/n+n−1 dt ≤ ωn−1

(a− b)Ra−b
(C‖u‖)n

′j ,

where we have used that a > −n, b− j(a+ n)/n+ n− 1 < b− a, for all j ≥ n
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and R > 1. Thus,

I2(α, u) ≤ ωn−1C0

(a− b)Ra−b
∞∑
j=n

(
αCn

′‖u‖n′
)j

j!
+ C1‖u‖n

=
ωn−1C0

(a− b)Ra−b

(
ΦαCn′ (u)− αn−1Cn‖u‖n

(n− 1)!

)
+ C1‖u‖n <∞,

for all u ∈ E. Hence,

(2.15) sup
u∈E: ‖u‖≤1

I2(α, u) <∞.

Thereby, from (2.14) and (2.15) we conclude that

sup
u∈E:‖u‖≤1

∫
Rn
Q(|x|)Φα(u) dx <∞,

and this ends the proof of the first part of Theorem 1.3. Now, we will try to prove

that, if we add the condition that the function Q is nonincreasing in |x|, then

the value α = λ is permitted. A similar results have been obtained in [6] (for the

case n = 2) and [5] (for the case V constant and Q(|x|) = 1/|x|β , 0 < β < n). In

order to reach our claimed result, we need to replace the function u ∈ E by its

Schwarz rearrangement to profit of its nonincreaseness in |x|, x ∈ Rn. Since Q is

assumed to be nonincreasing, then it is immediate that Q∗(|x|) = Q(|x|), for all

x ∈ Rn, where Q∗ denotes the Schwarz rearrangement of Q. On the other hand,

taking u ∈ E and denoting u∗ its Schwarz rearrangement, by the well known

Hardy–Littlewood inequality, it yields∫
Rn
Q(|x|)Φλ(u) dx ≤

∫
Rn
Q(|x|)Φλ(u∗) dx.

For basic properties on rearrangements, we refer to [29], [32]. Therefore, we can

restrict our analysis to the functions u ∈ E which are nonincreasing in |x|. Now,

we recall that V (|x|) ≥ C0|x|a, for all |x| ≥ R0. Hence, for |x| > 2R0, we infer

‖u‖nLnrad(Rn;V ) =

∫
Rn
V (|x|)|u|n dx ≥

∫ |x|
|x|/2

V (t)|ϕu(t)|tn−1 dt

≥ C0|ϕu(|x|)|n|x|a+n

(
1−

(
1

2

)a+n)
= C0|u(x)|n|x|a+n

(
1−

(
1

2

)a+n)
,

where ϕu(t) = u(x), t = |x|. It follows,

(2.16) |u(x)| ≤ C|x|−(a+n)/n‖u‖Lnrad(Rn;V ), for all |x| > 2R0.

Observe that, since 1/(n− 1) ≤ 1, then(
1

1− x

)1/(n−1)

≥ 1 +
x

n− 1
, for all 0 ≤ x < 1.
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That last inequality implies

1

‖∇u‖n′n
=

(
1

‖∇u‖nn

)1/(n−1)

≥
(

1

1− ‖u‖nLnrad(Rn;V )

)1/(n−1)

(2.17)

≥ 1 +
‖u‖nLnrad(Rn;V )

n− 1
,

for all u ∈ E such that ‖u‖ ≤ 1. Choosing ε in (2.11) such as 1 + ε = 1/‖∇u‖n′n
and using (2.17), we obtain

ε ≥
‖u‖nLnrad(Rn;V )

n− 1
.

Taking R large enough such that R > 2R0, by (2.16) we deduce the existence of

a positive constant C such that

Cn

(
|u(R)|n

ε

)1/(n−1)

≤ C.

Now, by (2.11), we infer

|u|n
′
≤
(
|v|
‖∇u‖n

)n′
+ C, for all u ∈ E, u is nonincreasing in |x|.

Thus, for R large enough, we have∫
BR

Q(|x|)eλ|u|
n′

dx ≤ C1

∫
BR

Q(|x|)eλ(|v|/‖∇u‖n)n
′

dx.

Taking into account that ∇v(x) = ∇u(x), x ∈ BR, one can continue as pre-

viously (i.e. considering the two cases b0 ≥ 0 and −n < b0 < 0, and using

(1.1) or (1.2)) and we can deduce that sup
u∈E:‖u‖≤1

I1(λ, u) < ∞. The fact that

sup
u∈E:‖u‖≤1

I2(λ, u) <∞ can be reached using exactly the same arguments as for

the case α < λ treated previously.

Finally, assume that −n < b0 ≤ 0 and lim inf
r→0+

Q(r)/rb0 > 0. We claim that

(2.18) sup
u∈E:‖u‖≤1

∫
Rn
Q(|x|)Φα(u) dx =∞, for all α > λ = αn(1 + b0/n).

For that aim, we recall the Moser sequence,

Mk(x, r) = ω
−1/n
n−1


(log k)(n−1)/n if |x| ≤ r/k,

log(r/ |x|)
(log k)1/n

if r/k ≤ |x| ≤ r,

0 if |x| ≥ r,

for x ∈ Rn, r > 0. Notice that

(2.19)

∫
Rn
|∇Mk(x, r)|ndx = 1, for all r > 0, for all k ≥ 1.
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Recall that by (V), there exist C1 > 0 and r1 > 0 such that

V (|x|) ≤ C1|x|a1 , for all 0 < |x| ≤ r1.

Thus, for r < r1, we have∫
Rn
V (|x|)|Mk(x, r)t|ndx = ωn−1(log k)n−1

∫ r/k

0

V (t)tn−1 dt

+ ωn−1(log k)−1

∫ r

r/k

V (t)(log(r/t))ntn−1 dt

≤C1(log k)n−1 (r/k)a1+n

a1 + n
+ C1ωn−1(log k)−1

∫ r

r/k

(log(r/t))nta1+n−1 dt.

Since, a1 + n > 0, then (log k)n−1/ka1+n → 0 as k → +∞, and the function

t 7→ (log(r/t))n ta1+n−1 belongs to L1(]0, r[). It follows,

(2.20)

∫
Rn
V (|x|)|Mk(x, r)|ndx = O

(
1

log k

)
, as k → +∞.

Let M̃k = Mk/‖Mk‖. Combining (2.19) and (2.20), we can easily see that

(2.21) M̃k
n′(x, r) = ω

−1/(n−1)
n−1 log k + dk, for all |x| ≤ r/k,

where dk is a bounded sequence of nonnegative numbers. On the other hand,

there exist C2 > 0 and r2 > 0 such that

(2.22) Q(|x|) ≥ C2|x|b0 , for all 0 < |x| ≤ r2.

Using (2.21) and (2.22), and choosing r < r2, we obtain

sup
u∈E:,‖u‖≤1

∫
Rn
Q(|x|)Φα(u) dx ≥

∫
Rn
Q(|x|)Φα

(
M̃k

)
dx(2.23)

≥
∫
|x|≤r/k

Q(|x|)Φα
(
M̃k

)
dx

≥
(
eαω

−1/(n−1)
n−1 log k+O(1) +O

(
(log k)n−2

)) ∫ r/k

0

Q(t)tn−1 dt

≥ C2r
b0+n

b0 + n
k−(b0+n)

(
knα/αneO(1) +O

(
(log k)n−2

))
.

If α > αn(1 + b0/n), then

C2r
b0+n

b0 + n
k−(b0+n)

(
knα/αneO(1) +O

(
(log k)n−2

))
→ +∞,

as k → +∞ and (2.23) leads to the claimed result (2.18). �

An immediate consequence of Theorem 1.3, which will be very practical and

useful in our application, is the following:
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Corollary 2.5. Under the assumptions of Theorem 1.3, if u ∈ E is such

that ‖u‖ ≤ M < (λ/α)1/n′ , then there exists a constant C = C(n,M,α) > 0

independent of u such that ∫
Rn
Q(|x|)Φα(u) dx ≤ C.

3. An application to a quasilinear elliptic problem

In this section, we consider the quasilinear elliptic problem (1.5) taken under

the hypotheses of Theorem 1.5. Initially, we introduce the functional setting for

a variational approach to the problem (1.5).

3.1. The variational formulation. Using assumption (f1), we can see that

f(0) = 0 and since we are interested in nontrivial positive solutions, we will

assume, without loss of generality, that f(s) = 0 for all s ≤ 0. Let α > α0 and

q ≥ n. From (1.6) and (f1), for any given ε > 0, there exist b1, b2 > 0 such that

|f(s)| ≤ ε|s|n−1 + b1|s|q−1Φα(s), for all s ∈ R,(3.1)

|F (s)| ≤ ε

n
|s|n + b2|s|qΦα(s), for all s ∈ R.(3.2)

Given u ∈ E, by (3.2) it yields∫
Rn
Q(|x|)F (u) dx ≤ ε

n

∫
Rn
Q(|x|)|u|n dx+ b2

∫
Rn
Q(|x|)|u|qΦα(u) dx.

Now, let r1, r2 > 1 be such that 1/r1 +1/r2 = 1. Hölder’s inequality, Lemma 2.4

and the first part of Theorem 1.3 imply that∫
Rn
Q(|x|)|u|qΦα(u) dx

≤
(∫

Rn
Q(|x|)|u|qr1 dx

)1/r1(∫
Rn
Q(|x|)Φr2α(u) dx

)1/r2

<∞,

where we have used the elementary inequality

(3.3)

(
es −

n−2∑
j=0

sj

j!

)r
≤ ers −

n−2∑
j=0

(rs)j

j!
,

for all r ≥ 1, s ≥ 0. Therefore, the energy functional I associated to prob-

lem (1.5) and defined by

I(u) :=
1

n
‖u‖n −

∫
Rn
Q(|x|)F (u) dx, u ∈ E,

is well defined. Using standard arguments, one can easily show that I ∈ C1(E,R)

with derivative given by

I ′(u)v =

∫
Rn

(
|∇u|n−2∇u∇v + V (|x|)|u|n−2uv

)
dx−

∫
Rn
Q(|x|)f(u)v dx,
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for all u, v ∈ E. Thus, critical points of I correspond to weak solutions of the

problem (1.5) and reciprocally. In the next lemma, we prove that the functional

I has the geometric structure required by the Mountain Pass Theorem.

Lemma 3.1. Suppose that (V) and (Q), (1.6) and (f1)–(f2) hold. Then

(a) there exist τ, ρ > 0 such that I(u) ≥ τ for any u ∈ E with ‖u‖ = ρ,

(b) for any u ∈ E \ {0} with compact support and u ≥ 0, we have

I(tu)→ −∞ as t→∞.

Proof. From (3.2), we get∫
Rn
Q(|x|)F (u) dx ≤ ε

n

∫
Rn
Q(|x|)|u|n dx+ b2

∫
Rn
Q(|x|)|u|qΦα(u) dx.

Let r1, r2 > 1 be such that 1/r1 + 1/r2 = 1. By Hölder’s inequality and (3.3),

we infer∫
Rn
Q(|x|)|u|qΦα(u) dx

≤
(∫

Rn
Q(|x|)|u|qr1 dx

)1/r1(∫
Rn
Q(|x|)Φr2α(u) dx

)1/r2

.

Choosing r2 > 1 sufficiently close to 1 and 0 < M < (λ/(r2α))n
′
, then for

‖u‖ ≤M , it follows from Corollary 2.5 that∫
Rn
Q(|x|)Φr2α(u) dx ≤ C.

From Lemma 2.4, we deduce that∫
Rn
Q(|x|)F (u) dx ≤ Cε

n
‖u‖n + C2‖u‖q.

Therefore,

I(u) ≥
(

1

n
− Cε

n

)
‖u‖n − C2‖u‖q =

(
1

n
− Cε

n

)
ρn − C2ρ

q

and, choosing ε > 0 sufficiently small such that C1 := 1/n− Cε/n is positive,

I(u) ≥ C1ρ
n − C2ρ

q.

Since q > n, for ρ > 0 small enough, there exists τ > 0 such that

I(u) ≥ τ for any u ∈ E with ‖u‖ = ρ.

In order to verify (b), let u ∈ E \ {0} with compact support and u ≥ 0. We

notice that from the Ambrosetti–Rabinowitz condition (f2), there exist A,B > 0

such that F (s) ≥ A|s|θ −Bs2, for all s ∈ R. Thus,

I(tu) ≤ tn

n
‖u‖n −Atθ

∫
supp(u)

Q(|x|)|u|θ dx+Bt2
∫

supp(u)

Q(|x|)|u|2 dx,

which implies (b), since θ > n ≥ 2. This completes the proof of the lemma. �
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3.2. Palais–Smale sequences. First, we recall that (uk) ⊂ E is a Palais–

Smale (for short (PS)) sequence at a level c ∈ R for the functional I if

I(uk)→ c and I ′(uk)→ 0, as k →∞,

where the second convergence occurs in the dual space E′. We say that I satisfies

the (PS) condition if any (PS) sequence has a convergent subsequence.

Lemma 3.2. Any Palais–Smale sequence for I is bounded.

Proof. Let (uk) ⊂ E be a (PS) sequence at a level c ∈ R for the functional I.

Thus

(3.4)
1

n
‖uk‖n −

∫
Rn
Q(|x|)F (uk) dx→ c as k →∞

and

(3.5)

∣∣∣∣ ∫
Rn

(
|∇uk|n−2∇uk∇v + V (|x|)|uk|n−2ukv

)
dx

−
∫
Rn
Q(|x|)f(uk)v dx

∣∣∣∣ ≤ εk‖v‖,
for all v ∈ E, where εk → 0 as k → ∞. From (3.4), (3.5) and the Ambrosetti–

Rabinowitz assumption (f2), we deduce that

c+εk‖uk‖ ≥
(
θ

n
−1

)
‖uk‖n−

∫
Rn
Q(|x|)(θF (uk)−f(uk)uk) dx ≥

(
θ

n
−1

)
‖uk‖n,

which implies that (uk) is bounded in E, concluding the proof of the lemma. �

In view of Lemma 3.1, the minimax level

cµ = inf
g∈Γ

max
0≤t≤1

I(g(t))

is positive, where Γ = {g ∈ C([0, 1], E) : g(0) = 0 and I(g(1)) < 0}. Further-

more, we have the following estimate for cµ:

Lemma 3.3. There exists µ0 > 0 such that

cµ <

(
1

n
− 1

θ

)(
λ

2α0n′

)n−1

for all µ > µ0.

Proof. Since θ0 > n, then E is compactly immersed in Lθ0(Rn;Q) (see

Lemma 2.4). Thus, there exists a nonnegative function uθ0 ∈ E such that

Sθ0 :=

∫
Rn

(
|∇uθ0 |n + V (|x|)|uθ0 |n

)
dx and

∫
Rn
Q(|x|)|uθ0 |θ0 dx = 1.

By the definition of cµ and (f3), we deduce that

cµ ≤ max
t≥0

[
tn

n
Sθ0 − tθ0

µ

θ0

]
=
θ0 − n
nθ0

S
θ0/(θ0−n)
θ0

µn/(θ0−n)
→ 0, as µ→ +∞.

Choosing µ0 sufficiently large, we immediately reach our desired result. �
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4. Proof of Theorem 1.5

In view of Lemma 3.1, we may apply the Mountain Pass Theorem with-

out Palais–Smale condition to obtain a (PS) sequence (uk) in E which, from

Lemma 3.2, is bounded. Then, there exists u ∈ E such that, up to a subse-

quence, uk ⇀ u weakly in E. We will prove that, up to a subsequence, uk → u

strongly in E. Set

Ik :=

∫
Rn
Q(|x|)f(uk)(uk − u) dx.

We claim that Ik → 0 as k → +∞. In fact, by Hölder’s inequality

|Ik| ≤ ‖f(uk)‖Ln′ (Rn;Q)‖(uk − u)‖Ln(Rn;Q).

By Lemma 2.4, the embedding E ↪→ Ln(Rn;Q) is compact which implies that

uk → u strongly in Ln(Rn;Q). Consequently,

‖(uk − u)‖Ln(Rn;Q) → 0, k → +∞.

At this point, it suffices to prove that

sup
k≥1
‖f(uk)‖Ln′ (Rn;Q) < +∞.

By (f1) and the α0-exponential critical growth of f at infinity, and using the fact

that 2α0 > α0, there exists a positive constant C such that

|f(uk)|n
′
≤ C(|uk|n + Φ2α0n′(uk)).

On the other hand, we have

I(uk) = I(uk)− 1

θ
I ′(uk)uk + ok(1) =

(
1

n
− 1

θ

)
‖uk‖n + ok(1)→ cµ.

By Lemma 3.3, for any µ > µ0, we have(
cµ

1/n− 1/θ

)1/n

<

(
λ

2α0n′

)1/n′

.

Hence, we deduce that

lim sup
k→+∞

‖uk‖ <
(

λ

2α0n′

)1/n′

,

and in view of Corollary 2.5 we conclude that

sup
k≥1

∫
Rn
Q(|x|)Φ2α0n′(uk) dx < +∞.

Finally, using the fact that (uk) is bounded in Ln
′
(Rn;Q), our claim immediately

follows. Thus, since lim
k→∞

I ′(uk)(uk − u) = 0, we obtain∫
Rn

(
|∇uk|n−2∇uk∇(uk − u) + V (|x‖)uk(uk − u)

)
dx = ok(1).
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Now, as an immediate consequence of the weak convergence uk ⇀ u in E, we

have ∫
Rn

(
|∇u|n−2∇u∇(uk − u) + V (|x|)u(uk − u)

)
dx = ok(1).

Combining that last identities, we conclude that uk → u strongly in E. Since

I and I ′ are continuous, then I ′(uk) = ok(1) → I ′(u) = 0 and I(uk) → I(u) =

cµ > 0, proving that u is a nontrivial critical point of the functional I. To finish

the proof, it remains to check that u is nonnegative. But, it just suffices to

observe that I ′(u)(u−) = 0 which leads to ‖u−‖n = 0 and therefore u = u+ ≥ 0,

where u+ := max{u, 0} and u− := min{u, 0} denote the positive and negative

part of u, respectively. �

Acknowledgements. The authors would like to express their gratitude to

the referee for his/her careful reading of the manuscript, helpful remarks and

suggestions which certainly improved the paper considerably.

References

[1] S. Adachi and K. Tanaka, Trudinger type inequalities in RN and their best exponents,

Proc. Amer. Math. Soc. 128 (2000), 2051–2057.

[2] R. Adams, Sobolev Spaces, Academic Press, New York, 1975.

[3] Adimurthi, Existence of Positive solutions of the semilinear Dirichlet problem with crit-

ical growth for the N-Laplacian, Ann. Sci. Norm. Super. Pisa 17 (1990), 393–413.

[4] Adimurthi and K. Sandeep, A singular Moser–Trudinger embedding and its applications,

NoDEA Nonlinear Differential Equations Appl. 13 (2007), 585–603.

[5] Adimurthi, and Y. Yang, An interpolation of Hardy inequality and Trudinger–Moser

inequality in RN and its applications, Int. Math. Res. Not. IMRN, vol. 2010, no. 13,

2394–2426.

[6] F.S.B. Albuquerque, Sharp constant and extremal function for weighted Trudinge-r-

Moser type inequalities in R2, J. Math. Anal. Appl. 421 (2015), 963–970.

[7] F.S.B. Albuquerque, Standing wave solutions for a class of nonhomogeneous systems

in dimension two, Complex Var. Elliptic Equ. 61 (2016), 1157–1175.

[8] F.S.B. Albuquerque, C.O. Alves and E.S. Medeiros, Nonlinear Schrödinger equation

with unbounded or decaying radial potentials involving exponential critical growth in R2,

J. Math. Anal. Appl. 409 (2014), 1021–1031.

[9] C.O. Alves, Multiplicity of solutions for a class of elliptic problem in R2 with Neumann

conditions, J. Differential Equations 219 (2005), 20–39.
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[26] J.M.B. do Ó, E. Medeiros and U. Severo, A nonhomogeneous elliptic problem involving

critical growth in dimension two, J. Math. Anal. Appl. 345 (2008), 286–304.
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[28] J.M.B do Ó, F. Sani and J. Zhang, Stationary nonlinear Schrödinger equations in R2

with potential vanishing at infinity, Ann. Mat. Pura Appl. 196 (2017), 363–393.

[29] S. Kesavan, Symmetrization and Applications, Series in Analysis, vol. 3, World Scientific,

2006.

[30] Y. Li and B. Ruf, A sharp Trudinger–Moser type inequality for unbounded domains

in Rn, Indiana Univ. Math. J. 57 (2008), 451–480.

[31] J. Moser, A sharp form of an inequality by N. Trudinger, Indiana Univ. Math. J. 20

(1971), 1077–1092.
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