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CONLEY INDEX CONTINUATION

FOR A SINGULARLY PERTURBED PERIODIC

BOUNDARY VALUE PROBLEM

Maria C. Carbinatto — Krzysztof P. Rybakowski

Abstract. We establish spectral convergence and Conley index continu-

ation results for a class of singularly perturbed periodic boundary value
problems.

1. Introduction

This paper is a sequel to our previous articles [2] and [3]. In the paper [3]

we considered, with ε > 0 small, a family

(Eε,Sε)


ut = (aεux)x + gε(x, u), 0 < x < 1, t > 0,

ρu− (1− ρ)aεux = 0, x = 0, t > 0,

σu+ (1− σ)aεux = 0, x = 1, t > 0

of semilinear boundary value problems.

Here, 0 ≤ ρ, σ ≤ 1 and gε(x, u) is a nonlinearity satisfying certain (mild)

regularity assumptions. The diffusion coefficient aε is large except in some small

neighbourhood of each of the n+1 subdivision points of [0, 1] in which aε, divided

by the length of the neighbourhood, is small as ε→ 0. Moreover, there is some

transitory behavior between such neighbourhoods.
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The precise conditions on aε are presented in [3, Assumption 2.1], which

generalizes an earlier condition introduced in [5], [4].

Let Aε be the set of all pairs (u,w) with u ∈ H1(0, 1) and w ∈ L2(0, 1) such

that aεu ∈ H1(0, 1), ρu(0) − (1 − ρ)aε(0)u′(0) = σu(1) + (1 − σ)aε(1)u′(1) = 0

and w = −(aεu
′)′.

It is known that Aε is (the graph of) a densely defined nonnegative self-

adjoint linear operator in L2(0, 1). If fε is the Nemytsk̆ı operator defined by the

function gε(x, u), then problem (Eε,Sε) can be written as the abstract parabolic

equation

u̇+Aεu = fε(u)

which generates a local semiflow on πε on H1(0, 1).

Now, by results in [3], there is n × n matrix A0 which is symmetric with

respect to some scalar product on Rn and such that the first n eigenvalues λl,ε,

l ∈ [1. . n], of Aε converge, as ε → 0+, to the corresponding eigenvalues λl,0,

l ∈ [1. . n], of A0, while λl,ε → ∞ for l > n. One can also choose corresponding

eigenfunctions ϕ̂l,ε of Aε converging, in some sense, to a corresponding eigen-

function ϕ̂l,0 of A0, l ∈ [1. . n]. This is the contents of the spectral convergence

result [3, Theorem 2.6], which extends the corresponding spectral convergence

result from [4].

If there is a limit g0(x, u) for the family gε(x, u), then we may consider the

limit ordinary differential equation

ż +A0z = f0(z)

generating a local (semi)-flow on Rn. Here, f0 is obtained by properly averaging

g0 on [0, 1].

We can now define the linear ε-dependent embedding

(1.1) Jε : Rn → H1(0, 1) by ϕl,0 7→ ϕl,ε, l ∈ [1. . n].

It turns out that, with this embedding, the abstract Conley index continuation

principles established in [2, Theorems 2.4 and 2.5] are applicable in this situation

and yield singular continuation results for the concrete family πε, ε ≥ 0, as ε→ 0,

see [3, Theorem 5.3], cf also [2, Theorem 4.5].

In the present paper we extend the results from [3] to the technically more

difficult case with periodic boundary conditions, i.e. to the family of equations

(Eε,P)

ut = (aεux)x + gε(x, u), 0 < x < 1, t > 0

u(t, 0) = u(t, 1), t > 0.

To our knowledge, the periodic case was not considered in this context before.

Our hypotheses on the diffusion coefficients (aε)ε∈]0,ε0[ are similar to [3, As-

sumption 2.1], see Assumption 2.1 below. The hypotheses on the nonlinearity

gε(x, u) are as in [2], [3], see Assumption 4.3 below.
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The map u 7→ −(aεux)x with periodic boundary conditions again generates

a linear operator Aε in L2(0, 1). The spectrum of Aε consists of a sequence of

eigenvalues which, however, do not have to be simple, cf. Proposition 2.7.

As we shall describe now, it is the very lack of simplicity of eigenvalues

which, compared to the situation in [3], leads to a more restrictive statement

of the spectral convergence result and more involved proofs of the Conley index

continuation results.

Let (λl,ε)l be the repeated sequence of eigenvalues of Aε, i.e. the nondecreas-

ing sequence of eigenvalues of Aε in which each eigenvalue is repeated according

to its multiplicity. Choose an L2-orthonormal sequence (ϕl,ε)l such that ϕl,ε is

an eigenfunction of Aε corresponding to λl,ε, l ∈ N. We prove, in Theorem 2.5

below, that there exists a linear operator A0 on Rn, symmetric with respect to

some scalar product 〈 · , · 〉L, with repeated sequence of eigenvalues (λl,0)l∈[1..n]

(some of which may be double) and such that, for ε→ 0, λl,ε → λl,0 for l ∈ [1. . n]

and λl,ε →∞ for l > n.

Moreover, we prove that for each null sequence (εm)m in ]0, ε0[ there is a sub-

sequence (ε1
m)m of (εm)m and an 〈 · , · 〉L-orthonormal sequence (zl)l∈[1..n] such

that, for each l ∈ [1. . n], zl is an eigenvector of A0 corresponding to λl,0 and

such that in some sense, ϕl,ε1m → zl as m→∞.

We may then consider a limit problem

(E0) ż +A0z = g0(z).

Here, similarly as in [2], [3], the function g0(z) is obtained from g0(x, u) by an

averaging procedure.

In order to compare problem (E0) to problem (Eε,P), we again have to find

an appropriate embedding. Unfortunately, in the present case an embedding

cannot be defined as in (1.1), since the families (ϕl,ε)ε do not necessarily have a

unique limit for ε → 0+. Fortunately, we are able to construct an appropriate

embedding Jε, see the beginning of Section 4, but the procedure is more involved.

The boundary value problem (Eε,P) generates a local semiflow πε on the

space H1
per(0, 1) of 1-periodic H1-functions. Moreover, the ODE system (E0)

generates a local (semi)flow π0 on Rn.

Using the constructed family Jε of embeddings we now proceed as in [2], [3]

to establish Conley index and homology index braid continuation results for the

family πε, ε ≥ 0 small, showing in particular that isolated invariant sets S0 of

π0 continue, for small ε > 0, to isolated invariant sets Sε of πε with Sε ‘close’ to

Jε(S0) and such that S0 and Sε have the same Conley index, see Theorems 4.5

and 4.8. In particular, some aspects of the dynamics of the simpler flow π0 can

be found in the more complicated semiflow πε.

The above ‘closeness’ is with respect to certain ε-dependent Hilbert norms

‖·‖ε on the space H1
per(0, 1) and it implies C([0, 1])-closeness. On the other hand,
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the embedding Jε, though necessary for the applicability of Conley index theory,

is not very explicit. A more natural, ε-independent and explicit embedding Θ

is obtained by interpreting each element of Rn as a step function relative to the

decomposition of [0, 1] given in Assumption 2.1 below.

It turns out that, as a consequence of ‖ · ‖ε-closeness and our construction

of Jε, the set Sε actually is Lr(0, 1)-close to Θ(S0) for any r ∈ [1,∞[, see Propo-

sition 4.7.

Our proof methods are kept at an abstract level and permit applications to

other types of singularly perturbed infinite dimensional dynamical systems with

a finite dimensional limit. This will be treated in a subsequent publication.

In this paper, all linear spaces are defined over the real numbers field.

2. The spectral convergence result

In this section we will state one of the main results of this paper, the spec-

tral convergence theorem. Throughout this paper, m is the one-dimensional

Lebesgue measure.

We begin by stating our linear hypothesis:

Assumption 2.1.

(1a) n ∈ N, ε0 ∈ ]0,∞] and x0, xn+1 ∈ R with x0 < xn+1;

(1b) (aε)ε∈]0,ε0[ is a family of continuous positive functions on [x0, xn+1];

(1c) (xj)j∈[1..n] is a strictly increasing sequence in ]x0, xn+1[, (τj)j∈[1..n] is

a sequence in ]0,∞[ and ξ′j,ε, ξj,ε, ζj,ε, ζ
′
j,ε are families in ]x0, xn+1[ with

ξ′j,ε < ξj,ε < xj < ζj,ε < ζ ′j,ε, j ∈ [1. . n], ε ∈ ]0, ε0[.

Furthermore, ζ ′j,ε < ξ′j+1,ε if j ≤ n − 1. For each j ∈ [1. . n], m([ξ′j,ε, ζ
′
j,ε]) → 0

as ε→ 0.

(2a) If (Γε)ε∈]0,ε0[ is any of the following families:

([x0, ξ
′
1,ε])ε∈]0,ε0[, ([ζ ′j,ε, ξ

′
j+1,ε])ε∈]0,ε0[ or ([ζ ′n,ε, xn+1])ε∈]0,ε0[,

for j ∈ [1. . n− 1], or else any of the families

([ξ′j,ε, ξj,ε])ε∈]0,ε0[, ([ζj,ε, ζ
′
j,ε])ε∈]0,ε0[,

for j ∈ [1. . n], then

inf
Γε
aε

m(Γε)
→∞ as ε→ 0.

(2b) For each j ∈ [1. . n] and ε ∈ ]0, ε0[, set Γε = [ξj,ε, ζj,ε]. Then

inf
Γε
aε

m(Γε)
→ τj and

sup
Γε

aε

m(Γε)
→ τj as ε→ 0.
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Notation. In the sequel, we write

Kj,ε = [ζj,ε, ξj+1,ε] , K ′j,ε = [ζ ′j,ε, ξ
′
j+1,ε] , Kj = [xj , xj+1] ,

for j ∈ [1. . n− 1], and

Kn,ε = [ζn,ε, xn+1] ∪ [x0, ξ1,ε] , K ′n,ε = [ζ ′n,ε, xn+1] ∪ [x0, ξ
′
1,ε] ,

Kn = [xn, xn+1] ∪ [x0, x1] , Lj = m(Kj), j ∈ [1. . n] .

Remark 2.2. These notations and Assumption 2.1 are best understood by

viewing the above number families in the interval ]x0, xn+1[ as number families

in the one-sphere S = [x0, xn+1] /{x0, xn+1}. Then, for j ∈ [1. . n− 1] we have

the following picture:

ξ′j,ε ξj,ε xj ζj,ε ζ′j,ε ξ′j+1,ε ξj+1,ε xj+1 ζj+1,ε ζ
′
j+1,ε

while, for j = n with the identification of x0 with xn+1 we have the following

picture:

ξ′n,ε ξn,ε xn ζn,ε ζ′n,ε x0 ≡ xn+1 ξ
′
1,ε ξ1,ε x1 ζ1,ε ζ′1,ε

In particular, the set Kn,ε (resp. K ′n,ε, resp. Kn) is the interval in S from

ζn,ε to ξ1,ε (resp. from ζ ′n,ε to ξ′1,ε, resp. from xn to x1).

Let j ∈ [1. . n] be arbitrary. Since m(K ′j,ε) → Lj > 0 as ε → 0, part (2a) of

Assumption 2.1 implies that aε → ∞ for ε → 0, uniformly in K ′j,ε. Moreover,

by part (2b), on the small intervals [ξj,ε, ζj,ε] around xj , aε is of the same order

as the measure of these intervals so aε → 0 for ε → 0, uniformly in [ξj,ε, ζj,ε].

Finally, there is some transitional behavior on the remaining small intervals

[ξ′j,ε, ξj,ε] and [ζj,ε, ζ
′
j,ε] around xj , as aε is of lower order than the measure of

these intervals.

The following result further clarifies the above hypothesis.

Proposition 2.3. If Assumption 2.1 holds, then

(2.1)
m([ξ′j,ε, ξj,ε]) + m([ζj,ε, ζ

′
j,ε])

m([ξj,ε, ζj,ε])
→ 0 as ε→ 0, j ∈ [1. . n].

Conversely, if parts (1a), (1c) of Assumption 2.1 together with estimate (2.1)

hold, then there is a family (aε)ε∈]0,ε0[, such that parts (1b), (2a) and (2b) of

that assumption are also satisfied. In addition, we may assume that each function

aε can be extended to a (xn+1 − x0)-periodic C∞-function defined on all of R.

Proof. If Assumption 2.1 holds, then, for each j ∈ [1. . n] by (2a),

aε(ζj,ε)

m([ζj,ε, ζ ′j,ε])
→∞ and

aε(ξj,ε)

m([ξ′j,ε, ξj,ε])
→∞ as ε→ 0
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while, by (2b),

aε(ζj,ε)

m([ξj,ε, ζj,ε])
→ τj and

aε(ξj,ε)

m([ξj,ε, ζj,ε])
→ τj as ε→ 0.

These estimates imply estimate (2.1).

Conversely, if parts (1a), (1c) of Assumption 2.1 together with estimate (2.1)

hold, then define, for each ε ∈ ]0, ε0[ the uniquely determined continuous function

aε : [x0, xn+1]→ R such that, for each j ∈ [1. . n],

aε(x) = ε−1 on K ′j,ε,

aε(x) = τj ·m([ξj,ε, ζj,ε]) on [ξj,ε, ζj,ε]

and aε is affine on [ξ′j,ε, ξj,ε] and on [ζj,ε, ζ
′
j,ε]. With this choice of (aε)ε∈]0,ε0[

and estimate (2.1) it is easily proved that parts (1b), (2a) and (2b) of Assump-

tion 2.1 also hold. Each function aε is constant on Kn,ε so it can be extended

to a continuous (xn+1 − x0)-periodic function defined on all of R. Applying

to the latter function the usual smoothing procedure via mollifiers, we obtain,

for every bε ∈ ]0,∞[ a smooth (xn+1 − x0)-periodic function ãε on R, which

differs from aε by at most bε on [x0, xn+1]. Choosing (bε)ε∈]0,ε0[ so small that

bε < inf
[x0,xn+1]

aε and bε/m(Kε) → 0, where (Kε)ε∈]0,ε0[ is any family occurring

in Assumption 2.1, we see that with the choice of the family (ãε)ε∈]0,ε0[, parts

(1b), (2a) and (2b) of Assumption 2.1 also hold. �

Define H1
per = H1

per(x0, xn+1) (see the Appendix). For each ε ∈ ]0, ε0[ define

the bilinear form bε := baε . Let

〈 · , · 〉L2 = 〈 · , · 〉L2(x0,xn+1)

be the standard scalar product on L2 = L2(x0, xn+1) and

(2.2)
let Aε : Dε := D(Aε) ⊂ H1

per → L2 be the linear operator defined by

the pair (bε, 〈 · , · 〉L2).

In this paper we will consider the following norm in H1
per:

(2.3) ‖u‖2ε := bε(u, u) + ‖u‖2L2 , u ∈ H1
per.

Let (λl,ε)l be the repeated sequence of eigenvalues of Aε, i.e. the nondecreas-

ing sequence of eigenvalues of Aε in which each eigenvalue is repeated according

to its multiplicity. Choose an L2-orthonormal sequence (ϕl,ε)l such that ϕl,ε is

an eigenfunction of Aε corresponding to λl,ε, l ∈ N.

Now define the ‘limit’ bilinear form b0 : Rn × Rn → R by

b0(y, z) = τ1(y1 − yn)(z1 − zn) +

n∑
j=2

τj(yj − yj−1)(zj − zj−1)



Conley Index and a Periodic BVP 35

and the scalar product 〈 · , · 〉L on Rn by

〈y, z〉L =

n∑
j=1

Ljyjzj , y = (yj)j∈[1..n], z = (zj)j∈[1..n] ∈ Rn.

(2.4) Let A0 : Rn → Rn be the linear map defined by the pair (b0, 〈 · , · 〉L).

The map A0 is 〈 · , · 〉L-symmetric.

Remark 2.4. Note that, unlike in the boundary value case considered in [5]

and [4], the operator A0 may have a double eigenvalue as the following example

shows: Let Lj = 1/3 and τj = 1 for j ∈ [1. . 3]. Then the matrix of A0 relative

to the canonical basis of R3 takes the form 6 −3 −3

−3 6 −3

−3 −3 6

 .

Thus λ = 0 is an eigenvalue of A0 with geometric multiplicity 1 and λ = 9 is an

eigenvalue of A0 with geometric multiplicity 2.

Now let (λl,0)l∈[1..n] be the repeated sequence of eigenvalues of A0. Define

also the following norm on Rn:

(2.5) ‖z‖20 := b0(z, z) + ‖z‖2L, z ∈ Rn.

We can now state our spectral convergence result.

Theorem 2.5. With the notation introduced above the following assertions

hold:

(a) λn+1,ε →∞ as ε→ 0.

(b) For each l ∈ [1. . n], λl,ε → λl,0 as ε→ 0.

(c) For each null sequence (εm)m in ]0, ε0[ there is a subsequence (ε1
m)m

of (εm)m and an 〈 · , · 〉L-orthonormal sequence (zl)l∈[1..n] such that, for

each l ∈ [1. . n], zl is an eigenvector of A0 corresponding to λl,0 and such

that for each j ∈ [1. . n]

sup
x∈Kj,ε1m

|ϕl,ε1m(x)− zl,j | → 0, as m→∞,

where zl,j is the j-th component of the vector zl.

Theorem 2.5 extends the main part of [3, Theorem 2.6] to the periodic case.

We will give a proof of Theorem 2.5 in the next section.

In the remaining part of this section we will show that, if Assumption 2.1 is

satisfied and some additional periodicity hypotheses hold, then the corresponding

operators Aε have double eigenvalues which remain bounded as ε→ 0+.

For the rest of this section suppose n, ε0, x0 = 0, xn+1 = (1/3), aε, xj ,

τj , ξ
′
j,ε, ξj,ε, ζj,ε and ζ ′j,ε, ε ∈ ]0, ε0[, j ∈ [1. . n], satisfy Assumption 2.1.
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Additionally assume that aε(0) = aε(1/3) for each ε ∈ ]0, ε0[ (cf. Proposi-

tion 2.3) and let ãε : [0, 1] → R be the (1/3)-periodic extension of aε. Let

Aε : D(Aε) ⊂ H1
per(0, 1/3) → L2(0, 1/3) be the linear operator defined by aε

with (1/3)-periodic condition.

Let ñ = 3n. Let ε ∈ ]0, ε0[ be arbitrary. Whenever αj , j ∈ [1. . n], is any

of the sequences xj , ξ
′
j,ε, ξj,ε, ζj,ε and ζ ′j,ε, j ∈ [1. . n], define the sequence α̃j ,

j ∈ [1. . ñ], in ]0, 1[ by α̃j = αj , α̃n+j = αj + (1/3) and α̃2n+j = αj + (2/3),

j ∈ [1. . n]. Moreover, define the sequence τ̃j , j ∈ [1. . ñ], in R by τ̃j = τj ,

τ̃n+j = τj and τ̃2n+j = τj , j ∈ [1. . n].

It is easy to show that ñ, ε0, x̃0 = 0, x̃ñ+1 = 1, ãε, x̃j , τ̃j , ξ̃
′
j,ε, ξ̃j,ε, ζ̃j,ε and

ζ̃ ′j,ε, ε ∈ ]0, ε0[, j ∈ [1. . n], satisfy Assumption 2.1.

Let Ãε : D(Ãε) ⊂ H1
per(0, 1) → L2(0, 1) be the linear operator defined by ãε

with 1-periodic condition.

Let (λl,ε)l be the repeated sequence of eigenvalues of Aε in which each eigen-

value is repeated according to its multiplicity. Choose an L2(0, 1/3)-orthonormal

sequence (ϕl,ε)l such that ϕl,ε is defined and continuous on [0, 1/3] and is an

eigenfunction of Aε corresponding to λl,ε, l ∈ N.

Let (λ̃l,ε)l be the repeated sequence of eigenvalues of Ãε in which each eigen-

value is repeated according to its multiplicity. Choose an L2(0, 1)-orthonormal

sequence (ϕ̃l,ε)l such that ϕ̃l,ε is defined and continuous on [0, 1] and is an eigen-

function of Ãε corresponding to λ̃l,ε, l ∈ N.

For each p ∈ N and ε ∈ ]0, ε0[, let Up,ε be the span of the eigenfunctions ϕl,ε,

for l ∈ [1. . p] and let Ũp,ε be the span of the eigenfunctions ϕ̃l,ε, for l ∈ [1. . p].

Theorem 2.5 implies that there exist an ε̂ ∈ ]0, ε0[ and an M ∈ ]0,∞[ such

that

(2.6) λ̃ñ,ε ≤M < λn+1,ε, for all ε ∈ ]0, ε̂].

Lemma 2.6. With the notation introduced above, for each ε ∈ ]0, ε̂] there

exists a lε ∈ [1. . ñ] such that ϕ̃lε,ε is not (1/3)-periodic or ϕ̃′lε,ε is not (1/3)-

periodic.

Proof. Suppose that there exists an ε ∈ ]0, ε̂] such that for all l ∈ [1. . ñ],

ϕ̃l,ε and ϕ̃′l,ε are (1/3)-periodic.

Since ϕ̃l,ε is a (1/3)-periodic continuous function for all l ∈ [1. . ñ], it follows

that ϕ is (1/3)-periodic and continuous (on [0, 1]) for all ϕ ∈ Ũñ,ε. Define

Γ: Ũñ,ε → C([0, 1/3]) by Γϕ = ϕ|[0,1/3], ϕ ∈ Ũñ,ε. It is clear that Γ is a linear

map. Moreover, Γ is injective. Indeed, let ϕ ∈ Ũñ,ε be such that Γϕ = 0. Then

ϕ(x) = 0 for all x ∈ [0, 1/3]. Since ϕ is (1/3)-periodic, it follows that ϕ = 0.

Fix l ∈ [1. . ñ] and set ϕ = Γϕ̃l,ε. Since ϕ̃l,ε 6= 0, it follows that ϕ 6= 0.

Moreover, we claim that Aεϕ is defined and Aεϕ = λ̃l,εϕ.
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Indeed, since ϕ̃l,ε ∈ D(Ãε) and ϕ̃l,ε is an eigenfunction of Ãε and is con-

tinuous on [0, 1], it follows that Ãεϕ̃l,ε is continuous and so the result in the

Appendix implies that ϕ̃l,ε is of class C1 on [0, 1], both ϕ̃l,ε and ϕ̃′l,ε (in the clas-

sical sense) are 1-periodic functions and ãεϕ̃
′
l,ε ∈ C1([0, 1] ,R) with (ãεϕ̃

′
l,ε)
′(x) =

−λ̃l,εϕ̃l,ε(x) for all x ∈ [0, 1].

Since ϕ = ϕ̃l,ε|[0,1/3], it follows that ϕ is of class C1 on [0, 1/3] and aεϕ
′ =

(ãεϕ̃
′
l,ε)|[0,1/3] ∈ C1([0, 1/3]). Since ϕ̃l,ε and ϕ̃′l,ε are (1/3)-periodic, it follows

that ϕ̃l,ε(0) = ϕ̃l,ε(1/3) and ϕ̃′l,ε(0) = ϕ̃′l,ε(1/3) and so ϕ(0) = ϕ(1/3) and

ϕ′(0) = ϕ′(1/3). Therefore, ϕ and ϕ′ are (1/3)-periodic. Moreover,

(aεϕ
′)′(x) = (ãεϕ̃

′
l,ε)
′(x) = −λ̃l,εϕ̃l,ε(x) = −λ̃l,εϕ(x), for all x ∈ [0, 1/3].

Hence, the result in the Appendix implies that ϕ ∈ D(Aε) and Aεϕ = λ̃l,εϕ.

The claim is proved. Therefore, ϕ is an eigenfunction of Aε.

Formula (2.6) implies that λ̃l,ε ≤ M and that there exists a j ∈ [1. . n] such

that λ̃l,ε = λj,ε. Therefore, ϕ ∈ Un,ε. This implies that Γ
(
Ũñ,ε

)
⊂ Un,ε. Since Γ

is injective and dimUn,ε = n < ñ = dim Ũñ,ε, we obtain a contradiction. �

Proposition 2.7. With the notation introduced above, for each ε ∈ ]0, ε̂] let

lε ∈ [1. . ñ] be as in Lemma 2.6. Then λ = λ̃lε,ε is a double eigenvalue of Ãε.

Proof. Let ε ∈ ]0, ε̂] be fixed and let lε ∈ [1. . ñ] be as in Lemma 2.6. Set

ϕ = ϕ̃lε,ε. The result in the Appendix implies that ϕ ∈ C1([0, 1]), ϕ(0) = ϕ(1),

ϕ′(0) = ϕ′(1), v := ãεϕ
′ ∈ C1([0, 1]) and v′(x) = −λϕ(x) for all x ∈ [0, 1]. Let

ǎε : R → R be the (1/3)-periodic extension of aε, which is also the 1-periodic

extension of ãε. Let ϕ̌ : R→ R be the 1-periodic extension of ϕ. It follows that

ǎεϕ̌
′ is the 1-periodic extension of v and so (ǎεϕ̌

′)′(x) = −λϕ̌(x) for all x ∈ R.

Let γ : R → R be the (1/3)-translate of ϕ̌, γ(x) = ϕ̌(x + (1/3)), x ∈ R. Thus

γ ∈ C1(R), and since ǎε is (1/3)-periodic, we also have that (ǎεγ
′)′(x) = −λγ(x)

for all x ∈ R. Since ϕ̌ is 1-periodic, so is γ and therefore γ′ is 1-periodic as well.

Therefore, we have proved that ψ = γ|[0,1] is an eigenfunction of Ãε corresponding

to the eigenvalue λ.

We claim now that ϕ and ψ are linearly independent. Suppose this does

not hold. Since ϕ 6= 0 and ψ 6= 0, there exists a ρ ∈ R such that ψ = ρϕ.

Since ‖ϕ‖L2(0,1) = 1 and ϕ̌ is the 1-periodic extension of ϕ to R, it follows that

‖ψ‖L2(0,1) = 1. Hence ρ = 1 or ρ = −1. Suppose first that ρ = 1 so ϕ = ψ on

[0, 1]. In particular,

ϕ(0) = ψ(0) = ϕ(1/3) and ϕ′(0) = ψ′(0) = ϕ′(1/3),

which contradicts the choice of ϕ.

Thus ρ = −1 and so

ϕ̌(x) = −ϕ̌(x+ 1/3), for all x ∈ [0, 1].
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Let x ∈ [0, 1]. We have

ϕ̌(x+ 2/3) = −ϕ̌(x+ 1/3) = −(−ϕ̌(x)) = ϕ̌(x)

which implies that

ϕ̌(x) = ϕ̌(x+ 1) = −ϕ̌(x+ 2/3) = −ϕ̌(x).

We have proved that ϕ̌(x) = 0 for all x ∈ [0, 1] which is a contradiction. There-

fore, the claim is proved and this concludes the proof of the proposition. �

3. Proof of Theorem 2.5

This section is devoted to the proof of Theorem 2.5. We will consider the

case x0 = 0 and xn+1 = 1. The general case follows by a simple change of

coordinates.

We follow the proof of the spectral convergence result from [3] but, for brevity,

omit those steps in the proof which are very similar to the ones given in [3]. The

following lemma was proved in [3, Lemma 3.1].

Lemma 3.1. If M ∈ ]0,∞[, I ⊂ [0, 1] is a compact interval, a : I → R is

a continuous positive function and ϕ ∈ H1(0, 1) is such that
∫
I
a · (ϕ′)2 dx ≤M ,

then

|ϕ(x)− ϕ(y)|2 ≤Mm(I)

inf
I
a
, for x, y ∈ I.

For each ε ∈ ]0, ε0[ and j ∈ [1. . n] define ψj,ε : [0, 1] → R as the uniquely

determined continuous function such that

(1) if j ∈ [1. . n− 1], then ψj,ε(x) = 1 for x ∈ [ζj,ε, ξj+1,ε], ψj,ε(x) = 0 for

x /∈ [ξj,ε, ζj+1,ε] and ψj,ε is affine on each of the intervals [ξj,ε, ζj,ε] and

[ξj+1,ε, ζj+1,ε].

(2) ψn,ε(x) = 1 for x ∈ [0, ξ1,ε]∪[ζn,ε, 1], ψn,ε(x) = 0 for x /∈ [0, ζ1,ε]∪[ξn,ε, 1]

and ψn,ε is affine on each of the intervals [ξ1,ε, ζ1,ε] and [ξn,ε, ζn,ε].

For each ε ∈ ]0, ε0[, let Wε be the span of the functions ψj,ε, j ∈ [1. . n], i.e.

the n-dimensional subspace of H1
per(0, 1) given by

Wε =

{ n∑
j=1

ujψj,ε

∣∣∣∣ uj ∈ R, for j ∈ [1. . n]

}
.

Lemma 3.2. There exists a C ′1 ∈ ]0,∞[ and an ε′1 ∈ ]0, ε0[ such that

bε(u, u)

‖u‖2L2

≤ C ′1 for all ε ∈ ]0, ε′1] and all u ∈Wε with u 6= 0.

Proof. There is a c ∈ ]0,∞[ and an ε1 ∈ ]0, ε0[ such that

c ≤ min
(

min
j∈[1..n−1]

(ξj+1,ε − ζj,ε), ξ1,ε + 1− ζn,ε
)
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for all ε ∈ ]0, ε1]. Let ε ∈ ]0, ε1] and let u ∈ Wε be arbitrary with ‖u‖2L2 = 1.

Hence u =
n∑
j=1

ujψj,ε with uj ∈ R, for j ∈ [1. . n]. Thus

1 = ‖u‖2L2 ≥
∫ ξ1,ε

0

u2 dx+

n−1∑
j=1

∫ ξj+1,ε

ζj,ε

u2 dx+

∫ 1

ζn,ε

u2 dx

= u2
n ξ1,ε +

n−1∑
j=1

u2
j (ξj+1,ε − ζj,ε) + u2

n(1− ζn,ε) ≥ c
n∑
j=1

u2
j ,

so |uj | ≤ c−1/2 for all j ∈ [1. . n]. Notice that u′(x) = 0 for x ∈ [0, ξ1,ε] ∪
n−1⋃
j=1

[ζj,ε, ξj+1,ε] ∪ [ζn,ε, 1]. Moreover, for j ∈ [1. . n] and x ∈ [ξj,ε, ζj,ε], u(x) =

uj−1ψj−1,ε(x) + ujψj,ε(x) with |ψ′j−1,ε(x)| = |ψ′j,ε(x)| = (1/(ζj,ε − ξj,ε)). Here,

we set u0 = un and ψ0,ε = ψn,ε. It follows that

bε(u, u) =

∫ 1

0

aε · (u′)2 dx =

n∑
j=0

∫ xj+1

xj

aε · (u′)2 dx =

n∑
j=1

∫ ζj,ε

ξj,ε

aε · (u′)2 dx

=

n∑
j=1

∫ ζj,ε

ξj,ε

aε · (uj−1ψ
′
j−1,ε + ujψ

′
j,ε)

2 dx

≤
n∑
j=1

∫ ζj,ε

ξj,ε

(
sup

[ξj,ε,ζj,ε]

aε

) 4

c(ζj,ε − ξj,ε)2
dx

=

n∑
j=1

(
sup

[ξj,ε,ζj,ε]

aε

) 4

c(ζj,ε − ξj,ε)
→ 4

c

n∑
j=1

τj ∈ ]0,∞[ ,

so
n∑
j=1

(
sup

[ξj,ε,ζj,ε]

aε

) 4

c(ζj,ε − ξj,ε)
≤ C ′1

for some C ′1 ∈ ]0,∞[, some ε′1 ∈ ]0, ε1] and all ε ∈ ]0, ε′1]. �

Notation. For C ∈ ]0,∞[ and ε ∈ ]0, ε0[ let B̃ε,C be the closed ball in H1
per

with center in zero and radius C with respect to the norm ‖ · ‖ε.

Lemma 3.3. The following two assertions hold:

(a) There exist an ε′2 ∈ ]0, ε0[ and a C ′2 ∈ ]0,∞[ such that, for every v ∈ H1
per

and every ε ∈ ]0, ε′2],

sup
x,y∈[0,1]

|v(x)− v(y)| ≤ C ′2bε(v, v)1/2,(3.1)

sup
x∈[0,1]

|v(x)| ≤ C ′2‖v‖ε.(3.2)

(b) Let M ∈ ]0,∞[ be arbitrary. For each j ∈ [1. . n] we have

(3.3) sup
v∈B̃ε,M

sup
x,y∈Kj,ε

|v(x)− v(y)| → 0, as ε→ 0.



40 M.C. Carbinatto — K.P. Rybakowski

Proof. By our assumptions there are an ε1 ∈ ]0, ε0[ and a C1 ∈ ]0,∞[ such

that, for ε ∈ ]0, ε1],

m(Γε)

infΓε aε
≤ C1,

where Γε is any of the ` = 4n + 1 intervals [0, ξ′1,ε], [ζ ′j,ε, ξ
′
j+1,ε], [ζ ′n,ε, 1], j ∈

[1. . n− 1] or else any of the intervals [ξ′j,ε, ξj,ε], [ξj,ε, ζj,ε], [ζj,ε, ζ
′
j,ε], j ∈ [1. . n].

Thus, whenever ε ∈ ]0, ε1] and v ∈ H1
per, it follows from Lemma 3.1 that

diam v(Γε) ≤ (C1bε(v, v))1/2.

The above ` intervals can be ordered to form a sequence (Ij)j∈[1..`] such that for

j ∈ [1. . `− 1] the endpoint of Ij is the initial point of Ij+1. Consequently,

diam v([0, 1]) ≤ (4n+ 1)(C1bε(v, v))1/2,

so

|v(x)| ≤ |v(y)|+ (4n+ 1)(C1bε(v, v))1/2, x, y ∈ [0, 1]

which implies

|v(x)| ≤ C2‖v‖ε, x ∈ [0, 1] ,

where C2 = 1 + (4n + 1)C
1/2
1 . These estimates prove part (a) of the lemma.

Now, let M ∈ ]0,∞[ be arbitrary and for each ε ∈ ]0, ε0[ let βε be the maximum

of all the values

M

(
m(Γε)

infΓε aε

)1/2

,

where Γε is any of the intervals [0, ξ′1,ε], [ζ ′j,ε, ξ
′
j+1,ε], [ζ ′n,ε, 1], j ∈ [1. . n− 1] or

else any of the intervals [ξ′j,ε, ξj,ε], [ζj,ε, ζ
′
j,ε], j ∈ [1. . n]. For j ∈ [1. . n− 1] it

follows from Lemma 3.1 that

sup
v∈B̃ε,M

sup
x,y∈Kj,ε

|v(x)− v(y)| ≤ 3βε.

If Γε = [0, ξ1,ε] or Γε = [ζn,ε, 1] we have

sup
v∈B̃ε,M

sup
x,y∈Γε

|v(x)− v(y)| ≤ 2βε.

Finally, since v(0) = v(1) for each v ∈ H1
per, it follows that

sup
v∈B̃ε,M

sup
x,y∈Kn,ε

|v(x)− v(y)| ≤ 4βε.

Now Assumption 2.1 implies that βε → 0 as ε→ 0. This proves part (b) of the

lemma. �

Lemma 3.4. Let (εm)m be a null sequence in ]0, ε0[. Let (um)m, (vm)m
be sequences in H1

per such that um ∈ B̃εm,M and vm ∈ B̃εm,M ′ for some M ,
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M ′ ∈ ]0,∞[ and all m ∈ N. Let (γj,m)j∈[1..n],m∈N be such that γj,m ∈ Kj,εm for

m ∈ N and j ∈ [1. . n]. Then

〈um, vm〉L2 −
n∑
j=1

Ljum(γj,m)vm(γj,m)→ 0, as m→∞.

Proof. For each m ∈ N we have∫ 1

0

umvm dx =

n∑
j=1

m(Kj,εm)um(γj,m)vm(γj,m) +

n∑
j=1

∫
[ξj,εm ,ζj,εm ]

umvm dx

+

n∑
j=1

∫
Kj,εm

(umvm − um(γj,m)vm(γj,m)) dx

=:

n∑
j=1

m(Kj,εm)um(γj,m)vm(γj,m) + T1,m + T2,m.

It follows from Lemma 3.3 that all functions um and vm are uniformly bounded

by the same constant C. Thus∣∣T1,m

∣∣ ≤ C2
n∑
j=1

(ζj,εm − ξj,εm)

and Assumption 2.1 implies that

(3.4) T1,m → 0, as m→∞.

For x ∈ Kj,εm we have

|um(x)vm(x)− um(γj,m)vm(γj,m)|

≤ |um(x)− um(γj,m)| · |vm(x)|+ |vm(x)− vm(γj,m)| · |um(γj,m)|

≤ C(|um(x)− um(γj,m)|+ |vm(x)− vm(γj,m)|).

Therefore

|T2,m| ≤ C
n∑
j=1

m(Kj,εm) sup
x∈Kj,εm

(|um(x)− um(γj,m)|+ |vm(x)− vm(γj,m)|) .

Again, Lemma 3.3 implies that

(3.5) T2,m → 0, as m→∞.

Moreover, it follows from Assumption 2.1 that m(Kj,εm)− Lj → 0, as m→∞,

for each j ∈ [1. . n]. This together with (3.4) and (3.5) implies the assertion of

the lemma. �

Corollary 3.5. Let M ′ ∈ ]0,∞[ and (εm)m be a null sequence in ]0, ε0[.

Let (vm)m and (γj,m)m, j ∈ [1. . n], be sequences such that vm ∈ B̃εm,M ′ and

γj,m ∈ Kj,εm for m ∈ N and j ∈ [1. . n]. Then for each j ∈ [1. . n],

〈ψj,εm , vm〉L2 − Ljvm(γj,m)→ 0, as m→∞.
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Proof. Lemma 3.2 and the fact that the functions um = ψj,εm , j ∈ [1. . n],

m ∈ N, are nonnegative and bounded by 1 imply that um ∈ B̃εm,M for some

constant M ∈ ]0,∞[ and for all m ∈ N. Hence the assumptions of Lemma 3.4

are satisfied. Now that lemma implies that, for each j ∈ [1. . n],∫ 1

0

ψj,εmvm dx−
n∑
l=1

Llψj,εm(γl,m)vm(γl,m)→ 0, as m→∞.

The definition of the map ψj,εm , m ∈ N, implies that ψj,εm(γl,m) = 1 if j = l

and ψj,εm(γl,m) = 0 otherwise and so

n∑
l=1

Llψj,εm(γl,m)vm(γl,m) = Ljvm(γj,m).

Passing to the limit as m→∞ we complete the proof. �

Lemma 3.6. Let ε′2 ∈ ]0, ε0[ be as in Lemma 3.3. Then, for every M ∈ ]0,∞[,

there is an ε′3 = ε′3(M) ∈ ]0, ε′2] such that v /∈W⊥ε for all v ∈ B̃ε,M with ‖v‖2 = 1

and ε ∈ ]0, ε′3]. (Here, the orthogonal complement is taken with respect to the

L2-scalar product.)

Proof. Suppose the conclusion of the lemma does not hold. Then, for some

M ∈ ]0,∞[, there exists a null sequence (εm)m in ]0, ε′2] such that for each m ∈ N
there exists a vm ∈ B̃εm,M ∩W⊥εm with with ‖vm‖2 = 1. Let m ∈ N. Hence

〈vm, ψj,εm〉L2 = 0 for all j ∈ [1. . n].

For each j ∈ [1. . n− 1] choose γj ∈ ]xj , xj+1[ and choose γn ∈ ]0, x1[∪ ]xn, 1[

independently of m ∈ N. Then there exists an m0 ∈ N such that γj ∈ Kj,εm for

all j ∈ [1. . n] and m ≥ m0. Now Corollary 3.5 implies that, for each j ∈ [1. . n],

vm(γj)→ 0, as m→∞

and so Lemma 3.3 implies that vm(x)→ 0 as m→∞ for each x ∈ ]0, 1[\
n⋃
j=1

{xj}.

Moreover, it follows from Lemma 3.3 that there exists an m1 ∈ N such that the

functions vm, for all m ≥ m0, are pointwise bounded by the same constant. This

implies that ∫ 1

0

v2
m dx→ 0 as m→∞.

However, this is a contradiction as∫ 1

0

v2
m dx = 1 for all m ∈ N. �

Lemma 3.7. The following statements hold :

(a) λn+1,ε →∞ as ε→ 0.

(b) There exists an ε′4 ∈ ]0, ε0[ and a C ′3 ∈ ]0,∞[ such that

λn,ε ≤ C ′3 for all ε ∈ ]0, ε′4].
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Proof. For each positive integer p and ε ∈ ]0, ε0[ let Up,ε be the span of the

eigenfunctions ϕl,ε, for l ∈ [1. . p]. Moreover, let U0,ε = {0} ⊂ L2. If assertion (a)

is not true, then there is a null sequence (εm)m in ]0, ε0[ such that (λn+1,εm)m
is bounded by some C ∈ ]0,∞[.

We claim that Un+1,εm ∩ W⊥εm = {0} for all m ∈ N large enough. If this

is not true, then there is a subsequence (ε1
m)m of (εm)m such that for each

m ∈ N there is a vm in Un+1,ε1m
∩W⊥ε1m with ‖vm‖L2 = 1. It easily follows that

bε1m(vm, vm) ≤ C so vm ∈ B̃ε1m,K for all m ∈ N, where K2 = C + 1. However,

this contradicts Lemma 3.6 and the claim is proved.

The claim implies that n + 1 ≤ n, a contradiction which implies the first

assertion. Let D be the set of all nonnegative integers `1 such that, for some

ε̂ ∈ ]0, ε0[ the eigenvalue family (λ`1,ε)ε∈]0,ε̂] is bounded by some C1 ∈ ]0,∞[.

Let ` be the supremum of D if D is nonempty and ` = 0 otherwise. From what

we have proved so far, we have ` ≤ n. If ` < n, then U⊥`,ε ∩Wε 6= {0} and so, for

each ε ∈ ]0, ε0[ there is a wε 6= 0 lying in U⊥`,ε ∩Wε. It follows that

λ`+1,ε = inf
w∈H1

per\{0}, w∈U⊥
`,ε

bε(w,w)

‖w‖L2

≤ bε(wε, wε)

‖wε‖L2

≤ C ′1

for all ε ∈ ]0, ε′1], where C ′1 ∈ [0,∞[ and ε′1 ∈ ]0, ε0[ are as in Lemma 3.2.

This shows in particular, that D is nonempty. Moreover, this also shows that

`+ 1 ∈ D, a contradiction proving that ` = n. Since D is nonempty and finite,

we have ` ∈ D. This proves assertion (b). �

In the sequel

(3.6)
for each ε ∈ ]0, ε0[ fix an arbitrary L2-orthonormal sequence (ϕl,ε)l
such that ϕl,ε is an eigenfunction of Aε corresponding to λl,ε, l ∈ N.

Lemma 3.8. Let (εm)m be a null sequence in ]0, ε0[ and (γj,m)m be a (double)

sequence with γj,m ∈ Kj,εm , for m ∈ N and j ∈ [1. . n]. For each i, j ∈ [1. . n],

we then have

(a) 〈ψj,εm , ϕi,εm〉L2 − Ljϕi,εm(γj,m)→ 0 as m→∞.

(b)
n∑
j=1

Ljϕi,εm(γj,m)ϕk,εm(γj,m)→ δi,k as m→∞.

Proof. This follows from Lemma 3.7, Corollary 3.5 and Lemma 3.4. �

Notation. For each ε ∈ ]0, ε0[, define Ψε : Wε → Rn by

Ψε(u) := û := (uj)j∈[1..n], for u =

n∑
j=1

ujψj,ε ∈Wε.

Consider the n× n matrix Bε = (bi,j,ε)
n
i,j=1 given by

bi,j,ε = 〈ψi,ε, ψj,ε〉L2 , for i, j ∈ [1. . n].
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Assume that

(3.7)
(αj,ε)(j,ε)∈[1..n]×]0,ε0[ is an arbitrary family such that αj,ε ∈ Kj,ε,

for (j, ε) ∈ [1. . n]× ]0, ε0[.

Let ‖ · ‖L be the norm on Rn induced by the scalar product 〈 · , · 〉L. In what

follows 〈 · , · 〉 (respectively, ‖ · ‖) denotes the canonical inner product (respec-

tively, the induced norm) on Rn. Let a, b ∈ ]0,∞[ such that

a‖z‖L ≤ ‖z‖ ≤ b‖z‖L, for all z ∈ Rn.

Lemma 3.9. Let ε′4 ∈ ]0, ε0[ be as in Lemma 3.7. There is an ε′5 ∈ ]0, ε′4]

such that for each ε ∈ ]0, ε′5], there are constants cε, Cε ∈ ]0,∞[ such that

cε‖Ψε(u)‖L ≤ ‖u‖L2 ≤ Cε‖Ψε(u)‖L, u ∈Wε.

Moreover, cε → 1, Cε → 1 as ε→ 0.

The proof is identical to the proof of [3, Lemma 3.9].

Notation. Define the n×n matrix Gε = (gi,j,ε)
n
i,j=1 by gi,j,ε = 〈ϕi,ε, ψj,ε〉L2

for i, j ∈ [1. . n] and ε ∈ ]0, ε0[. Clearly

(3.8) GεΨε(u) = (〈u, ϕi,ε〉L2)i∈[1..n], ε ∈ ]0, ε0[ , u ∈Wε.

Lemma 3.10. There exists an ε′6 ∈ ]0, ε′5] and for each k ∈ [1. . n] there exists

a family (vk,ε)ε∈]0,ε′6] such that vk,ε ∈Wε, ‖vk,ε‖L2 = 1 for ε ∈ ]0, ε′6] and

〈vk,ε, ϕi,ε〉 = 0 for i 6= k.

Moreover, if (3.7) holds, then vk,ε(αj,ε)− ϕk,ε(αj,ε)→ 0 as ε→ 0.

The proof is identical to the proof of [3, Lemma 3.10].

Lemma 3.11. Let ε′4 ∈ ]0, ε0[ be as in Lemma 3.7 and let (uε)ε∈]0,ε′4] be such

that uε ∈Wε and ‖uε‖L2 = 1 for each ε ∈ ]0, ε′4]. Then

bε(uε, uε)− b0(Ψε(uε),Ψε(uε))→ 0, as ε→ 0.

Proof. Set ûε = Ψε(uε), where uε =
n∑
j=1

ûε,jψj,ε ∈ Wε. Thus, ûε =

(ûε,j)j∈[1..n]. We also set ûε,0 = ûε,n and ψ0,ε = ψn,ε. We then have

bε(uε, uε) =

n∑
j=1

∫
[ξj,ε,ζj,ε]

aε · (u′ε)2 dx ≤
n∑
j=1

sup
[ξj,ε,ζj,ε]

aε

∫
[ξj,ε,ζj,ε]

(u′ε)
2 dx

=

n∑
j=1

sup
[ξj,ε,ζj,ε]

aε

∫
[ξj,ε,ζj,ε]

(ûε,j−1ψ
′
j−1,ε + ûε,jψ

′
j,ε)

2 dx.

Notice that

ψ′j−1,ε(x) = − 1

ζj,ε − ξj,ε
and ψ′j,ε(x) =

1

ζj,ε − ξj,ε
for x ∈ [ξj,ε, ζj,ε]
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and so

bε(uε, uε) ≤
n∑
j=1

sup
[ξj,ε,ζj,ε]

aε

ζj,ε − ξj,ε
(ûε,j − ûε,j−1)2

=

n∑
j=1

(τj + h1,j,ε)(ûε,j − ûε,j−1)2 =

n∑
j=1

τj(ûε,j − ûε,j−1)2 + h2,ε,

with h1,j,ε → 0, j ∈ [1. . n], and h2,ε → 0 as ε → 0. This follows from As-

sumption 2.1, the assumption that ‖uε‖L2 = 1, for ε ∈ ]0, ε′4], and Lemma 3.9.

Similarly, working with ‘inf’ instead of ‘sup’, we show that

bε(uε, uε) ≥
n∑
j=1

τj(ûε,j − ûε,j−1)2 + h3,ε,

with h3,ε → 0 as ε→ 0. Therefore

(3.9) bε(uε, uε)−
n∑
j=1

τj(ûε,j − ûε,j−1)2 → 0, as ε→ 0.

Now estimate (3.9) and the definition of b0 and ûε imply the assertion. �

Corollary 3.12. Let ε′6 ∈ ]0, ε0[ be as in Lemma 3.10 and k ∈ [1. . n] be

arbitrary. Then

{bε(u, u) | u ∈Wε, ‖u‖L2 = 1, u ∈ U⊥k−1,ε} 6= ∅,

{b0(Ψε(u),Ψε(u)) | u ∈Wε, ‖u‖L2 = 1, u ∈ U⊥k−1,ε} 6= ∅

for all ε ∈ ]0, ε′6]. Moreover, as ε→ 0, the following holds:

inf{bε(u, u) | u ∈Wε, ‖u‖L2 = 1, u ∈ U⊥k−1,ε }

− inf{ b0(Ψε(u),Ψε(u)) | u ∈Wε, ‖u‖L2 = 1, u ∈ U⊥k−1,ε } → 0.

Lemma 3.13. Let ε′6 ∈ ]0, ε0[ be as in Lemma 3.10 and, for each k ∈ [1. . n],

let the family (vk,ε)ε∈]0,ε′6] be also as in Lemma 3.10. Then

λk,ε−inf{b0(Ψε(u),Ψε(u)) | u ∈Wε, ‖u‖L2 = 1, u ∈ U⊥k−1,ε} → 0, as ε→ 0,

λk,ε − bε(vk,ε, vk,ε) → 0, as ε→ 0.

Proof. Lemma 3.10 implies that {b0(Ψε(u),Ψε(u)) | u ∈ Wε, ‖u‖L2 = 1,

u ∈ U⊥k−1,ε} 6= ∅ for all ε ∈ ]0, ε′6]. It follows from Lemma 3.10, choosing first

αj,ε = ξj,ε for (j, ε) ∈ [1. . n]×]0, ε0[ and then αj,ε = ζj,ε for (j, ε) ∈ [1. . n]×]0, ε0[,

that

(3.10)
vk,ε(ξj,ε)− ϕk,ε(ξj,ε) → 0 as ε→ 0,

vk,ε(ζj,ε)− ϕk,ε(ζj,ε) → 0 as ε→ 0.
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Thus

bε(ϕk,ε, ϕk,ε) ≥
n∑
j=1

∫
[ξj,ε,ζj,ε]

aε · (ϕ′k,ε)2 dx

≥
n∑
j=1

inf
[ξj,ε,ζj,ε]

aε

∫
[ξj,ε,ζj,ε]

(ϕ′k,ε)
2 dx

≥
n∑
j=1

inf
[ξj,ε,ζj,ε]

aε

ζj,ε − ξj,ε

(∫
[ξj,ε,ζj,ε]

ϕ′k,ε dx

)2

=

n∑
j=1

inf
[ξj,ε,ζj,ε]

aε

ζj,ε − ξj,ε
(ϕk,ε(ζj,ε)− ϕk,ε(ξj,ε))2.

Define h1,j,ε, h2,j,ε and h3,j,ε, j ∈ [1. . n], such that

ϕk,ε(ξj,ε) = vk,ε(ξj,ε) + h1,j,ε, ϕk,ε(ζj,ε) = vk,ε(ζj,ε) + h2,j,ε,

inf
[ξj,ε,ζj,ε]

aε

ζj,ε − ξj,ε
= τj + h3,j,ε.

Assumption 2.1 and (3.10) imply that h1,j,ε → 0, h2,j,ε → 0 and h3,j,ε → 0 as

ε→ 0. Therefore

bε(ϕk,ε, ϕk,ε) ≥
n∑
j=1

(τj + h3,j,ε)(vk,ε(ζj,ε) + h2,j,ε − vk,ε(ξj,ε)− h1,j,ε)
2

=

n∑
j=1

τj(vk,ε(ζj,ε)− vk,ε(ξj,ε))2 + h4,ε

=

n∑
j=1

τj(v̂k,ε,j − v̂k,ε,j−1)2 + h4,ε,

where h4,ε → 0 as ε → 0. Here, we write v̂k,ε = Ψε(vk,ε) and v̂k,ε,l is the l-th

component of v̂k,ε ∈ Rn. We also set v̂k,ε,0 = v̂k,ε,n. By Lemma 3.11,

n∑
j=1

τj(v̂k,ε,j − v̂k,ε,j−1)2 = b0(Ψε(vk,ε),Ψε(vk,ε)) = bε(vk,ε, vk,ε) + h5,ε

with h5,ε → 0 as ε→ 0. Thus,

(3.11) bε(ϕk,ε, ϕk,ε)− h6,ε ≥ bε(vk,ε, vk,ε)

with h6,ε → 0 as ε → 0. For ε ∈ ]0, ε0[ small enough and for all k ∈ [1. . n] we

have

bε(ϕk,ε, ϕk,ε) = inf{bε(ϕ,ϕ) | ϕ ∈ H1
per, ‖ϕ‖L2 = 1, ϕ ∈ U⊥k−1,ε}

≤ inf{ bε(u, u) | u ∈Wε, ‖u‖L2 = 1, u ∈ U⊥k−1,ε}.
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It follows from (3.11) that

bε(ϕk,ε, ϕk,ε)− h6,ε ≥ bε(vk,ε, vk,ε)

≥ inf{bε(u, u) | u ∈Wε, ‖u‖L2 = 1, u ∈ U⊥k−1,ε}.

Since bε(ϕk,ε, ϕk,ε) = λk,ε, we have

λk,ε − inf{bε(u, u) | u ∈Wε, ‖u‖L2 = 1, u ∈ U⊥k−1,ε} → 0, as ε→ 0,

λk,ε − bε(vk,ε, vk,ε)→ 0, as ε→ 0.

Now Corollary 3.12 completes the proof. �

Lemma 3.14. Let ε′6 ∈ ]0, ε0[ be as in Lemma 3.10. Let (εm)m be a null

sequence in ]0, ε′6] and suppose that there exists a sequence (zl)l∈[1..n] in Rn such

that for each l ∈ [1. . n] and j ∈ [1. . n],

sup
x∈Kj,εm

|ϕl,εm(x)− zl,j | → 0, as m→∞.

Here zl = (zl,j)j∈[1..n] ∈ Rn. Then (zl)l∈[1..n] is an 〈 · , · 〉L-orthonormal se-

quence. Define Y0 = {0} ⊂ Rn and for each p ∈ [1. . n], let Yp be the span of the

vectors zl, for l ∈ [1. . p]. Moreover, let Y ⊥p , p ∈ [0. . n], be the 〈 · , · 〉L-orthogonal

complement of Yp. Then, for each k ∈ [1. . n],

(3.12) inf{b0(Ψεm(u),Ψεm(u)) | u ∈Wεm , ‖u‖L2 = 1, u ∈ U⊥k−1,εm}

− inf{b0(y, y) | y ∈ Rn, ‖y‖L = 1 and y ∈ Y ⊥k−1} → 0,

as m→∞. Moreover, λk,εm → b0(zk, zk), as m→∞.

The proof is identical to the proof of [3, Lemma 3.14].

Lemma 3.15. Let (εm)m be a null sequence in ]0, ε0[ and suppose that there

exists a sequence (zl)l∈[1..n] in Rn such that for all l ∈ [1. . n] and j ∈ [1. . n],

sup
x∈Kj,εm

|ϕl,εm(x)− zl,j | → 0, as m→∞.

For each k ∈ [1. . n] consider the following statement (Pk):

(Pk) For each l ∈ [1. . k], zl is an eigenvector corresponding to λl,0.

Then (Pk) holds for each k ∈ [1. . n]. Moreover, for each k ∈ [1. . n],

λk,εm → λk,0, as m→∞.

The proof is identical to the proof of [3, Lemma 3.15].

Lemma 3.16. For every null sequence (εm)m in ]0, ε0[ there are a subsequence

(ε1
m)m of (εm)m and a sequence (zl)l∈[1..n] in Rn such that for each l ∈ [1. . n]

and j ∈ [1. . n],

sup
x∈Kj,ε1m

∣∣ϕl,ε1m(x)− zl,j
∣∣→ 0, as m→∞.
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The proof is identical to the proof of [3, Lemma 3.16].

Proof of Theorem 2.5. Part (a) of the theorem was established in Lem-

ma 3.7. Now Lemmas 3.16, 3.14 and statement (Pn) from Lemma 3.15 shows

part (c) of the theorem. The arbitrariness of the sequence (εm)m in part (c) and

Lemma 3.14 imply part (b) of the theorem. �

4. Conley index continuation for scalar reaction-diffusion equations

with periodic boundary conditions

In this section we will extend the Conley index continuation results from [2]

and [3] to the present more general case. We assume the reader’s familiarity with

the papers [2], [3]. Moreover, for the rest of this section, assume Assumption 2.1

for x0 = 0 and xn+1 = 1, with the ensuing definitions and notation of Section 2.

Let ε0 ∈ ]0,∞] be as in Assumption 2.1. For each ε ∈ ]0, ε0[ define Hε = L2,

〈 · , · 〉Hε = 〈 · , · 〉L2 and Aε as in (2.2). Define also H0 = Rn, 〈 · , · 〉H0 = 〈 · , · 〉L
and A0 as in (2.4). Notice that for each ε ∈ ]0, ε0[ it follows that Hε

1 = H1
per and

| · |Hε1 = ‖ · ‖ε. Moreover, H0
1 = Rn and | · |H0

1
= ‖ · ‖0.

To prove the existence of an embedding family (Jε)ε∈]0,ε̃], for some ε̃ ∈ ]0, ε0[,

let us introduce some notation and establish some preliminary estimates.

Define B to be the set of all 〈 · , · 〉L-orthonormal sequences Z = (zl)l∈[1..n]

such that A0zl = λl,0zl, l ∈ [1. . n]. For each Z = (zl)l∈[1..n] ∈ B and ε ∈ ]0, ε0[

define Iε,Z : Rn → Hε
1 = H1

per by

Iε,Z(u) =

n∑
p=1

〈u, zp〉L · ϕp,ε, u ∈ Rn.

It follows that Iε,Z is R-linear. Suppose that Iε,Z(u) = 0. Since ϕp,ε, p ∈ [1. . n]

is linearly independent, we have 〈u, zp〉L = 0 for all p ∈ [1. . n]. Recall that Z is

an 〈·, ·〉L-orthonormal basis of Rn. Therefore, u =
n∑
p=1
〈u, zp〉Lzp = 0. Thus Iε,Z

is injective.

Let u ∈ Rn and v = Iε,Z(u) ∈ Hε
1 . We have

‖v‖2ε =

∞∑
l=1

(λl,ε + 1)|〈v, ϕl,ε〉L2 |2

so a quick calculation shows that

‖v‖2ε =

n∑
l=1

(λl,ε + 1)|〈u, zl〉L|2.

Moreover,

‖u‖20 =

n∑
l=1

(λl,0 + 1)|〈u, zl〉L|2.
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Now it follows from Lemma 3.7 and Theorem 2.5 that there are a constant

C ∈ ]1,∞[ and an ε′7 ∈ ]0, ε′6] such that 0 ≤ λl,ε + 1 ≤ C2 and 0 ≤ λl,0 + 1 ≤ C2,

λl,ε + 1 ≤ C2(λl,0 + 1) and λl,0 + 1 ≤ C2(λl,ε + 1) for l ∈ [1. . n] and ε ∈ ]0, ε′7].

Therefore

(4.1) ‖u‖20 ≤ C2‖Iε,Z(u)‖2ε and ‖Iε,Z(u)‖2ε ≤ C2‖u‖20

for all u ∈ Rn, Z ∈ B and ε ∈ ]0, ε′7]. For each Z = (zl)l∈[1..n] ∈ B and ε ∈ ]0, ε0[

define

(4.2) Tε,Z := sup
l,j∈[1..n]

sup
x∈Kj,ε

|ϕl,ε(x)− zl,j |.

Note that

(4.3) sup
l,j∈[1..n]

|zl,j−z′l,j | ≤ Tε,Z+Tε,Z′ , Z = (zl)l∈[1..n], Z ′ = (z′l)l∈[1..n] ∈ B.

The set B is compact in (Rn)n and, for each ε ∈ ]0, ε0[, the map Tε : B → R,

Z 7→ Tε,Z is continuous, so there is a

(4.4) Z(ε) = (z(ε)l)l∈[1..n] ∈ B

such that

(4.5) Tε,Z(ε) = inf
Z∈B

Tε,Z .

Set

(4.6) Jε = Iε,Z(ε), ε ∈ ]0, ε0[ .

Lemma 4.1. For every k ∈ N there exists an ε′′ = ε′′(k) ∈ ]0, ε0[ such that,

for all ε ∈ ]0, ε′′], there exists a Z ∈ B with Tε,Z ≤ 1/2k.

Proof. Suppose the conclusion does not hold. Then there exists a k0 ∈ N
such that for all ε′′ ∈ ]0, ε0[ there exists an ε ∈ ]0, ε′′] such that Tε,Z > 1/2k0 , for

all Z ∈ B. Thus, there exists a sequence (εm)m in ]0, ε0[ with εm → 0 as m→ 0

such that for all Z ∈ B

(4.7) Tεm,Z >
1

2k0
, for all m ∈ N.

Now, Lemma 3.16 and Lemma 3.15 imply that there are a subsequence (ε1
m)m of

(εm)m and a Z ∈ B such that Tε1m,Z → 0, as m→∞. This contradicts (4.7). �

Lemma 4.1 and formula (4.5) imply that

(4.8) Tε,Z(ε) → 0 as ε→ 0.

In the next result we will establish, for the present case, the validity of

condition (FSpec) introduced in [2].

Theorem 4.2. The family (Hε, 〈 · , · 〉Hε , Aε, Jε)ε∈[0,ε′7] satisfies (FSpec).
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Proof. It is clear that (1) and (2) of condition (FSpec) hold. Inequali-

ties (4.1) imply (3) and (4) of condition (FSpec).

For every ε ∈ ]0, ε′7], let (λl,ε)l be the repeated sequence of eigenvalues of Aε
and (ϕl,ε)l be a corresponding Hε-orthonormal sequence of eigenfunctions. Fur-

thermore, let (λl,0)l∈[1..n] be the repeated sequence of eigenvalues of A0. Let

(εm)m be an arbitrary null sequence in ε ∈ ]0, ε′7].

It follows from Theorem 2.5 that (5)(a) and (5)(b) of condition (FSpec)

hold. To complete the proof we need to show that (5)(c) and (5)(d) of condition

(FSpec) also hold. Lemmas 3.15 and 3.16 imply that there are a subsequence

(ε1
m)m of (εm)m and a Z̃ = (zl)l∈[1..n] ∈ B such that

(4.9) Tε1m,Z̃
→ 0, as m→∞.

Formulas (4.3), (4.9) and (4.8) imply that

(4.10) sup
l,j∈[1..n]

|z(ε1
m)l,j − zl,j | → 0, as m→∞.

Let l ∈ [1. . n] be arbitrary. We have

ϕl,ε1m − Jε1m(zl) = ϕl,ε1m − Iε1m,Z(ε1m)(zl)

=

n∑
p=1

δl,pϕp,ε1m −
n∑
p=1

〈zl, z(ε1
m)p〉Lϕp,ε1m

=

n∑
p=1

(δl,p − 〈zl, z(ε1
m)p〉L)ϕp,ε1m .

Thus

‖ϕl,ε1m − Jε1m(zl)‖ε1m ≤
n∑
p=1

|δl,p − 〈zl, z(ε1
m)p〉L|‖ϕp,ε1m‖ε1m

=

n∑
p=1

|δl,p − 〈zl, z(ε1
m)p〉L|(λp,ε1m + 1)1/2.

Since, by estimate (4.10), 〈zl, z(ε1
m)p〉L → δl,p and for each p ∈ [1. . n], the

sequence (λp,ε1m + 1)m stays bounded as m→∞, we see that (5)(c) of condition

(FSpec) holds. For u ∈ Rn = H0
1 and m ∈ N we have

〈Jε1mu, ϕl,ε1m〉Hε1m = 〈Jε1mu, ϕl,ε1m〉L2

=

n∑
p=1

〈u, z(ε1
m)p〉L〈ϕp,ε1m , ϕl,ε1m〉L2 = 〈u, z(ε1

m)l〉L.

Thus 〈Jε1mu, ϕl,ε1m〉Hε1m → 〈u, zl〉H0 as m → ∞. Therefore (5)(d) of condition

(FSpec) holds. �

For the rest of this section assume the following nonlinear convergence hy-

pothesis:
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Assumption 4.3. (a) For each ε ∈ [0, ε0[ the function gε : [0, 1]× R→ R is

continuous and such that for each M ∈ ]0,∞[ there exists a LM ∈ ]0,∞[ such

that for |s| ≤M and |s′| ≤M

|gε(x, s)− gε(x, s′)| ≤ LM |s− s′|, for all x ∈ [0, 1], ε ∈ [0, ε0[.

(b) There is an ε′8 ∈ ]0, ε0[ such that

sup
ε∈[0,ε′8]

sup
x∈[0,1]

|gε(x, 0)| <∞.

(c) For each x ∈ [0, 1] and s ∈ R, gε(x, s)→ g0(x, s) as ε→ 0.

Let ε ∈ ]0, ε0[. Note that each u ∈ H1
per is (uniquely represented by) a con-

tinuous function. So the map ĝε(u) : [0, 1]→ R defined by

ĝε(u)(x) = gε(x, u(x)), x ∈ [0, 1] ,

is continuous and bounded. Moreover, ĝε(u) is Lebesgue measurable and so it

lies in L2(0, 1). Therefore for each ε ∈ ]0, ε0[ we obtain a well defined map

fε : H1
per → L2 given by fε(u) = ĝε(u), u ∈ H1

per. Moreover define f0 : Rn → Rn

by f0(u) = (f0(u)j)j∈[1..n], where

f0(u)j =
1

Lj

∫
Kj

g0(x, uj) dx,

u = (uj)j∈[1..n], for j ∈ [1. . n].

In the next result we will establish, for the present case, the validity of

condition (Conv) introduced in [2].

Theorem 4.4. Let (Hε, 〈 · , · 〉Hε , Aε, Jε)ε∈[0,ε′7] be as Theorem 4.2. There

exists an ε′9 ∈ ]0, ε′7] such that the family (fε)ε∈[0,ε′9] satisfies condition (Conv).

Proof. Let ε′9 = min{ε′2, ε′7, ε′8}. Part (1) of condition (Conv) has just been

proved. Let M ∈ ]0,∞[ be arbitrary. Let ε ∈ ]0, ε′9] and u, v ∈ Hε
1 be such that

|u|Hε1 , |v|Hε1 ≤M . It follows from Lemma 3.3 that

sup
x∈[0,1]

|u(x)| ≤ C ′2M and sup
x∈[0,1]

|v(x)| ≤ C ′2M.

Hence∫ 1

0

|gε(x, u(x))− gε(x, v(x))|2 dx ≤ L2
M̃

∫ 1

0

|u(x)− v(x)|2 dx ≤ L2
M̃
‖u− v‖2ε,

where M̃ = C ′2M . This implies that

|fε(u)− fε(v)|Hε ≤ LM̃ |u− v|Hε1 , for all ε ∈ ]0, ε′9].
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Moreover, let u, v ∈ H0
1 satisfy |u|H0

1
, |v|H0

1
≤M .

‖f0(u)− f0(v)‖2L =

n∑
j=1

Lj(f0(u)j − f0(v)j)
2

=

n∑
j=1

Lj
1

L2
j

(∫
Kj

(g0(x, uj)− g0(x, vj)) dx

)2

≤
n∑
j=1

1

Lj

(∫
Kj

|g0(x, uj)− g0(x, vj)| dx
)2

≤
n∑
j=1

L2
M ′

Lj

(∫
Kj

|uj − vj | dx
)2

≤ L2
M ′

n∑
j=1

Lj |uj − vj |2 = L2
M ′‖u− v‖2L ≤ L2

M ′‖u− v‖20,

where M ′ = M
(

min
j∈[1..n]

Lj

)−1/2

. This implies that

|f0(u)− f0(v)|H0 ≤ LM ′ |u− v|H0
1
.

It follows that part (3) of condition (Conv) holds.

Let C be as in formula (4.1). Let ε ∈ ]0, ε′9] be arbitrary. Then

‖fε(Jε(u))‖L2 ≤ ‖fε(Jε(u))− fε(0)‖L2 + ‖fε(0)‖L2

≤ LM‖Jε(u)‖ε + ‖fε(0)‖L2

≤ LMC‖u‖L + ‖fε(0)‖L2 ≤ LMC‖u‖L +K,

where M = C‖u‖L and K = sup
ε∈[0,ε′9]

supx∈[0,1] |gε(x, 0)|. This implies that state-

ment (4) of condition (Conv) holds.

To complete the proof we need to show that (2) of condition (Conv) holds.

To this end we will use [2, Theorem 2.2], which holds in the present case in view

of Theorem 4.2. We claim that:

Let u ∈ H0
1 = Rn and t ∈ ]0,∞[. Then

(4.11) lim
ε→0+

∣∣e−tAεfε(Jεu)− Jε(e−tA0f0(u))
∣∣
Hε1

= 0.

Let (εm)m be a null sequence in ]0, ε′9]. Notice that Jεmu ∈ Hεm for all m ∈ N.

It follows from (4) of condition (Conv) that

(4.12) sup
m∈N
|fεm(Jεmu)|Hεm <∞.

Theorem 2.5 implies there are a subsequence (ε1
m)m of (εm)m and a sequence

Z̃ = (zl)l∈[1..n] in Rn, where zl is an eigenvector corresponding to λl,0, such that

(4.13) Tε1m,Z̃
= sup
l,j∈[1..n]

sup
x∈Kj,ε1m

|ϕl,ε1m(x)− zl,j | → 0, as m→∞.
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Let l ∈ [1. . n]. We will show that〈
fε1m(Jε1mu), ϕl,ε1m

〉
L2 → 〈u, zl〉L as m→∞.

For each m ∈ N we have〈
fε1m(Jε1mu), ϕl,ε1m

〉
=

∫ 1

0

gε1m(x, (Jε1mu)(x))ϕl,ε1m(x) dx =:

n∑
j=1

∫
Kj

Tj(x) dx,

where Tj(x) = gε1m
(
x, (Jε1mu)(x)

)
ϕl,ε1m(x), x ∈ Kj , j ∈ [1. . n]. For m ∈ N,

x ∈ Kj and j ∈ [1. . n] we have

Tj(x) =
(
gε1m(x, (Jε1mu)(x))− gε1m(x, uj)

)
ϕl,ε1m(x)

+ gε1m(x, uj)
(
ϕl,ε1m(x)−zl,j

)
+
(
gε1m(x, uj)−g0(x, uj)

)
zl,j + g0(x, uj)zl,j

=: Sj1,m(x) + Sj2,m(x) + Sj3,m(x) + Sj4,m(x).

Let M ∈ ]0,∞[ be a positive constant such that for all ε ∈ ]0, ε′9], j ∈ [1. . n],

x ∈ [0, 1] and m ∈ N

|Jε(u)(x)| ≤M, |ϕl,ε(x)| ≤M,

|uj | ≤M, |gε(x, uj)| ≤M.

Therefore,

|Sj1,m(x)| ≤ LM |Jε1mu(x)− uj |M, for all j ∈ [1. . n], x ∈ [0, 1] and m ∈ N,

|Sj2,m(x)| ≤M |ϕl,ε1m(x)− zl,j |, for all j ∈ [1. . n], x ∈ [0, 1] and m ∈ N.

Recall that Jε1m = Iε1m,Z(ε1m). Therefore

Jε1mu(x) =

n∑
p=1

〈u, z(ε1
m)p〉Lϕp,ε1m(x), for x ∈ [0, 1] and m ∈ N.

Let j ∈ [1. . n]. Since uj =
n∑
p=1
〈u, zp〉Lzp,j we obtain

Jε1mu(x)−uj =

n∑
p=1

(〈u, z(ε1
m)p〉L−〈u, zp〉L)ϕp,ε1m(x)+

n∑
p=1

〈u, zp〉L(ϕp,ε1m(x)−zp,j).

It follows from (4.3), (4.8) and (4.13) that

sup
x∈Kj,ε1m

|Jε1mu(x)− uj | → 0, as m→∞ and sup
m∈N

sup
x∈Kj

|Jε1mu(x)− uj | <∞.

Since m(Kj \Kj,ε1m
)→ 0 as m→∞ it follows that∫

Kj

Sj1,m(x) dx→ 0, as m→∞.

Similarly we show that

sup
x∈Kj,ε1m

|Sj2,m(x)| → 0 as m→∞ and sup
m∈N

sup
x∈Kj

|Sj2,m(x)| <∞.
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Hence ∫
Kj

Sj2,m(x) dx→ 0 as m→∞.

Since gε(x, s)→ g0(x, s) as ε→ 0 and

sup
m∈N

sup
x∈Kj

|gε1m(x, uj)| <∞,

the Lebesgue Dominated Convergence Theorem implies that∫
Kj

Sj3,m(x) dx→ 0 as m→∞.

Finally ∫
Kj

Sj4,m(x) dx =

∫
Kj

g0(x, uj)zl,j dx = Ljf0(u)jzl,j .

Thus
n∑
j=1

∫
Kj

Sj4,m(x) dx = 〈f0(u), zl〉L

and so 〈
fε1m(Jε1mu), ϕl,ε1m

〉
L2 → 〈f0(u), zl〉L as m→∞.

This together with (4.12) and [2, Theorem 2.2] imply that∣∣e−tAεm fεm(Jεmu)− Jεm(e−tA0f0(u))
∣∣
Hεm1

→ 0 as m→∞.

This proves claim (4.11) and completes the proof. �

For each ε ∈ ]0, ε′9], consider the abstract parabolic equation

(4.14) u̇ = −Aεu+ fε(u)

on H1
per. This equation generates a local semiflow πε on H1

per. Equation (4.14)

is an abstract formulation of the periodic boundary value problem

(Eε,P)

ut = (aεux)x + gε(x, u) for 0 < x < 1, t > 0,

u(t, 0) = u(t, 1) for t ≥ 0.

Moreover, we may also consider the system of ordinary differential equations

(4.15) ż = −A0z + f0(z)

on Rn. This system generates a local (semi)flow π0 on Rn. For ε ∈ ]0, ε′9], let

Qε : Hε
1 → Hε

1 be the Hε
1 -orthogonal projection of Hε

1 onto (its closed subspace)

Jε(H
0
1 ). Moreover, let Rε : Jε(H

0
1 )→ H0

1 be the inverse of Jε : H0
1 → Jε(H

0
1 ).

We can now state the following Conley index continuation principle:
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Theorem 4.5. Let N be a closed and bounded isolating neighbourhood of an

invariant set S0 relative to π0. For ε ∈ ]0, ε′9] and, for every η ∈ ]0,∞[, set

Nε,η := {u ∈ Hε
1 | RεQεu ∈ N and |(I −Qε)u|Hε1 ≤ η}

and Sε,η := Invπε(Nε,η) i.e. Sε,η is the largest πε-invariant set in Nε,η. Then,

for every η ∈ ]0,∞[, there exists an εc = εc(η) ∈ ]0, ε′9] such that, for every

ε ∈ ]0, εc], the set Nε,η is a strongly admissible isolating neighbourhood of Sε,η
relative to πε and

h(πε, Sε,η) = h(π0, S0).

Here, as usual, h(π, S) denotes the Conley index of an isolated invariant set S

relative to a local semiflow π. Furthermore, for every η ∈ ]0,∞[, the family

(Sε,η)ε∈[0,εc(η)] of invariant sets, where S0,η = S0, is upper semicontinuous at

ε = 0 with respect to the family | · |Hε1 of norms i.e.

lim
ε→0+

sup
w∈Sε,η

inf
u∈S0

|w − Jεu|Hε1 = 0.

The family (Sε,η)ε∈]0,εc(η)] is asymptotically independent of η, i.e whenever η1

and η2 ∈ ]0,∞[ then there is an ε′ ∈ ]0,min(εc(η1), εc(η2))] such that Sε,η1 =

Sε,η2 for ε ∈ ]0, ε′].

Proof. This is an application of the abstract result [2, Theorem 2.4] using

Theorems 4.2 and 4.4. �

Remark 4.6. Note that

sup
ε∈]0,εc(η)]

sup
w∈Nε,η

|w|Hε1 <∞ and sup
ε∈]0,εc(η)]

sup
u∈N
|Jεu|Hε1 <∞.

In particular, by Lemma 3.3, we also have that

(4.16) lim
ε→0+

sup
w∈Sε,η

inf
u∈S0

|w − Jεu|L∞ = 0.

The embedding Jε, ε ∈ ]0, ε′9], is somewhat artificial. A more natural em-

bedding can be defined by the map

Θ: Rn → L∞, u = (uj)j∈[1..n] 7→
n∑
j=1

uj1Kj .

This map is clearly linear injective. Note that

(4.17) u =

n∑
p=1

〈u, z(ε)p〉Lz(ε)p, u ∈ Rn and ε ∈ ]0, ε′9].

It follows that

Θu(x) := (Θu)(x) = uj for j ∈ [1. . n] and x ∈ Kj,ε,
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so

(4.18) Jεu(x)−Θu(x) =

n∑
p=1

〈u, z(ε)p〉L(ϕp,ε(x)− z(ε)p,j)

and so

(4.19) sup
j∈[1..n]

sup
x∈Kj,ε

|Jεu(x)−Θu(x)| ≤ n|u|LTε,Z(ε).

Proposition 4.7. Under the assumptions of Theorem 4.5 the following upper

semicontinuity results hold:

(4.20) lim
ε→0+

sup
w∈Sε,η

inf
u∈S0

sup
j∈[1..n]

sup
x∈Kj,ε

|w(x)−Θu(x)| = 0

and, for all r ∈ [1,∞[,

(4.21) lim
ε→0+

sup
w∈Sε,η

inf
u∈S0

|w −Θu|Lr = 0.

Proof. For w ∈ Sε,η and u ∈ S0 we have

sup
j∈[1..n]

sup
x∈Kj,ε

|w(x)−Θu(x)|(4.22)

≤ sup
j∈[1..n]

sup
x∈Kj,ε

|w(x)− Jεu(x)|+ sup
j∈[1..n]

sup
x∈Kj,ε

|Jεu(x)−Θu(x)|

≤ sup
j∈[1..n]

sup
x∈Kj,ε

|w(x)− Jεu(x)|+ nCNTε,Z(ε)

≤ |w − Jεu|L∞ + nCNTε,Z(ε),

where CN = sup
u∈N
|u|L <∞. Thus

(4.23) sup
w∈Sε,η

inf
u∈S0

sup
j∈[1..n]

sup
x∈Kj,ε

|w(x)−Θu(x)|

≤ nCNTε,Z(ε) + sup
w∈Sε,η

inf
u∈S0

|w − Jεu|L∞ ,

so (4.20) follows from (4.16) and (4.8). Now estimate (4.21) follows from esti-

mate (4.20) and Remark 4.6. �

Finally, we have the following homology index braid continuation principle:

Theorem 4.8. Assume the hypotheses of Theorem 4.5 and for every η ∈
]0,∞[ let εc(η) ∈ ]0, ε′9] be as in that theorem. Let (P,≺) be a finite poset. Let

(Mp,0)p∈P be a ≺-ordered Morse decomposition of S0 relative to π0. For each

p ∈ P , let Vp ⊂ N be closed in Rn and such that

Mp,0 = Invπ0(Vp) ⊂ IntH0
1
(Vp).

(Such sets Vp, p ∈ P , exist.) For ε ∈ ]0, ε′9], for every η ∈ ]0,∞[ and p ∈ P set

Mp,ε,η := Invπε(Vp,ε,η), where

Vp,ε,η := {u ∈ Hε
1 | RεQεu ∈ Vp and |(I −Qε)u|Hε1 ≤ η }.
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Then, for every η ∈ ]0,∞[, there is an ε̃ = ε̃(η) ∈ ]0, εc(η)] such that for every

ε ∈ ]0, ε̃] and p ∈ P , Mp,ε,η ⊂ IntHε1 (Vp,ε,η) and the family (Mp,ε,η)p∈P is a ≺-

ordered Morse decomposition of Sε,η relative to πε and the homology index braids

of (π0, S0, (Mp,0)p∈P ) and (πε, Sε,η, (Mp,ε,η)p∈P )), ε ∈ ]0, ε̃], are isomorphic and

so they determine the same collection of C-connection matrices. For each p ∈ P ,

the family (Mp,ε,η)ε∈[0,ε̃(η)], where Mp,0,η = Mp,0, is upper semicontinuous at

ε = 0 with respect to the family | · |Hε1 of norms and the family (Mp,ε,η)ε∈]0,ε̃(η)]

is asymptotically independent of η.

Proof. This is an application of the abstract result [2, Theorem 2.5] using

Theorems 4.2 and 4.4. �

Remark 4.9. Of course, the analogue of Proposition 4.7 holds for each of

the families (Mp,ε,η)ε∈[0,ε̃(η)].

Appendix

Let α, β ∈ R be arbitrary with α < β. Let H1
per(α, β) be the set of all ϕ ∈

H1(α, β) with u(α) = u(β), where u = uϕ ∈ C([α, β]) is the unique continuous

representative of ϕ.

Let a : [α, β] → R be continuous and positive. Define the bilinear form

b = ba : H1
per(α, β)×H1

per(α, β)→ R by

(ϕ,ψ) 7→
∫

]α,β[

aϕ′ψ′ dx.

Define D = Db be the set of all ϕ ∈ H1
per(α, β) for which there is a w = wϕ ∈

L2(α, β) such that

b(ϕ,ψ) = 〈w,ψ〉L2(α,β) for all ψ ∈ H1
per(α, β).

Then, for ϕ ∈ D the element w = wϕ is uniquely defined and writing Aϕ =

w we obtain a map A : D → L2(α, β), called the map defined by the pair

(b, 〈 · , · 〉L2(α,β)) and denote D by D(A).

It is easy to prove that D is the set of all ϕ ∈ H1
per(α, β) such that aϕ′ ∈

H1
per(α, β) and then Aϕ = −(aϕ′)′.

Moreover, if a(α) = a(β), then the following conditions are equivalent for

each ϕ ∈ H1(α, β):

(1) ϕ ∈ D and Aϕ has a continuous representative ŵ.

(2) The continuous representative u of ϕ lies in C1([α, β]) and in classical

sense, u(α) = u(β), u′(α) = u′(β) and (au′)′(x) = −ŵ(x) for all x ∈
[α, β].

This follows by an application of [1, Theorem 8.2].
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