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Lp-PULLBACK ATTRACTORS

FOR NON-AUTONOMOUS REACTION-DIFFUSION

EQUATIONS WITH DELAYS

Kaixuan Zhu — Yongqin Xie — Feng Zhou

Abstract. In this paper, we consider the non-autonomous reaction-

diffusion equations with hereditary effects and the nonlinear term f sa-

tisfying the polynomial growth of arbitrary order p− 1 (p ≥ 2). The delay
term may be driven by a function with very weak assumptions, namely,

just measurability. We extend the asymptotic a priori estimate method

(see [29]) to our problem and establish a new existence theorem for the
pullback attractors in CLp(Ω) (p > 2) (see Theorem 2.12), which general-

izes the results obtained in [12].

1. Introduction

Delay differential equations (DDE for short) are considered as mathematical

models to describe the dynamics of events occurring in the past. For this reason

DDE are receiving extensive attention and are widely applied to describe physical

and chemical processes, engineering systems, biological and/or communication

systems, etc. (see [18]). In the field of mathematics, one pays much attention

to the well-posedness and long-time behaviour of solutions for the DDE. For the

well-posedness of solutions and dynamical behaviour about DDE, there exists
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rich literature, see for instance [3], [4], [8]–[17], [19], [20], [23], [24], [27], [28] and

references therein.

Now we state our problem properly. Let Ω ⊂ RN (N ≥ 3) be a bounded

domain with smooth boundary, we consider the asymptotic behaviour of the

solutions for the following reaction-diffusion equation with delays:

(1.1)


∂tu−∆u = f(u) + g(t, ut) + k(t) in Ω× (τ,∞),

u(x, t) = 0 on ∂Ω× (τ,∞),

u(x, τ + θ) = φ(x, θ) for x ∈ Ω, θ ∈ [−h, 0],

where τ ∈ R, g is a operator acting on the solutions containing some hereditary

characteristic (assumptions on g are given below), k( · ) ∈ L2
loc(R;L2(Ω)) is the

time-dependent external force term, φ ∈ C([−h, 0];L2(Ω)) is the initial datum,

h(> 0) is the length of the delay effects, and for each t ≥ τ , we denote by ut the

function defined in [−h, 0] with ut(θ) = u(t+ θ) for θ ∈ [−h, 0].

We will denote by CX the Banach space C([−h, 0];X), equipped with the

sup-norm. For an element u ∈ CX , its norm will be written as

‖u‖CX = max
t∈[−h,0]

‖u(t)‖X .

As for the operator g, similarly as in [12], we will assume that g( · , · ) : R ×
CL2(Ω) → L2(Ω), and:

(I) for all ξ ∈ CL2(Ω), the function R 3 t 7→ g(t, ξ) ∈ L2(Ω) is measurable;

(II) g(t, 0) = 0 for all t ∈ R;

(III) there exists Lg > 0 such that for all t ∈ R and ξ, η ∈ CL2(Ω), it holds

‖g(t, ξ)− g(t, η)‖2 ≤ Lg‖ξ − η‖CL2(Ω)
.

For the nonlinearity f ∈ C(R;R), we make the following classical assump-

tions (e.g. see [1], [25], [26]):

(f(u)− f(v))(u− v) ≤ l(u− v)2,(1.2)

−c0 − c1|u|p ≤ f(u)u ≤ c0 − c2|u|p, p ≥ 2(1.3)

for some positive constants c0, c1, c2 and all u, v ∈ R.

For the non-autonomous reaction-diffusion equations with delays, in [12], the

authors have obtained the well-posedness of solutions by applying the Faedo–

Galerkin methods. Then, they have verified the existence of the pullback attrac-

tors in CL2(Ω) by employing the energy methods (see [2] for details).

In this paper, we consider the existence of the pullback attractors in CLp(Ω)

(p > 2) for the non-autonomous reaction-diffusion equations with delays. For our

problem, we will confront two main difficulties when verifying the compactness

of the process {U(t, τ)}t≥τ . One difficulty is that the nonlinearity f satisfies the

polynomial growth of arbitrary order p− 1 (p ≥ 2), which leads to the fact that
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the Sobolev embedding is no longer compact. The other difficulty is that our

problem contains delay term g(t, ut), which makes CX as the phase space rather

than X. In the Banach space CX , the already existing methods and techniques

for verifying the compactness of the process {U(t, τ)}t≥τ are no longer valid. In

order to overcome these difficulties, we extend the asymptotic a priori estimate

method (see [29]) to our problem and establish a new existence theorem for the

pullback attractors in CLp(Ω) (p > 2) (see Theorem 2.12), which generalizes the

results obtained in [12].

The outline of the paper is as follows. In Section 2, we give some notions

and results about pullback attractors and establish the existence theorem for the

pullback attractors in CLp(Ω) (p > 2); In Section 3, we verify the existence of the

pullback attractors in CLp(Ω) (p > 2) for the process {U(t, τ)}t≥τ generated by

equation (1.1) by applying the existence theorem established in Section 2 (see

Theorems 3.7 and 3.8).

2. Preliminaries and abstract results

2.1. Preliminaries. In this subsection, we first give some basic notions and

abstract results about pullback attractors (see [5], [6], [7] for details).

Let {U(t, τ)}t≥τ be a process (or a two-parameter semigroup) on a metric

space X, i.e. a family {U(t, τ) :∞ < τ ≤ t < +∞} of mappings U(t, τ) : X → X,

such that U(τ, τ)x = x for all x ∈ X and

U(t, τ) = U(t, s)U(s, τ) for all τ ≤ s ≤ t.

Let D be a nonempty class of parameterized sets D̂ = {D(t) : t ∈ R} ⊂ P(X),

where P(X) denotes the family of all nonempty subsets of X.

Definition 2.1. The process {U(t, τ)}t≥τ is said to be pullback D-asymp-

totically compact if for any t ∈ R, any D̂ ∈ D, any sequence τn → −∞ and any

sequence xn ∈ D(τn), the sequence {U(t, τn)xn}∞n=1 is precompact in X.

Definition 2.2. It is said that B̂ ∈ D is pullback D-absorbing for the process

{U(t, τ)}t≥τ if for any t ∈ R and any D̂ ∈ D, there exists a τ0 = τ0
(
t, D̂

)
≤ t

such that

U(t, τ)D(τ) ⊂ B(t) for all τ ≤ τ0
(
t, D̂

)
.

Definition 2.3. A family Â = {A (t) : t ∈ R} ⊂ P(X) is said to be

a pullback D-attractor for the process {U(t, τ)}t≥τ in X if

(a) A (t) is compact in X for all t ∈ R;

(b) Â is pullback D-attracting in X, i.e.

lim
τ→−∞

distX(U(t, τ)D(τ),A (t)) = 0,

for all D̂ ∈ D and all t ∈ R;
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(c) Â is invariant, i.e. U(t, τ)A (τ) = A (t) for any −∞ < τ ≤ t < +∞.

Being similar to that in [29], we have the following definition and results.

Definition 2.4. Let X be a Banach space and {U(t, τ)}t≥τ be a process

on X. We call that {U(t, τ)}t≥τ is a norm-to-weak continuous process on X, if

{U(t, τ)}t≥τ satisfies:

(a) U(τ, τ)x = x (the identity),

(b) U(t, τ) = U(t, s)U(s, τ) for all τ ≤ s ≤ t,
(c) U(t, τ)xn ⇀ U(t, τ)x if xn → x in X.

Lemma 2.5. Let X,Y be two Banach spaces, X∗, Y ∗ be their dual spaces,

respectively. Assume that X is dense in Y , the injection i : X → Y is continuous,

its adjoint i∗ : Y ∗ → X∗ is dense, and {U(t, τ)}t≥τ is a norm-to-weak continuous

process on Y . Then {U(t, τ)}t≥τ is a norm-to-weak continuous process on X if

and only if for any τ ∈ R, {U(t, τ)}t≥τ maps compact subsets of X into bounded

subsets of X.

Lemma 2.6. Let {U(t, τ)}t≥τ be a norm-to-weak continuous process on Ba-

nach space X. Suppose {U(t, τ)}t≥τ satisfies the following assumptions:

(a) {U(t, τ)}t≥τ has a pullback D-absorbing set B̂0 in X,

(b) {U(t, τ)}t≥τ is pullback D-asymptotically compact in B̂0.

Then, the family Â = {A (t); t ∈ R} defined by A (t) = Λ
(
B̂0, t

)
is a pullback

D-attractor for the process {U(t, τ)}t≥τ , where

Λ
(
D̂, t

)
=
⋂
s≤t

⋃
τ≤s

U(t, τ)D(τ)
X

,

for all t ∈ R and for any D̂ ∈ D. In addition, Â satisfies

A (t) =
⋃
D̂∈D

Λ
(
D̂, t

)X
,

for all t ∈ R, and Â is minimal in the sense that if Ĉ = {C(t); t ∈ R} is

a family of nonempty sets such that C(t) is a closed subset of X and

lim
τ→−∞

distX(U(t, τ), C(t)) = 0, for all t ∈ R,

then A (t) ⊂ C(t) for any t ∈ R.

In the sequel, we shall need the following lemma, which belongs to the family

of Gronwall type lemmas, see [21], [22] for details.

Lemma 2.7. Let for some λ > 0, τ ∈ R and, for s > τ ,

y′(s) + λy(s) ≤ h1(s),
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where the functions y, y′, h1 are assumed to be locally integrable and y, h1

nonnegative on the interval t < s < t+ r, for some t ≥ τ . Then

y(t+ r) ≤ e−λr/2 2

r

∫ t+r/2

t

y(s) ds+ e−λ(t+r)

∫ t+r

t

eλsh1(s) ds.

Remark 2.8. In the following, in this paper, we always assume that the

structure of the pullback D-attractors is as that in Lemma 2.6, and D is a non-

empty class of parameterized sets D̂ = {D(t) : t ∈ R} ⊂ P(CL2(Ω)).

2.2. Abstract results. In this subsection, we will give some abstract re-

sults, which are similar to those in [29] and used to verify the existence of the

pullback D-attractors in CLp(Ω).

Lemma 2.9. Let {U(t, τ)}t≥τ be a process on CLp(Ω) (p ≥ 1) and have a pull-

back D-absorbing set B̂ = {B(t) : t ∈ R} in CLp(Ω). Then, for any ε > 0 and

any set D̂ ∈ D in CLp(Ω), there exist τ0 = τ0
(
ε, D̂

)
≤ t and M = M(ε, D̂) such

that

m(Ω(|U(t+ θ, τ)u(τ)| ≥M)) ≤ ε for any u(τ) ∈ D(τ) and τ ≤ τ0
(
ε, D̂

)
,

where m(Ω0) denotes the Lebesgue measure of Ω0 ⊂ Ω and

Ω(|U(t+ θ, τ)u(τ)| ≥M) , {x ∈ Ω : |u(t+ θ)| ≥M} with θ ∈ [−h, 0].

Proof. The process {U(t, τ)}t≥τ has a pullbackD-absorbing set B̂ = {B(t) :

t ∈ R} in CLp(Ω)(p > 0), then there exists a ρ(t) > 0 (which only depends on t),

such that for any set D̂ ∈ D in CLp(Ω), we can find a τ0 = τ0
(
ε, D̂

)
, such that

max
θ∈[−h,0]

‖U(t+ θ, τ)u(τ)‖pp ≤ ρ(t) for any u(τ) ∈ D(τ) and τ ≤ τ0.

Therefore,

ρ(t) ≥ max
θ∈[−h,0]

∫
Ω

|U(t+ θ, τ)u(τ)|p dx

≥ max
θ∈[−h,0]

∫
Ω(|U(t+θ,τ)u(τ)|≥M)

|U(t+ θ, τ)u(τ)|p dx

≥ max
θ∈[−h,0]

∫
Ω(|U(t+θ,τ)u(τ)|≥M)

Mp dx

= Mp ·m(Ω(|U(t+ θ, τ)u(τ)| ≥M)),

which implies that m(Ω(|U(t+θ, τ)u(τ)| ≥M)) ≤ ε if we choose M large enough

such that M ≥ (ρ(t)/ε)1/p. �

Lemma 2.10. Let D̂ = {D(t) : t ∈ R}, then for any ε > 0, D(t) has a finite

ε-net in CLp(Ω) (p > 0) if there exists a positive constant M = M(ε, D̂) which

depends on ε and D̂, such that

(a) D(t) has a finite (3M)(q−p)/q(ε/2)p/q-net in CLq(Ω) for some q (q > 0),



14 K. Zhu — Y. Xie — F. Zhou

(b) for all u(t) ∈ D(t), θ ∈ [−h, 0],

(2.1)

(
max

θ∈[−h,0]

∫
Ω(u(t+θ)≥M)

|u(t+ θ)|p
)1/p

< 2−(2p+2)/pε.

Proof. When q ≥ p, the conclusion is obvious, so we just need to verify the

case of q < p. When q < p, then it follows from the assumptions that for any

fixed ε > 0, D(t) has a finite (3M)(q−p)/q(ε/2)p/q-net in CLq(Ω), i.e., there exist

u1(t), u2(t), . . . , uk(t) ∈ D(t) such that, for any u(t) ∈ D(t), we can find some

ui(t) (1 ≤ i ≤ k) satisfying

‖u(t+ θ)− ui(t+ θ)‖qq ≤ max
θ∈[−h,0]

‖u(t+ θ)− ui(t+ θ)‖qq

= max
θ∈[−h,0]

‖ut(θ)− uit(θ)‖qq < (3M)(q−p)
(
ε

2

)p
.

Then, we have

(2.2) ‖u(t+ θ)− ui(t+ θ)‖pp

=

∫
Ω(|u(t+θ)−ui(t+θ)|≥3M)

|u(t+ θ)− ui(t+ θ)|p dx

+

∫
Ω(|u(t+θ)−ui(t+θ)|≤3M)

|u(t+ θ)− ui(t+ θ)|p dx,

and ∫
Ω(|u(t+θ)−ui(t+θ)|≤3M)

|u(t+ θ)− ui(t+ θ)|p dx(2.3)

≤ (3M)p−q
∫

Ω(|u(t+θ)−ui(t+θ)|≤3M)

|u(t+ θ)− ui(t+ θ)|q dx

≤ (3M)p−q · (3M)(q−p)
(
ε

2

)p
=

(
ε

2

)p
.

On the other hand, set

(2.4)

Ω1 = Ω

(
|u(t+ θ)| ≥ 3M

2

)
∩ Ω

(
|ui(t+ θ)| ≤ 3M

2

)
,

Ω2 = Ω

(
|u(t+ θ)| ≤ 3M

2

)
∩ Ω

(
|ui(t+ θ)| ≥ 3M

2

)
,

Ω3 = Ω

(
|u(t+ θ)| ≥ 3M

2

)
∩ Ω

(
|ui(t+ θ)| ≥ 3M

2

)
,

then we have

Ω(|u(t+ θ)− ui(t+ θ)| ≥ 3M) ⊂ Ω1 ∪ Ω2 ∪ Ω3.
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From (2.4) we know that |u(t + θ) − ui(t + θ)| ≤ 2|u(t + θ)| in Ω1 and

|u(t+ θ)− ui(t+ θ)| ≤ 2|ui(t+ θ)| in Ω2, combining with (2.1), we have∫
Ω(|u(t+θ)−ui(t+θ)|≥3M)

|u(t+ θ)− ui(t+ θ)|p dx(2.5)

≤
∫

Ω1

|u(t+ θ)− ui(t+ θ)|p dx

+

∫
Ω2

|u(t+ θ)− ui(t+ θ)|p dx+

∫
Ω3

|u(t+ θ)− ui(t+ θ)|p dx

≤ 2p
∫

Ω1

|u(t+ θ)|p dx+ 2p
∫

Ω2

|ui(t+ θ)|p dx

+ 2p
∫

Ω3

|u(t+ θ)|p dx+ 2p
∫

Ω3

|ui(t+ θ)|p dx

≤ 2p
(∫

Ω(|u(t+θ)|≥M)

|u(t+ θ)|p dx+

∫
Ω(|ui(t+θ)|≥M)

|ui(t+ θ)|p dx
)

+ 2p
(∫

Ω(|u(t+θ)|≥M)

|u(t+ θ)|p dx+

∫
Ω(|ui(t+θ)|≥M)

|ui(t+ θ)|p dx
)

≤ 2p+2 · 2−(2p+2)εp =

(
ε

2

)p
.

Substituting (2.3) and (2.5) into (2.2), we can deduce that

max
θ∈[−h,0]

‖u(t+ θ)− ui(t+ θ)‖p <
ε

2
+
ε

2
= ε,

which means that D(t) has a finite ε-net in CLp(Ω). �

Lemma 2.11. Let D̂ = {D(t) : t ∈ R} ⊂ P(CLp(Ω)) (p ≥ 1). If D(t) has

a finite ε-net in CLp(Ω), then there exists a positive M = M(ε, D̂) such that, for

any u(t) ∈ D(t), the following estimate holds

max
θ∈[−h,0]

∫
Ω(|u(t+θ)|≥M)

|u(t+ θ)|p ≤ 2p+1εp.

Proof. Since D(t) has a finite ε-net in CLp(Ω), then there exist u1(t), . . . ,

uk(t) in D(t), such that for any u(t) ∈ D(t), we can find some ui(t) (1 ≤ i ≤ k)

satisfying

(2.6) max
θ∈[−h,0]

∫
Ω

|u(t+ θ)− ui(t+ θ)|p ≤ εp.

At the same time, for the fixed ε > 0, there exists a δ0 > 0, such that for each

ui(t) ∈ D(t) (1 ≤ i ≤ k), we have

max
θ∈[−h,0]

∫
Ω0

|ui(t+ θ)|p dx ≤ εp,(2.7)

provided that m(Ω0) < δ0 (Ω0 ⊂ Ω).
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On the other hand, since D(t) ⊂ CLp(Ω), then for the given δ0 > 0 above,

there exist M > 0 and θ ∈ [−h, 0], such that m(Ω(|u(t + θ)| ≥ M)) < δ0 holds

for each u(t) ∈ D(t).

Combining (2.6) and (2.7), we immediately obtain that

max
θ∈[−h,0]

∫
Ω(|u(t+θ)|≥M)

|u(t+ θ)|pdx

= max
θ∈[−h,0]

∫
Ω(|u(t+θ)|≥M)

|u(t+ θ)− ui(t+ θ) + ui(t+ θ)|p dx

≤ 2p max
θ∈[−h,0]

∫
Ω(|u(t+θ)|≥M)

|u(t+ θ)− ui(t+ θ)|p dx

+ 2p max
θ∈[−h,0]

∫
Ω(|u(t+θ)|≥M)

|ui(t+ θ)|p dx ≤ 2p+1εp. �

Being similar to that in [29], we have the following results, which is useful to

verify the existence of the pullback D-attractors in CLp(Ω) (p > 2).

Theorem 2.12. Let {U(t, τ)}t≥τ be a norm-to-weak continuous process on

CL2(Ω) and CLp(Ω) (p > 2), respectively. Suppose that {U(t, τ)}t≥τ has a pullback

D-attractor in CL2(Ω), then {U(t, τ)}t≥τ has a pullback D-attractor in CLp(Ω)

provided that the following conditions hold :

(a) {U(t, τ)}t≥τ has a pullback D-absorbing set B̂p in CLp(Ω),

(b) for any ε > 0, τ ∈ R and D̂ ∈ D, there exist a positive constant M =

M
(
ε, D̂

)
and τ1 = τ1(ε, D̂) such that

max
θ∈[−h,0]

∫
Ω(|u(t+θ)|≥M)

|u(t+ θ)|p < ε

for any u(τ) ∈ D(τ) and τ ≤ τ1.

Proof. We divide the proof into three steps.

Step 1. By Lemma 2.6, we first verify the process {U(t, τ)}t≥τ is pullback

D-asymptotically compact in CLp(Ω). Then it is sufficient to prove that for

any t ∈ R, B̂p ∈ D, any sequence τn → −∞ and xn ∈ Bp(τn), the sequence

{U(t, τn)xn}∞n=1 is precompact in CLp(Ω), which is equivalent to prove that for

any ε > 0, {U(t, τn)xn}∞n=1 has a finite ε-net in CLp(Ω).

In fact, from the assumption that {U(t, τ)}∞n=1 has a pullback D-attractor

in CL2(Ω), we know that there exists a τ2, which depends on ε and D̂ such

that {U(t, τn)xn| τn ≤ τ2} has a finite (3M)(2−p)/2(ε/2)p/2-net in CL2(Ω). Let

τ3 = min{τ1, τ2}, then from Lemma 2.10, we know that {U(t, τn)xn : τn ≤ τ3}
has a finite ε-net in CLp(Ω). Since τn → −∞, we obtain that {U(t, τn)xn}∞n=1

has a finite ε-net in CLp(Ω), too. By the arbitrariness of ε, we know that

{U(t, τn)xn}∞n=1 is precompact in CLp(Ω).
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Step 2. Secondly, we prove the pullback D-attractor is invariant in CLp(Ω).

Set

A (t) =
⋂
s≤t

⋃
τ≤s

U(t, τ)Bp(τ)
ws

, for all t ∈ R,

where A
ws

denotes the closure of A with respect to the weak sequence. By the

above process of proof we know that A (t) is nonempty and compact.

Now, we claim that

x ∈ A (t) ⇔ there exist τn → −∞ and {xn} ⊂ Bp(τn)(2.8)

such that U(t, τn)xn ⇀ x.

In fact, for any x ∈ A (τ), there exist τn → −∞ and xn ∈ Bp(τn) such that

U(τ, τn)xn ⇀ x.

On the other hand, from the proof process of Step 1, we know {U(τ, τn)xn}∞n=1

has a convergent subsequence {U(τ, τnk)xnk}∞k=1 such that U(τ, τnk)xnk → x.

Combining it with the norm-to-weak continuity of {U(t, τ)}t≥τ , we have

U(t, τnk)xnk = U(t, τ)U(τ, τnk)xnk ⇀ U(t, τ)x.

Then by (2.8), we know that U(t, τ)x ∈ A (t), which implies that

U(t, τ)A (τ) ⊂ A (t).(2.9)

On the contrary, for any x ∈ A (t), by (2.8) again, there exist τn → −∞ and xn ∈
Bp(τn) such that U(t, τn)xn ⇀ x. By the proof process of Step 1 again, we know

that {U(τ, τn)xn}∞n=1 has a subsequence {U(τ, τnk)xnk}∞k=1, which converges to

some point y in CLp(Ω), that is U(τ, τnk)xnk → y, which induces that y ∈ A (τ).

By the norm-to-weak continuity of the process {U(t, τ)}t≥τ again, we obtain

x ↼ U(t, τnk)xnk = U(t, τ)U(τ, τnk)xnk ⇀ U(t, τ)y.

Therefore U(t, τ)y = x, which implies that

A (t) ⊂ U(t, τ)A (τ) for any t ≥ τ.(2.10)

Together with (2.9) and (2.10), we immediately obtain that

U(t, τ)A (τ) = A (t).

Step 3. Finally, we will prove that A (t) pullback attracts every sets D̂ ∈ D
of CLp(Ω) with the CLp(Ω)-norm. In fact, since Bp(τ) pullback absorbs every sets

D̂ ∈ D of CLp(Ω), we only need to verify that

dist(U(t, τ)Bp(τ),A (t))→ 0 as τ → −∞.

Assume on the contrary that this is not true, then there exist some ε0 > 0,

τn → −∞ and xn ∈ Bp(τ), such that

dist(U(t, τn)xn,A (t)) ≥ ε0.(2.11)
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Thanks to the proof process of Step 1 again, we know that {U(t, τn)xn}∞n=1 has

a subsequence {U(t, τnk)xnk}∞k=1, which satisfies U(t, τnk)xnk → x, and, by (2.8),

we know that x ∈ A (t), which contradicts (2.11). �

3. Pullback attractors for equation (1.1)

3.1. Existence and uniqueness results. In this subsection, we will show

the well-posedness of solutions for equation (1.1). We first define the weak solu-

tions, which is similar to that in [12], as follows.

Definition 3.1. A weak solution of equation (1.1) is a function

u ∈ C([τ − h, T ];L2(Ω)) ∩ L2(τ, T ;H1
0 (Ω)) ∩ Lp(τ, T ;Lp(Ω)), for all T > τ,

with u(t) = φ(t−τ) for all t ∈ [τ−h, τ ] and for all ϕ ∈ H1
0 (Ω)∩Lp(Ω), it satisfies

d

dt
[(u(t), ϕ) + (∇u(t),∇ϕ)] + (∇u(t),∇ϕ)

= (f(u(t)), ϕ) + (g(t, ut), ϕ) + (k(t), ϕ),

almost everywhere in (τ,+∞).

The following theorem gives the existence and uniqueness of solutions, which

can be obtained by the Faedo–Galerkin methods (see [12]). Here we only state

the results.

Lemma 3.2. Let f satisfy (1.2)–(1.3), g(t, ut) subject to assumptions (I)–(III),

k( · ) ∈ L2
loc(R;H−1(Ω)) and φ ∈ CL2(Ω) given. Then, for any τ ∈ R and T > τ ,

there exists a unique solution u( · ) = u( · ; τ, φ) for equation (1.1), which satisfies

u ∈ C([τ − h, T ];L2(Ω)) ∩ L2(τ, T ;H1
0 (Ω)) ∩ Lp(τ, T ;Lp(Ω)),

and the mapping φ→ u(t) is continuous in CL2(Ω).

By Lemma 3.2 we can define the process {U(t, τ)}t≥τ in CL2(Ω) as

(3.1) U(t, τ) : U(t, τ)φ = u(t),

where u(t) is the solution of equation (1.1).

3.2. Some estimates. At first, we give the following estimates, which will

be helpful to prove the existence of the pullback attractors in CLp(Ω).

Lemma 3.3. Let f satisfy (1.2)–(1.3), g(t, ut) subject to assumptions (I)–(III),

k( · ) ∈ L2
loc(R, L2(Ω)), τ ∈ R and φ ∈ CL2(Ω) given. Then, the weak solutions

u(t) of equation (1.1) satisfies:

(3.2) ‖ut‖2CL2(Ω)
≤ eλ1h−δ2(t−τ)‖uτ‖2CL2(Ω)

+
2c0|Ω|eλ1h

δ2
+
eλ1h

δ2
e−δ2t

∫ t

−∞
eδ2s‖k(s)‖22 ds,

for all t ≥ τ , where δ2 = λ1 − Lgeλ1h/2.
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Proof. Multiplying (1.1) by u(t) and integrating over x ∈ Ω, we arrive at

1

2

d

dt
‖u‖22 + ‖∇u‖22 = (f(u), u) + (g(t, ut), u) + (k(t), u).

Thanks to (1.3), assumption (III), the Hölder and Young inequalities, we have

1

2

d

dt
‖u‖22 + ‖∇u‖22 ≤ c0|Ω| − c2‖u‖pp + ‖g(t, ut)‖2‖u‖2 + ‖k(t)‖2‖u‖2

≤ c0|Ω| − c2‖u‖pp +
L2
g

2δ1
‖ut‖2CL2(Ω)

+
1

2δ2
‖k(t)‖22 +

δ1 + δ2
2
‖u‖22.

Let δ1 + δ2 = λ1, we can get that

(3.3)
d

dt
‖u‖22 + λ1‖u‖22 + 2c2‖u‖pp ≤ 2c0|Ω|+

L2
g

δ1
‖ut‖2CL2(Ω)

+
1

δ2
‖k(t)‖22.

Furthermore,

(3.4)
d

dt
‖u‖22 + λ1‖u‖22 ≤ 2c0|Ω|+

L2
g

δ1
‖ut‖2CL2(Ω)

+
1

δ2
‖k(t)‖22.

Multiplying (3.4) by eλ1t and integrating it in [τ, t], we obtain

eλ1t‖u(t)‖22 ≤ eλ1τ‖u(τ)‖22 + 2c0|Ω|
∫ t

τ

eλ1s ds

+
L2
g

δ1

∫ t

τ

eλ1s‖us‖2CL2(Ω)
ds+

1

δ2

∫ t

τ

eλ1s‖k(s)‖22 ds.

In particular, putting t+ θ instead of t, we deduce that

eλ1t‖ut‖2CL2(Ω)
≤ eλ1(h+τ)‖φ‖2CL2(Ω)

+ 2c0|Ω|eλ1h

∫ t

τ

eλ1s ds

+
L2
ge
λ1h

δ1

∫ t

τ

eλ1s‖us‖2CL2(Ω)
ds+

eλ1h

δ2

∫ t

τ

eλ1s‖k(s)‖22 ds.

By the Gronwall lemma, it yields

eλ1t‖ut‖2CL2(Ω)
≤ eλ1(h+τ)eL

2
ge
λ1h(t−τ)/δ1‖φ‖2CL2(Ω)

+ 2c0|Ω|eλ1heL
2
ge
λ1ht/δ1

∫ t

τ

e(λ1−L2
ge
λ1h/δ1)s ds

+
eλ1h

δ2
eL

2
ge
λ1ht/δ1

∫ t

τ

e(λ1−L2
ge
λ1h/δ1)s‖k(s)‖22 ds.
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Let δ1 = Lge
λ1h/2, then δ2 = λ1 − Lgeλ1h/2, and

‖ut‖2CL2(Ω)
≤ eλ1he−δ2(t−τ)‖φ‖2CL2(Ω)

(3.5)

+ 2c0|Ω|eλ1he−δ2t
∫ t

τ

eδ2s ds

+
eλ1h

δ2
e−δ2t

∫ t

τ

eδ2s‖k(s)‖22ds

≤ eλ1h−δ2(t−τ)‖φ‖2CL2(Ω)

+
2c0|Ω|eλ1h

δ2
+
eλ1h

δ2
e−δ2t

∫ t

−∞
eδ2s‖k(s)‖22 ds. �

Here we will assume that

δ2 = λ1 − Lgeλ1h/2 > 0,(3.6) ∫ t

−∞
eδ2s‖k(s)‖22 ds <∞.(3.7)

Remark 3.4. In (3.7), due to the test function is |u|p−2u (see Theorem 3.7),

we suppose that ∫ t

−∞
eδ2s‖k(s)‖22 ds <∞

rather than ∫ t

−∞
eδ2s‖k(s)‖2H−1(Ω) ds <∞,

which is different from that in [12].

Now, we give the following definition.

Definition 3.5. For any δ2 > 0, we will denote by Dδ2 the class of all

families of nonempty subsets D̂ = {D(t) : t ∈ R} ⊂ P(CL2(Ω)) such that

lim
τ→−∞

(
eδ2τ sup

u∈D(τ)

‖u‖2CL2(Ω)

)
= 0.

Moreover, we have the following lemma (see [12] for details), which gives the

existence of pullback attractors in CL2(Ω).

Lemma 3.6. Let f satisfy (1.2)–(1.3), g(t, ut) subject to assumptions (I)–(III),

k( · ) ∈ L2
loc(R, H−1(Ω)), τ ∈ R, and φ ∈ CL2(Ω) given. {U(t, τ)}t≥τ is the

process defined by (3.1). Then {U(t, τ)}t≥τ has a pullback attractor in CL2(Ω),

which is compact in CL2(Ω) and pullback attracts every set D̂ ∈ Dδ2 with the

CL2(Ω)-norm.
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3.3. Pullback attractors in CLp(Ω). In this subsection, we will establish

the existence of the pullback attractors in CLp(Ω).

At first, we give the asymptotic a priori estimate of the process {U(t, τ)}t≥τ
with respect to CLp(Ω)-norm, which plays a crucial role in the proof of the exis-

tence of the pullback attractors in CLp(Ω).

Theorem 3.7. For any ε > 0, τ ∈ R and D̂ ∈ D, there exists a positive

constant M = M
(
ε, D̂

)
and τ1 = τ1

(
ε, D̂

)
such that

(3.8) max
θ∈[−h,0]

∫
Ω(|u(t+θ)|≥M)

|u(t+ θ)|p ≤ Cε

for any u(τ) ∈ D(τ) and τ ≤ τ1, where the constant C is independent of M , τ1
and ε.

Proof. Multiplying (1.1) by |(u − M1)+|p−2(u − M1)+ and integrating

over Ω, we arrive at

(3.9)
1

p

d

dt
‖(u−M1)+‖pp + (p− 1)

∫
Ω

|∇(u−M1)+|2|(u−M1)+|p−2 dx

=

∫
Ω

f(u)(u−M1)p−1
+ dx+

∫
Ω

g(t, ut)(u−M1)p−1
+ dx+

∫
Ω

k(t)(u−M1)p−1
+ dx,

where (u−M1)+ denotes the positive part of u−M1, that is

(u−M1)+ =

u−M1 for u ≥M1,

0 for u < M1.

In view of (1.3), for M = M(c0, c2, p) large enough, we can deduce that

f(u) ≤ −c2
2
|u|p−1 for u ≥M .

In consequence,

f(u)(u−M1)p−1
+ ≤ −c2

2
|u|p−1(u−M1)p−1

+(3.10)

= −c2
4
|u|p−1(u−M1)p−1

+ − c2
4
|u|p−1(u−M1)p−1

+

≤ −c2
4
|u|p−1(u−M1)p−1

+ − c2
4

(u−M1)2p−2
+ .

Moreover, by assumption (III), the Hölder and Young inequalities, we have∫
Ω

g(t, ut)(u−M1)p−1
+ dx ≤

2L2
g

c2
‖ut‖2CL2(Ω)

+
c2
8
‖(u−M1)+‖2p−2

2p−2,(3.11) ∫
Ω

k(t)(u−M1)p−1
+ dx ≤ 2

c2
‖k(t)‖22 +

c2
8
‖(u−M1)+‖2p−2

2p−2.(3.12)

Substituting (3.10)–(3.12) into (3.9), we obtain that

1

p

d

dt
‖(u−M1)+‖pp +

c2
4

∫
Ω

|u|p−1(u−M1)p−1
+ ≤

2L2
g

c2
‖ut‖2CL2(Ω)

+
2

c2
‖k(t)‖22.
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Notice that u ≥M1 and u ≥ u−M1, we can get that

(3.13)
d

dt
‖(u−M1)+‖pp +

c2p

4
Mp−2

1

∫
Ω

(u−M1)p+

≤
2pL2

g

c2
‖ut‖2CL2(Ω)

+
2p

c2
‖k(t)‖22.

On the other hand, taking |(u+M1)−|p−2(u+M1)− instead of |(u−M1)+|p−2

·(u−M1)+ in the preceding proof, we deduce similarly that

(3.14)
d

dt
‖(u+M1)−‖pp +

c2p

4
Mp−2

1

∫
Ω

(u+M1)p−

≤
2pL2

g

c2
‖ut‖2CL2(Ω)

+
2p

c2
‖k(t)‖22,

where (u+M1)− denotes the negative part of u+M1, that is

(u+M1)− =

u+M1 if u ≤ −M1,

0 if u > −M1.

Combining with (3.13) and (3.14), we obtain that

(3.15)
d

dt
‖(|u(t)| −M1)+‖pp +

c2p

4
Mp−2

1

∫
Ω

(|u(t)| −M1)p+

≤
2pL2

g

c2
‖ut‖2CL2(Ω)

+
2p

c2
‖k(t)‖22.

Setting α = c2pM
p−2
1 /4, β = 2pL2

g/c2, γ = 2p/c2, then applying Lemma 2.7 to

(3.15) with r = 1, we deduce that

(3.16) ‖(|u(t+ 1)| −M1)+‖pp ≤ e−α/2
∫ t+1/2

t

∫
Ω

(|u(s)| −M1)p+ dx ds

+ βe−α(t+1)

∫ t+1

t

eαs‖us‖2CL2(Ω)
ds+ γe−α(t+1)

∫ t+1

t

eαs‖k(s)‖22 ds

= I1 + I2 + I3.

In the following, we will estimate each term on the right hand of (3.16). At

first, we have

(3.17) I1 ≤ e−α/22p+1

(∫ t+1/2

t

‖u(s)‖pp ds+
1

2
Mp

1 |Ω|
)
.

Integrating (3.3) with respect to t from t to t+ 1/2, we have

(3.18)

∫ t+1/2

t

‖u(s)‖pp ds ≤
c0|Ω|
2c2

+
1

2c2
‖u(t)‖22

+
L2
g

2c2δ1

∫ t+ 1
2

t

‖us‖2CL2(Ω)
ds+

1

2c2δ2

∫ t+1/2

t

‖k(s)‖22 ds.
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Moreover, thanks to (3.5), from (3.17) and (3.18), we know that there ex-

ists a constantN0 = N0

(
λ1, h, δ1, δ2, c0, c2, |Ω|, ‖φ‖2CL2(Ω)

,
∫ t+1/2

t
‖k(s)‖22 ds

)
such

that

(3.19) I1 ≤ e−α/22p+1

(
N0 +

1

2
Mp

1 |Ω
)
, where α =

c2p

4
Mp−2

1 .

Therefore, for any given ε > 0, let M1 = M1(ε) large enough, we can get that

I1 ≤
ε

4
.(3.20)

Secondly, from (3.5) we know that

I2 =βe−α(t+1)

∫ t+1

t

eαs‖us‖2CL2(Ω)
ds(3.21)

≤βe−α(t+1)

∫ t+1

t

eαs
(
eλ1h−δ2(s−τ)‖φ‖2CL2(Ω)

+
2c0|Ω|eλ1h

δ2

)
ds

+ βe−α(t+1)

∫ t+1

t

eαs
(

1

δ2
eλ1h−δ2s

∫ s

−∞
eδ2s1‖k(s1)‖22ds1

)
ds

≤β
(
‖φ‖2CL2(Ω)

+
2c0|Ω|
δ2

)
eλ1he−α(t+1)

∫ t+1

t

eαs ds

+
β

δ2
eλ1he−α(t+1)

∫ t+1

t

e(α−δ2)s ds

∫ t+1

−∞
eδ2s‖k(s)‖22 ds.

Obviously,

(3.22) e−α(t+1)

∫ t+1

t

eαs ds =
1

α
e−α(t+1)

(
eα(t+1) − eαt

)
≤ 1

α

and

(3.23) e−α(t+1)

∫ t+1

t

e(α−δ2)s ds = e−δ2(t+1)e−(α−δ2)(t+1)

∫ t+1

t

e(α−δ2)s ds

=
1

α− δ2
e−δ2(t+1)e−(α−δ2)(t+1)(e(α−δ2)(t+1) − e(α−δ2)t) ≤ 1

α− δ2
e−δ2(t+1).

Combining with (3.21)–(3.23), for the given ε > 0 (as that in (3.20)), we can let

M1 = M1(ε) large enough, such that

I2 ≤
ε

4
.(3.24)

Finally, we can take any δ ∈ (0, 1) such that

I3 = γe−α(t+1)

∫ t+1

t

eαs‖k(s)‖22 ds(3.25)

= γe−α(t+1)

∫ t+1−δ

t

eαs‖k(s)‖22 ds+ γe−α(t+1)

∫ t+1

t+1−δ
eαs‖k(s)‖22 ds

≤ γe−α(t+1)

∫ t+1−δ

t

e(α−δ2)seδ2s‖k(s)‖22 ds+ γ

∫ t+1

t+1−δ
‖k(s)‖22 ds
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≤ γe−αδe−δ2(t+1−δ)
∫ t+1−δ

t

eδ2s‖k(s)‖22 ds+ γ

∫ t+1

t+1−δ
‖k(s)‖22 ds

≤ γe−αδ
∫ t+1

−∞
eδ2s‖k(s)‖22 ds+ γ

∫ t+1

t+1−δ
‖k(s)‖22ds.

From (3.25), we can choose δ ∈ (0, 1) small enough such that

γ

∫ t+1

t+1−δ
‖k(s)‖22 ds ≤

ε

4
,

then for the given δ ∈ (0, 1) above, let M1 = M1(ε) large enough such that

γe−αδ
∫ t+1

−∞
eδ2s‖k(s)‖22 ds ≤

ε

4
.

Hence,

(3.26) I3 ≤
ε

2
.

Combining with (3.20), (3.24) and (3.26), we conclude that

‖(|u(t+ 1)| −M1)+‖pp ≤ ε.

In particular, replacing t+ 1 by t, we get

‖(|u(t)| −M1)+‖pp ≤ ε.

Therefore,∫
Ω(|u(t)|≥2M1)

|u(t)|p dx =

∫
Ω(|u(t)|≥2M1)

((|u(t)| −M1) +M1)p dx(3.27)

≤ 2p
(∫

Ω(|u(t)|≥2M1)

(|u(t)| −M1)p dx+

∫
Ω(|u(t)|≥2M1)

Mp
1

)
≤ 2p+1

∫
Ω(|u(t)|≥2M1)

(|u(t)| −M1)p dx ≤ 2p+1ε

as |u(t)|−M1 ≥M1 for |u(t)| ≥ 2M1. Setting M = 2M1, C = 2p+1, and putting

t+ θ instead of t, we can deduce that

max
θ∈[−h,0]

∫
Ω(|u(t+θ)|≥M)

|u(t+ θ)|p dx ≤ Cε,

which complete the proof. �

Then, we have the following theorem, which states the existence of the pull-

back attractors in CLp(Ω).

Theorem 3.8. Let f satisfy (1.2)–(1.3), g(t, ut) subject to assumptions

(I)–(III), k( · ) ∈ L2
loc(R, L2(Ω)), τ ∈ R, and φ ∈ CL2(Ω) given. {U(t, τ)}t≥τ

is the process defined by (3.1). Then {U(t, τ)}t≥τ has a pullback attractor in

CLp(Ω), which is compact in CLp(Ω) and pullback attracts every set D̂ ∈ Dδ2 with

the CLp(Ω)-norm.
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Proof. Firstly, we check that the process {U(t, τ)}t≥τ is norm-to-weak con-

tinuous in CLp(Ω). In fact, by Lemma 2.5, it is sufficient to show that {U(t, τ)}t≥τ
maps compact sets of CLp(Ω) into bounded sets of CLp(Ω).

Let B̂1 = {B1(t) : t ∈ R} be a family of compact sets of CLp(Ω). By the

continuity of {U(t, τ)}t≥τ in CL2(Ω), we know that U(t, τ)B1(τ) is a bounded

set in CL2(Ω). Then, for any t > τ , u(τ) ∈ B1(τ), and M1 as in Theorem 3.7,

combining with (3.27), (3.16)–(3.19), (3.24) and (3.26), we immediately get that∫
Ω

|U(t + 1, τ)u(τ)|p dx

=

∫
Ω(|u(t+1)|≤2M1)

|u(t+ 1)|p dx+

∫
Ω(|u(t+1)|≥2M1)

|u(t+ 1)|p dx

≤ (2M1)p|Ω|+ 2p+1

∫
Ω(|u(t+1)|≥2M1)

(|u(t+ 1)| −M1)p dx

≤ (2M1)p|Ω|+ 22p+2

(
N0 +

1

2
Mp

1 |Ω|
)
,

therefore, putting t+ θ instead of t+ 1, we can deduce that

‖ut(θ)‖pCLp(Ω)
= max

θ∈[−h,0]

∫
Ω

|u(t+ θ)|p dx

≤ max
θ∈[−h,0]

∫
Ω(|u(t+θ)|≤2M1)

|u(t+ θ)|p dx

+ max
θ∈[−h,0]

∫
Ω(|u(t+θ)|≥2M1)

|u(t+ θ)|p dx

≤ (2M1)p|Ω|+ 22p+2

(
N0 +

1

2
Mp

1 |Ω|
)
,

which complete the proof of the norm-to-weak continuity.

Secondly, from

‖ut(θ)‖pCLp(Ω)
= max

θ∈[−h,0]

∫
Ω

|u(t+ θ)|p dx

≤ max
θ∈[−h,0]

∫
Ω(|u(t+θ)|≥M)

|u(t+ θ)|p dx

+ max
θ∈[−h,0]

∫
Ω(|u(t+θ)|≤M)

|u(t+ θ)|p dx ≤ Cε+Mp|Ω|,

we know that the process {U(t, τ)}t≥τ has a pullback D-absorbing sets B̂p
in CLp(Ω). Together with Lemma 3.6 and (3.8) in Theorem 3.7, we know that

the conditions in Theorem 2.12 are all satisfied, and immediately obtain the exis-

tence of the pullback D-attractors A in CLp(Ω); that is, A is compact in CLp(Ω)

and pullback attracts every set D̂ ∈ Dδ2 with the CLp(Ω)-norm. �
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[13] J. Garćıa-Luengo, P. Maŕın-Rubio and G. Planas, Attractors for a double time-

delayed 2D-Navier–Stokes model, Discrete Contin. Dyn. Syst. 34 (2014), 4085–4105.
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