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NEW RESULTS

OF MIXED MONOTONE OPERATOR EQUATIONS

Tian Wang — Zhaocai Hao

Abstract. In this article, we study the existence and uniqueness of fixed
points for some mixed monotone operators and monotone operators with

perturbation. These mixed monotone operators and monotone operators

are e-concave-convex operators and e-concave operators respectively. With-
out using compactness or continuity, we obtain the existence and uniqueness

of fixed points by monotone iterative techniques and properties of cones.

Our main results extended and improved some existing results. Also, we
applied the results to some differential equations.

1. Introduction and preliminaries

Throughout the paper, E is a real Banach space with norm ‖ · ‖. P is a cone

in E if it satisfies:

(1) if x ∈ P , λ ≥ 0 then λx ∈ P ;

(2) if x ∈ P , −x ∈ P then x = θ,

where θ is zero in E, P+ = P − {θ}.
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We denote by P̊ the interior set of P and the set Ph = {x ∈ E | x ∼ h}. The

Banach space E is partially ordered by a cone P ⊂ E, i.e. x ≤ y if and only if

y − x ∈ P .

We say that P is a normal cone if there exists a constant N > 0 such that

for all x, y ∈ E, θ ≤ x ≤ y implies ‖x‖ ≤ N‖y‖, and the smallest N is called the

normality constant of P . For e ∈ P+, set

Ce = {x ∈ E | there exist positive numbers α, β such that αe ≤ x ≤ βe}.

For the sake of convenience, we introduce some definitions. For more details

see [2].

Definition 1.1. A : P × P → P is said to be a mixed monotone operator if

A(x, y) is increasing in x, and decreasing in y, i.e. ui, vi ∈ P (i = 1, 2), u1 ≤ u2,

v1 ≥ v2 imply A(u1, v1) ≤ A(u2, v2).

Definition 1.2. Let A : Ce×Ce → Ce be an operator and e ∈ P+. Suppose

that there exists an η(u, v, t) > 0 such that

A(tu, t−1v) ≥ t(1 + η(u, v, t))A(u, v) for all u, v ∈ Ce, 0 < t < 1.

Then A is called an e-concave-convex operator.

Definition 1.3. Let A : P → P be an operator and e ∈ P+. Suppose that

Ae ∈ Ce, there exists a real number η = η(x, t) > 0 such that

A(tx) ≥ t(1 + η)Ax, for all x ∈ Ce, 0 < t < 1.

Then A is called a generalized e-concave operator.

Definition 1.4. A : P ×P → P is a mixed monotone operator. An elements

x ∈ P is called a fixed point of A if A(x, x) = x.

Definition 1.5. An operator B : P → P is said to be sub-homogeneous if

it satisfies:

B(tx) ≥ tBx, for all t ∈ (0, 1), x ∈ P .

Definition 1.6. A : P × P → P is a mixed monotone operator. If x, y ∈ P ,

x ≤ y such that x ≤ A(x, y), A(y, x) ≤ y, then (x, y) is called a coupled lower-

upper fixed point.

Mixed monotone operators, e-concave operators and e-concave-convex op-

erators were introduced by Guo and Lakshmikantham [2]. Thereafter, many

authors have investigated mixed monotone operators and obtained meaningful

and important results (see [6], [7], [10]–[14]). These results not only have impor-

tant significance in theory, but also have widespread applications in engineering,

chemistry, biology, etc.
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In [17], Zhao and Du studied fixed points of generalized e-concave (genera-

lized e-convex) operators and applied the results to the singular boundary value

problems for second order differential equations. The main results from their

papers is as follows:

Theorem 1.7 (Theorem 1.1 in [17]). Let A : P → P be an incresing genera-

lized e-concave. Then:

(a) A has at most one fixed point in Ce;

(b) Suppose P is a normal cone of E and one of the following conditions is

satisfied:

(A1) inf
x∈Ce

η(x, t) > 0;

(A2) For all t ∈ (0, 1), η(x, t) is nonincreasing with respect to x ∈ Ce and

there exists w0 ∈ Ce such that Aw0 ≤ w0;

(A3) For all t ∈ (0, 1), η(x, t) is nondecreasing with respect to x ∈ Ce and

there exists v0 ∈ Ce such that v0 ≤ Av0;

(A4) For all t ∈ (0, 1), η(x, t) is nondecreasing with respect to x ∈ Ce and

there exists x0 ∈ Ce such that

lim
t→0+

η(x0, t) = +∞.

Then A has a fixed point in Ce;

(c) If A has a positive fixed point x∗ ∈ Ce, then constructing successively the

sequence xn = Axn−1 (n = 1, 2, . . .), for any initial x0 ∈ Ce, we have

‖xn − x∗‖e → 0 (n→∞);

(d) If A has a positive fixed point x∗ ∈ Ce, then

max{x ∈ Ce | x ≤ Ax} = min{y ∈ Ce | Ay ≤ y} = x∗.

In [16], Zhao investigated the existence and uniqueness of fixed points for

mixed monotone e-concave-convex operators and applied the results to an inte-

gral equation of polynomial type which possesses items of measurable functions.

They proved the following theorem:

Theorem 1.8 (Theorem 3.1 in [16]). Suppose P is a normal cone of a real

Banach space E, e ∈ P+, A : Ce×Ce → Ce is a mixed monotone and e-concave-

convex operator. Assume that one of the following conditions is satisfied:

(A5) There exists sequence {tn} ⊂ (0, 1) and {sn} ⊂ (0, 1) such that

tn → 0+, inf
u,v∈Ce

{η(u, v, tn)} > 0,

sn → 1−, inf
u,v∈Ce

{η(u, v, sn)} > 0;

(A6) For any t ∈ (0, 1), η(u, v, t) is non-increasing with respect to u ∈ Ce,

non-decreasing with respect to v ∈ Ce;
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(A7) For any t ∈ (0, 1), η(u, v, t) is non-decreasing with respect to u ∈ Ce,

non-increasing with respect to v ∈ Ce, and there exist x0, y0 ∈ Ce, x0 ≤
y0 such that lim

t→0+
η(x0, y0, t) = +∞.

Then A has exactly one fixed point. Moreover, constructing successively se-

quences

xn = A(xn−1, yn−1), yn = A(yn−1, xn−1), n = 1, 2, . . . ,

for any initial values x0, y0 ∈ Ce, we have that

‖xn − x∗‖ → 0, ‖yn − x∗‖ → 0, n→∞.

In [8], the authors presented the definition of the t−η(t, u, v) mixed monotone

model operator and gave a new existence and uniqueness theorem of fixed point

of these operators. One of the main results of the paper [8] is the following

theorem.

Theorem 1.9 (Theorem 2.2 in [8]). Let P be a normal and solid cone of a

real Banach space E, and h > θ. For a class of operators A = B + λC + D,

where λ ≥ 0 is a constant, we assume that

(A8) B : Ph×Ph → Ph is a mixed monotone operator, and there exists a func-

tion α : Ph × Ph × (0, 1)→ (0, 1) and u0, v0 ∈ Ph, u0 ≤ v0 such that

(a) for all x, y ∈ Ph, t ∈ (0, 1), B(tx, t−1y) ≥ tα(t,x,y)B(x, y);

(b) u0 ≤ B(u0, v0)+λC(u0, v0)+Du0 and B(v0, u0)+λC(v0, u0)+Dv0.

(A9) C : Ph×Ph → Ph is a mixed monotone operator, and there exists a func-

tion β : (0,+∞)→ (1,+∞) such that, for all x, y ∈ Ph, t > 0,

C(tx, t−1y) ≥ tβ(t)C(x, y);

(A10) D : P → P satisfies the following conditions:

(a) D(x− y) = Dx−Dy, for all x, y ∈ P , x ≥ y;

(b) D(tx) = tD(x), for all x ∈ P , t ≥ 0.

Suppose that

γ(t) = inf
x,y∈[u0,v0]

tα(t,x,y) > t
[
1 + λc(1− tβ(t)−1)

]
, t ∈ (0, 1),

where c = inf{r | C(x, y) ≤ rB(x, y), x, y ∈ [u0, v0]}. Then there exists a unique

fixed point x∗ in [u0, v0] such that A(x∗, x∗) = x∗. Moreover, for any initial

values x0 ∈ [u0, v0], constructing successively the sequences xn = A(xn−1, xn−1),

n = 1, 2, . . ., we have ‖xn − x∗‖ → 0, as n→∞.

Motivated by the above works, this paper considers the existence and unique-

ness of fixed points for monotone e-concave operators and mixed monotone

e-concave-convex operators with perturbation. We will consider the following

equations

(1.1) A(x, x) +B(x, x) = x,
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or

(1.2) Ax+Bx = x,

where A : Ce × Ce → Ce is a e-concave-convex and mixed monotone operators

and A : Ce → Ce is e-concave and increasing operators, and B is an increasing

sub-homogeneous operator. We obtain the unique positive solution of (1.1) and

(1.2). Our results extend and improve the main results of [17], [16], [8], [5], [9]

and [4].

The rest of this paper is organized as follows. In Section 2, we consider the

existence and uniqueness of fixed points for monotone e-concave operators or

mixed monotone e-concave-convex operators with perturbation. In Section 3,

we give an example to demonstrate the application of our theoretical results.

2. Main results

In this section, we consider the existence and uniqueness of fixed points for

monotone e-concave operators or mixed monotone e-concave-convex operators

with perturbation under appropriate conditions. We always assume that E is

a real Banach space with a partial order induced by a normal cone P of E. Take

e ∈ P+ and Ce as given in Section 1. The following lemma is an important result

that is used the proofs of our main results.

Lemma 2.1 (see [15]). Let E be a real ordered Banach space, P is a normal

cone in E, e ∈ P+, and A : Ce × Ce → Ce a mixed monotone operator. There

exists a function η : : (0, 1) × Ce × Ce → (0,+∞) such that, for all x, y ∈ Ce,
t ∈ (0, 1), we have

A(tx, t−1y) ≥ t[1 + η(t, x, y)]A(x, y).

If (u0, v0) ∈ Ce × Ce is coupled lower-upper fixed point of A, and

ξ(t) = inf
x,y∈[u0,v0]

η(t, x, y) > 0, t ∈ (0, 1),

then A has exactly one fixed point x∗ in Ce. Moreover, constructing successively

the sequence xn = A(xn−1, xn−1), n = 1, 2, . . . , for any initial value x0 ∈ Ce, we

have ‖xn − x∗‖ → 0 as n→∞.

Now let give our results as follows.

Theorem 2.2. Let P be a normal cone in E, P+ = P − {θ}, e ∈ P+. We

assume that:

(H1) A : Ce × Ce → Ce is a mixed monotone and e-concave-convex operator

and in addition one of the following three conditions is satisfied:

(L1) for any ε ∈ (0, 1), there exists δ ∈ (ε, 1), such that

inf
u0≤u, v≤v0

η(u, v, δ) > 0;
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(L2) for any t ∈ (0, 1), η(u, v, t) is non-increasing with respect to u ∈ Ce
and non-decreasing with respect to v ∈ Ce;

(L3) for any t ∈ (0, 1), η(u, v, t) is non-decreasing with respect to u ∈ Ce
and non-increasing with respect to v ∈ Ce;

(H2) B : P × P → P is a mixed monotone operator and for all t ∈ (0, 1),

x, y ∈ P , the operator B satisfies B
(
tx, t−1y

)
≥ tB(x, y);

(H3) u0, v0 ∈ Ce, u0 ≤ v0,

u0 ≤ A(u0, v0) +B(u0, v0), A(v0, u0) +B(v0, u0) ≤ v0.

Then

(a) the operator equation x = A(x, x) + B(x, x) has a unique solution x∗

in [u0, v0];

(b) for any initial values x0, y0 ∈ [u0, v0], constructing successively the se-

quences

xn = A(xn−1, yn−1) +B(xn−1, yn−1),

yn = A(yn−1, xn−1) +B(yn−1, xn−1),

for n = 1, 2, . . ., we have ‖xn − x∗‖ → 0, ‖yn − x∗‖ → 0 as n→∞.

Proof. First we define an operator

T (x, y) = A(x, y) +B(x, y), x, y ∈ [u0, v0].

Then T is a mixed monotone operator and

T (v0, u0) = A(v0, u0) +B(v0, u0) ≤ v0.

Since v0 ∈ Ce, A(u0, v0) ∈ Ce, then there exists constant c > 0 such that

cA(u0, v0) ≥ v0. Thus

(2.1) T (v0, u0)− cA(u0, v0) ≤ v0 − cA(u0, v0) ≤ 0.

From (2.1), we obtain

T (x, y) ≤ T (v0, u0) ≤ cA(u0, v0) ≤ cA(x, y), x, y ∈ [u0, v0].

According to the assumptions (H1) and (H2), for any t ∈ (0, 1), we know

T (tx, t−1y) = A(tx, t−1y) +B(tx, t−1y)(2.2)

≥ t [1 + η(x, y, t)]A(x, y) + tB(x, y)

= tA(x, y) + tB(x, y) + tη(x, y, t)A(x, y)

≥ t(A(x, y) +B(x, y)) + tη(x, y, t)
1

c
T (x, y)

= t

[
1 +

1

c
η(x, y, t)

]
T (x, y).
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Set

(2.3) un = T (un−1, vn−1), vn = T (vn−1, un−1), n = 1, 2, . . .

Then u0 ≤ v0 and (2.3) implies u1 ≤ v1. Noting that there exists t′ such that

u0 ≥ t′v0, we can get un ≥ u0 ≥ t′v0 ≥ t′vn, n = 1, 2, . . . It is clear that

(2.4) u0 ≤ u1 ≤ . . . ≤ un ≤ . . . ≤ vn ≤ . . . ≤ v1 ≤ v0.

So, if we set

(2.5) tn = sup{t′ > 0 | un ≥ t′vn}, n = 0, 1, . . . ,

then we know that, for n = 0, 1, dots, un ≥ tnvn. Also that un+1 ≥ un ≥ tnvn ≥
tnvn+1. So we get tn+1 ≥ tn. Thus we have

0 < t0 ≤ t1 ≤ . . . ≤ tn ≤ tn+1 ≤ . . . < 1.

So there exists lim
n→∞

tn = t′′, where 0 < t′′ ≤ 1.

(i) Now we will show t′′ = 1 under the assumption (L1). Otherwise, we have

0 < t′′ < 1. From (L1), there exists δ ∈ (t′′, 1) such that

ϕ , inf
u0≤u, v≤v0

η(u, v, δ) > 0.

Applying (2.2) and (2.5) we obtain that

un+1 = T (un, vn) ≥ T
(
tnvn,

1

tn
un

)
= T

(
tn
δ
δvn,

δ

tn

1

δ
un

)
≥ tn

δ
T

(
δvn,

1

δ
un

)
≥ tn

[
1 +

1

c
η(vn, un, δ)

]
T (vn, un)

≥ tn
(

1 +
1

c
ϕ

)
T (vn, un) = tn

(
1 +

1

c
ϕ

)
vn+1.

Thus, by (2.5), we have tn+1 ≥ tn(1 + ϕ/c) .

Let n→∞, then t′′ ≥ t′′(1 + ϕ/c) > t′′. This is a contradiction. Hence, we

know t′′ = 1.

(ii) Now we shall show that t′′ = 1 under the assumption (L2). Otherwise,

we have 0 < t′′ < 1. Applying (2.2), (2.5) and (L2), we obtain that

un+1 = T (un, vn) ≥ T
(
tnvn,

1

tn
un

)
= T

(
tn
t′′
t′′vn,

t′′

tn

1

t′′
un

)
≥ tn
t′′
T

(
t′′vn,

1

t′′
un

)
≥ tn

[
1 +

1

c
η
(
vn, un, t

′′)]T (vn, un)

≥ tn
[
1 +

1

c
η(v0, u0, t

′′)

]
T (vn, un) = tn

[
1 +

1

c
η
(
v0, u0, t

′′)]vn+1.

Thus, by (2.5), we have

tn+1 ≥ tn
[
1 +

1

c
η
(
v0, u0, t

′′)].
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Let n→∞, then

t′′ ≥ t′′
[
1 +

1

c
η
(
v0, u0, t

′′)] > t′′.

This is a contradiction. Hence, we know t′′ = 1.

(iii) Now we will prove that t′′ = 1 under the assumption (L3). Otherwise,

we have 0 < t′′ < 1. Applying (2.2), (2.5) and (L3), we obtain that

un+1 = T (un, vn) ≥ T
(
tnvn,

1

tn
un

)
= T

(
tn
t′′
t′′vn,

t′′

tn

1

t′′
un

)
≥ tn
t′′
T

(
t′′vn,

1

t′′
un

)
≥ tn

[
1 +

1

c
η
(
vn, un, t

′′)]T (vn, un)

≥ tn
[
1 +

1

c
η
(
u0, v0, t

′′)]T (vn, un) = tn

[
1 +

1

c
η
(
u0, v0, t

′′)]vn+1.

Thus, by (2.5), we have

tn+1 ≥ tn
[
1 +

1

c
η
(
u0, v0, t

′′)].
Let n→∞, then

t′′ ≥ t′′
[
1 +

1

c
η
(
u0, v0, t

′′)] > t′′.

This is a contradiction. Hence, we know t′′ = 1.

Thus for any natural number p, we get that

θ ≤ un+p − un ≤ vn − tnvn = (1− tn)vn ≤ (1− tn)v0, n = 0, 1, . . . ,(2.6)

θ ≤ vn − vn+p ≤ vn − un ≤ vn − tnvn ≤ (1− tn)v0, n = 0, 1, . . .(2.7)

Since the cone P is normal we have, for n, p = 1, 2, . . .,

(2.8) ‖un+p − un‖ ≤ N(1− tn)‖v0‖, ‖vn − vn+p‖ ≤ N(1− tn)‖v0‖,

where N is the normality constant of P . So ‖un+p− un‖ → 0, ‖vn− vn+p‖ → 0

as n → ∞. Hence we know that {un}, {vn} are Cauchy sequences. Because E

is complete, there exist u∗, v∗ such that un → u∗, vn → v∗ as n→∞. By (2.4),

we know that un ≤ u∗ ≤ v∗ ≤ vn with u∗, v∗ ∈ [u0, v0], and

(2.9) θ ≤ v∗ − u∗ ≤ vn − un ≤ (1− tn)v0.

Then ‖v∗−u∗‖ ≤ N(1− tn)‖v0‖. Letting n→∞, we have ‖v∗−u∗‖ → 0. Thus

u∗ = v∗. Let x∗ : = u∗ = v∗, then we have

(2.10) un+1 = T (un, vn) ≤ T (x∗, x∗) ≤ T (vn, un) = vn+1, n = 1, 2, . . .

Let n→∞, we have x∗ = T (x∗, x∗). That is, x∗ is a fixed point of T in [u0, v0].

Now we prove that x∗ is the unique fixed point of T in [u0, v0]. Suppose x is

another fixed point of T in [u0, v0] and x 6= x∗. Then

u0 ≤ T (x, x) = x ≤ v0.
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Repeating the above iterative procedure (2.6)–(2.10), we have un ≤ x ≤ vn.

Thus u∗ = x = x∗ = v∗.

Now, we construct successively the sequences

xn = T (xn−1, yn−1), yn = T (yn−1, xn−1), n = 1, 2, . . .

for any initial points x0, y0 ∈ [u0, v0]. Applying the mixed monotonicity of the

operator T , we obtain that

T (u0, v0) ≤ T (x0, y0) ≤ T (v0, u0).

It means that u1 ≤ x1 ≤ v1. Similarly, u1 ≤ y1 ≤ v1. By applying the same

method used in (2.3)–(2.10), we have un ≤ xn ≤ vn, un ≤ yn ≤ vn, which

implies that ‖xn − x∗‖ → 0, ‖yn − x∗‖ → 0. �

Remark 2.3. In the Theorem 2.2, if we reduce the operators A and B to the

operator of one variable, and reduce η(x, y, t) to η(x, t) correspondingly, then we

obtain the same conlusions. That is, the operator sum equation x = Ax+Bx has

a unique solution in Ce, and we have the iterative sequence xn = Axn−1+Bxn−1
such that ‖xn − x∗‖ → 0.

Theorem 2.4. Let P be a normal cone in E, P+ = P − {θ}, and e ∈ P+.

For a class of operators T = A+ λB+C, where λ ≥ 0 is a constant, we assume

that:

(H4) A : Ce × Ce → Ce is a mixed monotone operator and e-concave-convex

operator, and inf
x,y∈[u0,v0]

η(x, y, t) > 0;

(H5) B : Ce×Ce → Ce is a mixed monotone operator, and there exists a func-

tion ϕ(t) : (0,+∞)→ (1,+∞) such that

B

(
tx,

y

t

)
≥ ϕ(t)B(x, y), where x, y ∈ Ce, t > 0;

(H6) C : P × P → P is a mixed monotone operator and for all t ∈ (0, 1),

x, y ∈ P , operator C satisfied C(tx, t−1y) ≥ tC(x, y);

(H7) u0, v0 ∈ Ce, u0 ≤ v0,

u0 ≤ A(u0, v0) + λB(u0, v0) + C(u0, v0),

A(v0, u0) + λB(v0, u0) ≤ v0 + C(v0, u0).

Then, the operator equation x = T (x, x) has a unique solution x∗ in [u0, v0].

Moreover, for any initial values x0 ∈ [u0, v0], constructing successively the se-

quences xn = T (xn−1, xn−1), n = 1, 2, . . ., we have ‖xn − x∗‖ → 0, as n→∞.

Proof. For any x, y ∈ [u0, v0], since A(v0, u0), B(u0, v0) ∈ Ce, there exists

constant c′ > 0 such that

B(x, y) ≥ B(u0, y) ≥ B(u0, v0) ≥ c′A(v0, u0) ≥ c′A(v0, y) ≥ c′A(x, y).



280 T. Wang — Z. Hao

For any x, y ∈ [u0, v0], since A(u0, v0) ∈ Ce and v0 ∈ Ce, there exists constant

c > 0 such that cv0 ≤ A(u0, v0). Then

cT (v0, u0)−A(u0, v0) ≤ cv0 −A(u0, v0) ≤ 0.

So we obtain

cT (x, y) ≤ cT (v0, u0) ≤ A(u0, v0) ≤ A(x, y).

Hence, for all x, y ∈ [u0, v0], t ∈ (0, 1), we have

T (tx, t−1y) =A
(
tx, t−1y

)
+ λB

(
tx, t−1y

)
+ C

(
tx, t−1y

)
≥ t[1 + η(x, y, t)]A(x, y) + λϕ(t)B(x, y) + tC(x, y)

= tA(x, y) + λtB(x, y) + tC(x, y)

+ tη(x, y, t)A(x, y) + λ(ϕ(t)− t)B(x, y)

≥ tT (x, y) + tη(x, y, t)cT (x, y) + λ(ϕ(t)− t)c′A(x, y)

≥ tT (x, y) + tη(x, y, t)cT (x, y) + λ(ϕ(t)− t)c′cT (x, y)

≥ t
[
1 + η(x, y, t)c+ λ

(
ϕ(t)

t
− 1

)
c′c

]
T (x, y).

Let

ξ(t) = η(x, y, t)c+ λ

(
ϕ(t)

t
− 1

)
c′c,

thus according to inf
x,y∈[u0,v0]

η(x, y, t) > 0, we know ξ(t) > 0 and

T (tx, t−1y) ≥ t[1 + ξ(t)]T (x, y).

According to Lemma 2.1, the operator equation x = T (x, x) has a unique solution

x∗ in [u0, v0]. Moreover, for any initial values x0 ∈ [u0, v0], constructing succes-

sively the sequences xn = A(xn−1, xn−1), n = 1, 2, . . ., we have ‖xn − x∗‖ → 0,

as n→∞. �

Remark 2.5. Comparing this result with above Theorem 1.9 (Theorem 2.2

of [8]), we notice three differences. Firstly, the operator B in (A8) of [8] needs

the condition B(tx, t−1y) ≥ tα(t,x,y)B(x, y), where tα(t,x,y) ∈ (0, 1). In the proof

of Theorem 2.2 in [8], authors let η(x, y, t) = tα(t,x,y)−1 − 1 ∈ (0, 1). This means

that they changed the condition of the operator B to satisfying B(tx, t−1y) ≥
t[1+η(x, y, t)]B(x, y), where 0 < t[1+η(x, y, t)] < 1. But, in our Theorem 2.4, we

let the operator A also satisfy the condition A(tx, t−1y) ≥ t[1+η(x, y, t)]A(x, y).

Here we need only η(x, y, t) > 0.

Secondly, we replaced the special function tβ(t) in (A9) of [8] with the function

ϕ(t) in (H5). Obviously, our function is more general.

Finally, we generalize the operator D in (A10) of [8] from one variable to

two variables. Meanwhile, we generalize the operator D from homogeneous to

subhomogeneous. This means that our Theorem 2.4 improves Theorem 2.2 of [8].
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Since Theorem 2.2 of [8] improved the Theorem 2.1 of [5], our Theorem 2.4 also

improved Theorem 2.1 of [5].

Taking B = θ in our Theorem 2.2, we get the following corollary.

Corollary 2.6. Let P be a normal cone in E, e ∈ P+ = P − {θ} and

operator A : Ce × Ce → Ce be a mixed monotone and e-concave-convex. We

assume that :

(H8) u0, v0 ∈ Ce, there have u0 ≤ v0, u0 ≤ A(u0, v0) ≤ A(v0, u0) ≤ v0;

(H9) one of the following conditions is satisfied

(L1) for any ε ∈ (0, 1), there exists δ ∈ (ε, 1), such that

inf
u0≤u, v≤v0

η(u, v, δ) > 0;

(L2) for any t ∈ (0, 1), η(u, v, t) is non-increasing with respect to u ∈ Ce
and non-decreasing with respect to v ∈ Ce;

(L3) for any t ∈ (0, 1), η(u, v, t) is non-decreasing with respect to u ∈ Ce
and non-increasing with respect to v ∈ Ce.

Then:

(a) the operator equation x = A(x, x) has a unique solution x∗ in [u0, v0];

(b) for any initial values x0, y0 ∈ [u0, v0], constructing successively the se-

quences

xn = A(xn−1, yn−1), yn = A(yn−1, xn−1), n = 1, 2, . . . ,

we have ‖xn − x∗‖ → 0, ‖yn − x∗‖ → 0.

Remark 2.7. Comparing the above Theorem 1.8 (Theorem 3.1 of [16] )

with our Corollary 2.6, we can see that Theorem 3.1 of [16] utilizes one of the

assumptions (A5)–(A7) to construct a coupled lower-upper fixed point first and

then to obtain the existence of a fixed point. But in our Corollary 2.6, the

coupled lower-upper fixed point has been given as an assumption. This gives the

differences between (A5) and (L1), (A7) and (L3).

We can remove the condition

{tn} ⊂ (0, 1), tn → 0+, inf
u,v∈Ce

{η(u, v, tn)} > 0

from (A5) in our (L1). Also we can remove the condition that there exist x0, y0 ∈
Ce, x0 ≤ y0 such that

lim
t→0+

η(x0, y0, t) = +∞

from (A7) in our (L3). Note, we keep (L2) is the as same as (A6).

Because the above Theorem 1.8 (Theorem 3.1 of [16] ) improves Theorem 2.1

and Theorem 3.2 of [9] when t(1 + η(u, v, t)) = tα(t) and t(1 + η(u, v, t)) =

tα(t,u,v), respectively. Consequently, we can make a similar comparison between
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our Corollary 2.6 and Theorem 2.1 and Theorem 3.2 of [9]. To some extent, our

Corollary 2.6 extends Theorem 2.1 and Theorem 3.2 of [9] also.

Remark 2.8. In the Corollary 2.6, if we reduce the operator A(u, v) to A(u),

and reduce η(u, v, t) to η(u, t), then we can obtain the same conclusion as the

above Theorem A (Theorem 1.1 of [17]). Theorem 1.1 of [17] improved the main

results in [4]. Consequently, our result Corollary 2.6 improved the main results

of [4] also.

In the following theorem, we obtain the solution of the nonlinear eigenvalue

equation λx = A(x, x) and discuss its dependency on the parameter.

Theorem 2.9. Assume that the conditions in the above Corollary 2.6 are

satisfied and 0 < t[1 + η(x, y, t)] < 1 for all t ∈ (0, 1). Then there exists λ > 0

such that the operator equation λx = A(x, x) has a unique solution xλ in [u0, v0].

Furthermore, we have the following conclusions:

(R1) if t[1 + η(u, v, t)] > t1/2, t ∈ (0, 1), then xλ is strictly decreasing in λ,

that is, 0 < λ1 < λ2 implies xλ1
> xλ2

;

(R2) if t[1 + η(u, v, t)] > tβ, t ∈ (0, 1), β ∈ (0, 1), then xλ is continuous in λ,

that is, λ→ λ0(λ0 > 0) implies ‖xλ − xλ0
‖ → 0;

(R3) if t[1 + η(u, v, t)] > tβ, t ∈ (0, 1), β ∈ (0, 1/2), then lim
λ→∞

‖xλ‖ = 0,

lim
λ→0+

‖xλ‖ =∞.

Proof. For any fixed λ > 0, from corollary 2.6 we know that A/λ : Ce×Ce →
Ce is mixed monotone and satisfies(

1

λ
A

)(
tx, t−1y

)
≥ 1

λ
t[1 + η(x, y, t)]A(x, y) = t[1 + η(x, y, t)]

(
1

λ
A

)
(x, y).

From (H8), we get that u0, v0 ∈ Ce, u0 ≤ v0, u0 ≤ A(u0, v0) ≤ A(v0, u0) ≤ v0
and A(u0, v0) ∈ Ce, A(v0, u0) ∈ Ce. So, there exist λ > 0 such that

u0 ≤
1

λ
A(u0, v0) ≤ 1

λ
A(v0, u0) ≤ v0.

Then, from Corollary 2.6, we know that A/λ has a unique solution xλ in [u0, v0].

Thus λxλ = A(xλ, xλ).

(1) First we prove (R1). Suppose 0 < λ1 < λ2, then we have xλ1
, xλ2

∈ Ce.
So there exists t such that xλ1

> txλ2
, xλ2

> txλ1
. Let

t0 = sup{t > 0 | xλ1 > txλ2 , xλ2 > txλ1}.

Then we have 0 < t0 < 1 and

(2.11) xλ1
> t0xλ2

, xλ2
> t0xλ1

.
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Applying the mixed monotonicity of the operator A, we get

λ1xλ1
= A(xλ1

, xλ1
) ≥ A

(
t0xλ2

, t−10 xλ2

)
≥ t0[1 + η(xλ2

, xλ2
, t0)]A(xλ2

, xλ2
) = t0[1 + η(xλ2

, xλ2
, t0)]λ2xλ2

,

λ2xλ2
= A(xλ2

, xλ2
) ≥ A

(
t0xλ1

, t−10 xλ1

)
≥ t0[1 + η(xλ1

, xλ1
, t0)]A(xλ1

, xλ1
) = t0[1 + η(xλ1

, xλ1
, t0)]λ1xλ1

.

Furthermore, we get

xλ1
≥ t0[1 + η(xλ2

, xλ2
, t0)]λ−11 λ2xλ2

, xλ2
≥ t0[1 + η(xλ1

, xλ1
, t0)]λ−12 λ1xλ1

.

Noting that t0[1 + η(xλ2
, xλ2

, t0)]λ−11 λ2 > t0, from the definition of t0, we have

t0[1 + η(xλ1 , xλ1 , t0)]λ−12 λ1 ≤ t0.

Let η(x, y, t) = tα(t)−1 − 1. Then tα(t) = t[1 + η(x, y, t)] for α(t) ∈ [0, 1). Thus

we can get

xλ1
≥ tα(t0)0 λ−11 λ2xλ2

, xλ2
≥ tα(t0)0 λ−12 λ1xλ1

.

So

λ−11 λ2t
α(t0)
0 > t0, λ−12 λ1t

α(t0)
0 ≤ t0,

which implies that

(2.12) t0 ≥
(
λ1
λ2

)1/(1−α(t0))

.

Then

(2.13) xλ1
≥ λ−11 λ2

(
λ1
λ2

)α(t0)/(1−α(t0))
xλ2

=

(
λ2
λ1

)(1−2α(t0))/(1−α(t0))

xλ2
.

Note that t[1 + η(x, y, t)] > t1/2 implies α(t0) < 1/2. Consequently, we have

(λ2/λ1)(1−2α(t0))/(1−α(t0)) > 1. Thus, xλ1 > xλ2 .

(2) Next we prove (R2). Let tα(t) = t[1 + η(x, y, t)], but t[1 + η(x, y, t)] > tβ .

Then α(t) < β, for t ∈ (0, 1). From (2.11) and (2.12), we have(
λ1
λ2

)1/(1−β)

xλ2 ≤
(
λ1
λ2

)1/(1−α(t0))

xλ2 ≤ xλ1(2.14)

≤ 1

t0
xλ2
≤
(
λ2
λ1

)1/(1−α(t0))

xλ2
≤
(
λ2
λ1

)1/(1−β)

xλ2
,(

λ1
λ2

)1/(1−β)

xλ1
≤
(
λ1
λ2

)1/(1−α(t0))

xλ1
≤ xλ2

(2.15)

≤ 1

t0
xλ1
≤
(
λ2
λ1

)1/(1−α(t0))

xλ1
≤
(
λ2
λ1

)1/(1−β)

xλ1
.

Moreover,

θ ≤ xλ1
−
(
λ1
λ2

)1/(1−β)

xλ2
≤
[(

λ2
λ1

)1/(1−β)

−
(
λ1
λ2

)1/(1−β)]
xλ2

.
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Then, from the normality of cone P and (2.14), we get

‖xλ1 − xλ2‖ ≤
∥∥∥∥xλ1 −

(
λ1
λ2

)1/(1−β)

xλ2

∥∥∥∥+

∥∥∥∥(λ1λ2
)1/(1−β)

xλ2 − xλ2

∥∥∥∥
≤ N

[(
λ2
λ1

)1/(1−β)

−
(
λ1
λ2

)1/(1−β)]
‖xλ2
‖+

∣∣∣∣(λ1λ2
)1/(1−β)

− 1

∣∣∣∣‖xλ2
‖,

where N is the normality constant. Let λ1 → λ−2 , then we have ‖xλ1−xλ2‖ → 0.

Similarly, let λ2 → λ+1 , from (2.15), we have ‖xλ2
− xλ1

‖ → 0. Then the

conclusion (R2) holds.

(3) Finally we prove (R3). Let tα(t) = t[1 +η(x, y, t)], t ∈ (0, 1), α(t) ∈ [0, 1).

Then t[1 + η(x, y, t)] ≥ tβ , β ∈ (0, 1/2) tells us that α(t) ≤ β < 1/2. Let

λ1 = 1, λ2 = λ in (2.13), then we have

x1 ≥ λ(1−2α(t0))/(1−α(t0))xλ ≥ λ(1−2β)/(1−β)xλ, λ > 1.

Thus ‖xλ‖ ≤ N/λ(1−2β)/(1−β), for all λ > 1, where N is the normality constant.

Let λ→∞, then we get ‖xλ‖ → 0.

Similarly, if we let λ1 = λ, λ2 = 1 in (2.13), then we get

xλ ≥ λ−(1−2α(t0))/(1−α(t0))x1 ≥ λ(1−2β)/(1−β)x1, 0 < λ < 1.

So ‖xλ‖ ≥ N−1λ−(1−2β)/(1−β)‖x1‖, for all 0 < λ < 1, where N is the normality

constant. Let λ→ 0+, then we know ‖xλ‖ → ∞. �

Remark 2.10. For the operator equation λx = Ax, where A(x) is an e-

concave and increasing operator, we can still discuss its dependency to the pa-

rameter and obtain the solution of the nonlinear eigenvalue equation. These

conclusions can be obtained by reducing the operator A(x, x) in Theorem 2.9

to A(x).

3. Applications

In this section, we will give an example to demonstrate the application of

our main result Theorem 2.2.

Let

(3.1) u(x) =

∫
G

k(x, y)[f(y, u(y), u(y)) + h(y, u(y), u(y))] dy,

where G ⊂ Rn is a measurable set, k(x, y) is nonnegative and measurable on

G×G and

f(x, u, v) = a0 +

m∑
i=1

ai(x)uαi + am+1(x)u+

n∑
j=1

bj(x)vβj ,

h(x, u, v) =

p∑
s=1

cs(x)uγs +

q∑
l=1

dl(x)vµl ,
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where 0 < αi < 1, −1 < βj < 0, 0 < γs < 1, −1 < µl < 0, ai, bj , cs, dl
are nonnegative and measurable on G (i = 1, . . . ,m, j = 1 . . . , n, s = 1, . . . , p,

l = 1, . . . , q). We denote the measure of G by mG, the set of all measurable

functions on G by M(G), and

M+(G) = {u(x) ∈M(G) | u(x) is bounded and nonnegative, u(x) 6≡ 0}.

Theorem 3.1. Suppose 0 < mG ≤ ∞. Assume that there exist nonnegative

measurable functions ϕ1(x), ϕ2(x) not identical to zero, and g(x) ∈M+(G) such

that

ϕ2(y)g(x) ≤ k(x, y) ≤ ϕ1(y)g(x), for all x, y ∈ G,∫
G

ϕ1f(x, g(x), g(x)) dx <∞,
∫
G

ϕ1h(x, g(x), g(x)) dx <∞,

and there exists a real number R > 0 such that
m∑
i=0

ai(x) ≥ Ram+1(x), x ∈ G,

and R+ u > 1, where u = sup
x∈G

u(x). Then we have:

(a) Equation (3.1) has exactly one solution u∗(x) in M+(G).

(b) Constructing successively the sequence of functions

κn =

∫
G

k(x, y)[f(y, κn−1(y), κn−1(y)) + h(y, κn−1(y), κn−1(y))]dy,

for n = 1, 2, . . . and for any initial function κ0(x) ∈ M+(G), then

{κn(x)} must converge to u∗(x) on M+(G).

Proof. First, we will show condition (H1) of Theorem 2.2 is satisfied. Let

E = M(G), the order of E derived by the cone

P = {u(x) ∈ E | u(x) ≥ 0, x ∈ G}, e = g(x),

C(u, v) =

∫
G

k(x, y)(a0 +

m∑
i=1

ai(x)uαi +

n∑
j=1

bj(x)vβj ) dy,(3.2)

D(u) =

∫
G

k(x, y)am+1(x)u(y) dy,(3.3)

A(u, v) =

∫
G

k(x, y)f(y, u(y), v(y)) dy, for all u, v ∈ P.(3.4)

Then

A(u, v) = C(u, v) +D(u),

Ce = {u(x) ∈ E | αug(x) ≤ u(x) ≤ βug(x), ∃βu ≥ αu > 0}.

For α = max
1≤i≤m, 1≤j≤n

{αi,−βj}, then

C

(
ru,

1

r
v

)
≥ rαC(u, v), for all u, v ∈ P+, 0 < r < 1.
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For any u(x) ∈ Ce, we know

u = sup
x∈G

u(x) and R+ u > 1.

Then, if u ≤ 1, we have

a0 +

m∑
i=1

ai(x)uαi ≥ Ram+1(x)u(x).

If u > 1, we have

a0 +

m∑
i=1

ai(x)uαi ≥ R

u
am+1(x)u(x).

So

a0 +

m∑
i=1

ai(x)uαi ≥ R

R+ u
am+1(x)u(x).

Then combining (3.2) with (3.3), we know that

(3.5) C(u, v) ≥ R

R+ u
D(u) , l(u, v)D(u),

From (3.4) and (3.5), we have

C(u, v) ≥ A(u, v)

1 + (l(u, v))−1
.

Hence,

A

(
ru,

1

r
v

)
− rA(u, v) = C

(
ru,

1

r
v

)
+D(ru)− rC(u, v)− rD(u)

≥ [rα − r]C(u, v) ≥ 1

1 + (l(u, v))−1
[rα − r]A(u, v),

So

A

(
ru,

1

r
v

)
≥ r
(

1 +
1

1 + (l(u, v))−1
[rα−1 − 1]

)
A(u, v).

Let

η =
1

1 + (l(u, v))−1
(rα−1 − 1) with r ∈ (0, 1) and α ∈ (0, 1).

Then η(u, v, r) is non-increasing in u, and non-decreasing in v, since l(u, v) is non-

increasing in u and non-decreasing in v. So the condition (L2) of Theorem 2.2

is satisfied.

For any u, v ∈ Ce, take αu,v > 0, such that

αu,vg(x) ≤ u(x) ≤ 1

αu,v
g(x), αu,vg(x) ≤ v(x) ≤ 1

αu,v
g(x),
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for x ∈ G. Then

A(u, v) ≥ g(x)η(g, g, αu,v)

∫
G

ϕ2(y)f(y, g(y), g(y)) dy,

A(u, v) ≤ g(x)αu,vη

(
αu,vg,

1

αu,v
g, αu,v

)∫
G

ϕ1(y)f(y, g(y), g(y)) dy,

Thus we know that A : Ce×Ce → Ce is a mixed monotone and e-concave-convex

operator, and condition (H1) of Theorem 2.2 is satisfied.

Next, we will prove condition (H2) of Theorem 2.2 is satisfied. Let

B(u, v) =

∫
G

k(x, y)h(y, u(y), v(y)) dy,

then

B

(
ru,

1

r
v

)
=

∫
G

k(x, y)

( p∑
s=1

cs(x)(ru)γs +

q∑
l=1

dl(x)

(
1

r
v

)µl
)
dy

=

∫
G

k(x, y)

( p∑
s=1

cs(x)rγsuγs +

q∑
l=1

dl(x)
1

rµl
vµl

)
dy

> r

∫
G

k(x, y)

( p∑
s=1

cs(x)uγs +

q∑
l=1

dl(x) vµl

)
dy = rB(u, v).

If u1 > u2, v1 < v2, it is clear that B(u1, v1) > B(u2, v2). Then B satisfies the

condition (H2) of Theorem 2.2.

Finally, we prove that condition (H3) of Theorem 2.2 is satisfied. Take

x0, y0 ∈ Ce and x0 ≤ y0. Let 0 < t0 < 1 be such that t20x0 ≤ y0. Then we

have

T (x0, y0) = A(x0, y0) +B(x0, y0) and T (x0, y0) ∈ Ce.
So, there exists m such that mx0 ≤ T (x0, y0). Let

m =
1

1 + η(x0, y0, t0)/c
.

Take c the same as in Theorem 2.2. Let u0 = t0x0, v0 = y0/t0. Then we have

v0 = t0x0 =
1

t0
t20x0 ≤

1

t0
y0 = w0.

So

T (u0, v0) = T

(
t0x0,

1

t0
y0

)
≥ t0

(
1 +

1

c
η(x0, y0, t0)

)
T (x0, y0) ≥ t0x0 = u0,

T (v0, u0) = T

(
1

t0
y0, t0x0

)
≤ 1

t0

(
1 +

1

c
η

(
1

t0
y0, t0x0, t0

))−1
T (y0, x0) ≤ 1

t0
y0 = v0.

Now all conditions of Theorem 2.2 are satisfied, thus we end the proof of Theo-

rem 3.1. �
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Remark 3.2. Note that the problem (3.1) can’t be solved by theorems in

[17], [16], [8], [5], [9], [4].
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