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STABILITY OF MULTIVALUED ATTRACTORS

Miroslav Rypka

Abstract. Stimulated by recent problems in the theory of iterated func-

tion systems, we provide a variant of the Banach converse theorem for

multivalued maps. In particular, we show that attractors of continuous
multivalued maps on metric spaces are stable. Moreover, such attractors

in locally compact, complete metric spaces may be obtained by means of

the Banach theorem in the hyperspace.

1. Introduction

Multivalued maps and their attractors are studied in relation to dynamical

systems, for instance iterated function systems, backward dynamics or differen-

tial inclusions. Throughout the whole paper, we consider continuous multivalued

maps with compact values which generate continuous operators on hyperspaces,

as discussed in the next section.

Our motivation is the following. We would like to state a variant of Jánoš

theorem for operators on hyperspaces induced by multivalued maps. Under

Jánoš theorem, we understand the results on the converse of Banach theorem

developed in [18], [26], [17], [24], [25], [31]. In spite of the metric nature of the

Banach theorem, these papers provide several topological conditions on a map

to be a contraction.
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Although the theory of the converses to the Banach theorem seems to be

complete, analogical problems in the theory of multivalued maps (for detailed

treatment of attractors of multivalued maps, see e.g. [1], [2], [29]) and iterated

function systems are still addressed. Since the Hutchinson’s seminal work [16]

(see also [32]), the metric approach to attractors of IFSs dominated. With only

a few exceptions ([20]–[23]), the attractors of IFS were obtained by means of the

Banach theorem. Recently, it was pointed out ([5], [10], [11]) that the attractor

of IFS is a topological notion and the contractivity of maps in an IFS is only

a sufficient condition for the existence of an attractor (for different approaches,

see e.g. [6], [7], [27]). The novelty of this fact is caused by the prevailing interest

in affine IFSs on Euclidean spaces, for which the existence of an attractor is

equivalent to the existence of equivalent metric on original space with respect to

which the maps in IFS are contractions [5].

The question whether it holds for any IFS with a point-fibred attractor A

was raised by Kameyama in [19] (see also [5] and [6]). Does there exist a metric

on A such that Hutchinson operator F |A is a contraction and the topology on A

induced by this metric is the same as the topology of X restricted to A?

Similar problem for multivalued maps was stated by Fryszkowski ([17]). Let

X be an arbitrary nonempty set, 2X be the family of all nonempty subsets of X

and F : X → 2X be a multivalued map. Find necessary conditions and (or)

sufficient conditions for the existence of a complete metric d on X such that

given c ∈ (0, 1), F would be a Nadler ([29]) multivalued c-contraction with respect

to d, that is

dH(F (x), F (y)) ≤ cd(x, y) for all x, y ∈ X,

where dH denotes the Hausdorff metric generated by d.

In contrast to Fryszkowski’s problem or Kameyama’s question, we shift the

search for the metric with respect to which a map is contracting on the hyper-

space. In particular, we will investigate when continuous multivalued operators

with attractors are contractions.

We will proceed in the following way. Next section recalls the basic notions,

e.g. multivalued maps, attractors and strict attractors. Main results can be found

in Section 3. Theorem 3.1 shows that attractors of continuous multivalued maps

on metric spaces are stable fixed points of associated operators on hyperspace.

The stability of the attractor is implied by the monotonicity of such operators.

If an original space is, in addition, locally compact (e.g. Euclidean), there exists

a metric equivalent to the Hausdorff metric with respect to which the multivalued

operator is a contraction. This result, stated in Corollary 3.5, may be regarded

as a variant of Jánoš theorem for multivalued operators. The same conditions

as in Theorem 3.1 imply also the stability of strict attractors. Hence, we express

the analogical results for strict attractors in Corollaries 3.3 and 3.7.
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Finally, a few examples are provided. Example 3.8 illustrates the relation

of our theory to Fryszkowski’s problem. It proves that multivalued maps gen-

erating contracting operators need not be contractions even on compact metric

spaces. Example 3.10 shows that we cannot drop the monotonicity condition.

The attractivity of multivalued operators that are not generated by multivalued

maps of multivalued operators does not imply the contractivity of the operators

even on compact spaces.

2. Notation

Throughout the whole paper, we deal with a metric space (X, d).

Definition 2.1. We denote by K(X) the space of nonempty compact sub-

sets of X, called the hyperspace, endowed usually with the Hausdorff metric dH
defined (cf. e.g. [16])

dH(A, B) := inf{r > 0 : A ⊂ Or(B) and B ⊂ Or(A)},

where Or(A) := {x ∈ X : ∃a ∈ A : d(x, a) < r)} and A,B ∈ K(X).

An alternative definition reads

dH(A, B) := max
{

sup
a∈A

d(a,B), sup
b∈B

d(b, A)
}

= max
{

sup
a∈A

(
inf
b∈B

d(a, b)
)
, sup
b∈B

(
inf
a∈A

d(a, b)
)}
.

Remark 2.2. The Hausdorff metric is induced by d. However, there exist

metrics on K(X) which cannot be induced by any d. Thus, we will denote

a general metric on K(X) by D.

Notice that a hyperspace (K(X), dH) inherits most of the features of a metric

space (X, d).

Lemma 2.3 (cf. e.g. [3, Table 1]). Let (X, d) be a metric space. The hyper-

space (K(X), dH) is locally compact if and only if (X, d) is locally compact.

We will often treat a neighbourhood of a compact set as a subset of a hyper-

space.

Definition 2.4. Let A ∈ (K(X), dH). We will write Nr(A) := {B ∈ K(X) :

dH(A,B) < r}.

In general, letters such as B, N , O, U will stand for classes of sets.

Definition 2.5. A map F : X → K(X) is called a multivalued map and the

operator F : K(X)→ K(X), defined by

F (A) =
⋃
x∈A

F (x),

is called a multivalued operator.
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Throughout the paper, all multivalued maps and operators are continuous

with respect to d and dH .

Remark 2.6. A continuous multivalued map on a metric space generates

a continuous multivalued operator (cf. [1], [9]).

Definition 2.7. A multivalued operator F : K(X)→ K(X) is called mono-

tone if F (A ∪B) = F (A) ∪ F (B) for all A,B ∈ K(X).

Remark 2.8. Any multivalued operator induced by a multivalued map is

obviously monotone.

Remark 2.9. The condition for F given in Definition 2.7 is in fact stronger

than the monotonicity which is usually understood as follows. For any A,B ∈
K(X), A ⊆ B implies that F (A) ⊆ F (B).

Definition 2.10. Let (X, d) and (Y, d′) be metric spaces. A map f : X → Y

is a contraction (contracting) if, for some c ∈ [0, 1),

d′(f(x), f(y)) ≤ cd(x, y) for any x, y ∈ X.

Remark 2.11. We will distinguish contractive maps (see [14]) for which

d′(f(x), f(y)) < d(x, y) for any x, y ∈ X, x 6= y.

Multivalued maps and operators are often generated by iterated function

systems (IFSs).

Definition 2.12. An iterated function system consists of finite number of

continuous maps fi, i = 1, . . . , N , on a metric space (X, d).

Any IFS yields a continuous multivalued map F : X → K(X),

F (x) =

N⋃
i=1

{fi(x)},

and a continuous multivalued operator F : K(X)→ K(X),

F (A) =
⋃
x∈A

F (x),

called Hutchinson operator.

Usually, IFSs of contracting maps fi on complete metric spaces are treated.

They possess an attractor A∗ ∈ K(X) due to the Banach theorem (cf. [16]).

Notice that this theorem gives not only the existence and attractivity but also

the speed of convergence necessary for the visualization of attractors.

Let us start the discussion of the notion of attractor with the single-valued

case.
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Definition 2.13. Let (X, d) be a metric space and f : X → X continuous

with a fixed point x∗. The point x∗ is called an attractor (attractive) if there

exists an open set U ⊂ X, x∗ ∈ U , such that

lim
n→∞

d(fn(x), x∗) = 0, for all x ∈ U.

The set

B(x∗) =
{
x ∈ X : lim

n→∞
d(fn(x), x∗) = 0

}
is called the basin of attraction of x∗.

Remark 2.14. The basin of attraction is the maximal neighbourhood U from

Definition 2.13 and f(B(x∗)) ⊂ B(x∗).

Let us also recall the notion of stability of a fixed point.

Definition 2.15. Let (X, d) be a metric space and f : X → X continuous

with a fixed point x∗ ∈ X. The point x∗ is called stable if, for any ε > 0,

there exists δ > 0 such that d(fn(x), x∗) < ε for any n ∈ N and x ∈ X with

d(x, x∗) < δ. Fixed point x∗ is asymptotically stable if it is attractive and stable.

Analogically to Definition 2.13, we define an attractor in a hyperspace.

Definition 2.16. Let (X, d) be a metric space and F : X → K(X) be a con-

tinuous multivalued map. Let A∗ ∈ K(X) be such that F (A∗) = A∗ and an open

set U ⊂ K(X) be such that A∗ ∈ U and lim
n→∞

dH(Fn(B), A∗) = 0 for all B ∈ U .

Then A∗ is called an attractor of the multivalued map F .

The previous definition may be formulated also for an IFS.

Definition 2.17. Let {X; f1, . . . , fN} be an IFS and F its Hutchinson op-

erator with a fixed point A∗ ∈ K(X). The set A∗ is an attractor of the IFS if

there exists an open set U ⊂ K(X) such that A∗ ∈ U and, for all B ∈ U ,

lim
n→∞

dH(Fn(B), A∗) = 0.

However, this definition has its drawbacks in hyperspaces as can be seen from

the following example.

Example 2.18. The IFS {([−1, 1], deucl); f(x) = 3
√
x} possesses three over-

lapping attractors

A1 = {−1}, U1 = K([−1, 0)),

A2 = {1}, U2 = K((0, 1]),

A3 = {−1, 1}, U3 = K([−1, 1] \ {0}) \ (U1 ∪ U2).

In order attractors do not overlap, we introduce the notion of a strict attrac-

tor (see [13], [10], [11]).
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Definition 2.19. A compact set A∗ ⊂ X is a strict attractor of a multivalued

map F : X → K(X), if there exists an open set X ⊃ U ⊃ A∗ such that

Fn(S)→ A∗ for all S ∈ K(U).

The maximal open set U with the above property is called the basin of attraction

of the attractor A∗ (with respect to F ) and denoted by B(A∗).

Remark 2.20. The existence of the maximal open set B(A∗) is proven in [11].

Remark 2.21. Strict attractor is a topological invariant ([8, Lemma 2.8])

and it is an attractor.

3. Results

We are ready to prove the stability of multivalued attractors and even con-

tractivity of corresponding operators on basins of attraction.

Theorem 3.1. Any attractor of continuous multivalued map on a metric

space (X, d) is asymptotically stable.

The proof of the theorem proceeds in two steps. First, we show the stability

of A∗ in K(A∗). Then we extend it to the neighbourhood of A∗.

Lemma 3.2. Let (A∗, d) be a compact metric space. Let F : K(A∗)→ K(A∗)

be induced by continuous multivalued map F : A∗ → K(A∗) such that F (A∗) = A∗

and there exists ε > 0 such that

lim
n→∞

dH(Fn({B}), A∗) = 0, for all B ∈ Nε(A∗).

Then A∗ is asymptotically stable.

Proof. We only need to show the stability of A∗. If A∗ is a singleton, then

it is obviously stable on K(A∗).

Suppose that A∗ is not a singleton, which means diam(A∗) > 0. We will

proceed by contradiction. Assume A∗ is not stable. Then there exist ε > 0 and

a sequence

{Bn} ∈ K(A∗), dH(Bn, A
∗) < min

{
1

n
, ε

}
such that there exists kn ∈ N such that dH(F kn(Bn), A∗) > ε. Observe that

kn →∞, otherwise the operator F would not be continuous.

Since F is continuous (see Remark 2.6), for any n ∈ N, the set Bn ⊂ K(A∗)

defined by Bn = {B ∈ Nε(A∗) : dH(F kn(B), A∗) > ε} is open.

In the following part, we will employ the monotonicity of F (see Remark 2.8).

Notice that, for any set C ∈ K(A∗), C ⊂ B ∈ Bn,

(3.1) dH(F kn(C), A∗) > ε

since dH(F kn(B), A∗) ≤ dH(F kn(C), A∗) according to Definition 2.1.
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We will show that there exists a set K ∈ K(A∗) such that K belongs to the

subsequence of Bn. For B ⊆ K(A∗), denote by B̃ the set {C ∈ Nε(A∗); exists B ∈
B , B ⊂ C}. The set B̃ is open if B is open. Furthermore, let (B′ ∩ B̃)−1 stand

for the set {B ∈ B : exists B′ ∈ B′, B ⊂ B′} which is again open for B, B′ open.

Observe that, for any n1 ∈ N, there exists n2 ∈ N such that Bn1n2
:=(

B′n2
∩ B̃n1

)−1
is nonempty and open. Since Bn1

is nonempty and open, there

exists an open ball On1
⊂ Bn1

with radius rn1
. For n2 ∈ N, n2 > 1/rn1

,

consider the set Bn2
. The inequality dH(Bn2

, A∗) < rn1
and (3.1) imply that(

Bn2 ∩ B̃n1

)−1
is nonempty. It is also open, since Bn1 and Bn2 are open. We will

simplify the notation using Bn1n2
instead of

(
Bn2
∩ B̃n1

)−1
.

Again, since Bn1n2
is open, there exists an open ball On1n2 ⊂ Bn1n2 with

radius rn1n2
and n3 ∈ N such that

Bn1n2n3
:=
(
Bn3
∩ B̃n1n2

)−1
is nonempty and open. Repeating this process to infinity, we obtain the sequence

(3.2) Bn1 ,Bn1n2 ,Bn1n2n3 ,Bn1,n2,n3n4 , . . .

Observe that the sequence is nested, i.e.

Bn1
⊃ Bn1n2

⊃ Bn1n2n3
⊃ Bn1n2n3n4

⊃ . . .

and, for any p ∈ N,

dH(Fnp(B), A∗) > ε, B ∈ Bn1n2...np .

Last, consider the sequence of closures

(3.3) Bn1
, Bn1n2

, Bn1n2n3
, Bn1n2n3n4

, . . .

where Bn1...nk
is compact in K(A∗) for any k. Since the sequence (3.3) is also

nested, the intersection B =
∞⋂
i=1

Bn1n2...ni
is nonempty. Continuity of F implies

dH(Fni(K), A∗) ≥ ε, i ∈ N, K ∈ B,

which is a contradiction to the attractivity of A∗ in Nε(A∗). �

Proof (Continuation of the proof of Theorem 3.1). In the final part of the

proof, we will use the asymptotic stability of A∗ on a compact subset of Nε(A∗)
and the uniform continuity of F on a feasible compact subset of K(X). We will

proceed by contradiction.

Assume that A∗ is not stable. Then there exist ε > 0, a sequence of sets

Bn ∈ U , dH(Bn, A
∗) < 1/n and a sequence in ∈ N such that

dH(F in(Bn), A∗) > ε, for all n ∈ N.

For the sake of simplicity, let us denote F i(Bn) by Bin.
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Observe that

B =

∞⋃
n=1

Bn ∪A∗

is a compact subset of X as well as

B̂ :=

∞⋃
i=1

F i(B).

The compactness of B̂ implies that for all ε > 0 there exists m0 ∈ N such that

dH
(
F i
(
B̂
)
, A∗

)
< ε for all i ≥ i0.

Similarly, from the monotonicity of F , we have

∀ ε ∃ i0 ∈ N ∀ i ≥ i0 ∀Bin ∃Cin ∈ K(A∗) ∩ U : dH(Binn , C
i
n) < ε.

Consider closed neighbourhood U ⊂ K(A∗) such that U ⊂ Nε(A∗).
The asymptotic stability of F implies

(3.4) ∀ ε > 0 ∃ k0 ∈ N : dH(F k(B), A∗) <
ε

2
, k ≥ k0, ∀B ∈ U .

The operator F is uniformly continuous on any compact subset of K(X), which

implies that, for any k ∈ N and ε > 0, there exists δ0 > 0 such that

(3.5) dH(F k(B), F k(B′)) <
ε

2
, for all B,B′ ∈ K(B̂), dH(B,B′) < δ0.

Let k0 fulfill (3.4) for our chosen ε and δ0 fulfill (3.5) for k = k0. From the

attractivity of A∗ and from Fn
(
B̂
)
→ A∗, we get

(3.6) ∀ δ > 0 ∃n0 ∈ N ∀ i ∈ N ∀Bin ∃Cin ∈ K(A∗) : dH(Bin, C
i
n) < δ.

Notice that there always exists Cin ∈ K(A∗) such that

(3.7) dH(Cin, A
∗) ≤ dH(Bin, A

∗).

Consider a sequence {in} ∈ N such that

(3.8) dH(Binn , A
∗) ≥ ε

and if dH(Bin, A
∗) ≥ ε then i > in. Observe that in → ∞, otherwise F would

not be continuous.

Let us investigate the behaviour of F k0 onBin−k0n for n ∈ N such that in > k0.

From (3.4) and (3.5), we obtain (notice that dH(Cin−k0n , A∗) < ε follows from

(3.6) and (3.7))

dH(F k0(Bin−k0n ), A∗) ≤ dH(F k0(Bin−k0n ), Cin−k0n ) + dH(F k0(Cin−k0n ), A∗)

implying dH(Binn , A
∗) < ε which is a contradiction to (3.8). Therefore, the

attractor A∗ is stable. �

Since a strict attractor is an attractor, we obtain:



Stability of Multivalued Attractors 105

Corollary 3.3. Any strict attractor of continuous multivalued map on

a metric space is asymptotically stable.

Adding condition of local compactness on an original space X, a multivalued

map with an attractor generates a contraction on the basin of attraction.

Lemma 3.4 (cf. e.g. [31, Theorem 2.1]). Let (X, d) be a locally compact metric

space. Let f : X → X be a continuous map with a fixed point x∗ ∈ X such that

lim
n→∞

d(fn(x), x∗) = 0, for any x ∈ X and x∗ be stable. Then there exists metric

d′ on X equivalent to d such that f is a contraction on (X, d′).

Theorem 3.1, Lemmas 2.3 and 3.4 imply a corollary.

Corollary 3.5. Let (X, d) be a locally compact metric space. Let F : X →
K(X) be a ultivalued map with an attractor A∗ and an open set U ⊂ K(X) be such

that A∗ ∈ U , F (U) ⊂ U and lim
n→∞

dH(Fn(B), A∗) = 0 for all B ∈ U . Then there

exists metric D on U equivalent with dH such that the operator F : K(X)→ K(X)

is a contraction on U with respect to D.

Remark 3.6. In order to define precisely the contraction on a neighbourhood

U of an attractor, we need in addition to previous results the forward invariance

of U with respect to F . Such maximal neighbourhood of A∗ is its basin of

attraction (see Remark 2.14).

Furthermore, for strict attractors and their basins of attraction, we immedi-

ately receive the following.

Corollary 3.7. Let (X, d) be a locally compact metric space. Let F : X →
K(X) be a multivalued map with a strict attractor A∗ and basin of attraction

B(A∗). There exists metric D on K(B(A∗)) equivalent with dH such that the

operator F : K(X)→ K(X) is a contraction on (K(B(A∗)), D).

The contractivity of operator F provides us with the speed of convergence to

the attractor in addition to its existence and uniqueness in the basin of attrac-

tion. The previous two corollaries obviously apply to any Euclidean space X.

Together, it means that all attractors of IFSs in Euclidean spaces are “Banach”

in hyperspace (compare with [7], [30]).

The metric D may be constructed by means of [31] or [18]. However, D

need not be induced by any d on X. In other words, multivalued maps inducing

contracting operators on hyperspace do not fulfill Fryszkowski’s condition in

general. We will show it in the following example.

Example 3.8. Consider the IFS F = {(X, d), f1, f2}, X = {(x, y) ∈ R2 :

x2 + y2 = 1}, where d is ordinary Euclidean metric and f1(x, y) := (x, y),

f2(x, y) := (x cosα− y sinα, x sinα + y cosα), where α/π is irrational. Observe
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that X is a (strict) attractor of F in X and, according to Corollary 3.5, there

exists metric D on K(X) equivalent to dH such that operator F is a contraction

with respect to D.

We will show that there is no metric d′ on X equivalent to d such that

multivalued map F : X → K(X) associated to the IFS is a contraction (with

respect to d′ and d′H). Let us prove it by contradiction.

Suppose, there exists such metric d′. Then we can find a point x0 ∈ X and

ε > 0 such that d′(x, x′) ≤ d(f2(x), f2(x′)), x, x′ ∈ Nε(x0). Otherwise, f2 would

be contractive with a fixed point according to [14, Theorem 1] and d′ would not

be equivalent to d.

Since 0 < α < 2π, we can pick x, x′ ∈ Nε(x0) close enough so that

d(f2(x), {x, x′}) ≥ d(x, x′) and d(f2(x′), {x, x′}) ≥ d(x, x′).

From Definition 2.1, we obtain

d′H(F (x), F (x′)) = d′H({x, f2(x)}, {x′, f2(x′)}) = d′(f2(x), f2(x′)) ≥ d′(x, y),

which is a contradiction to contractivity of F with respect to d′ and d′H .

Remark 3.9. The attractor X in Example 3.8 is not point-fibred, as defined

in [20] (topologically contracting according to [6]). In contrast to [19] and [6],

the point-fibredness is not relevant for our results.

BA

C

Figure 1. Attracting operator on KC(I) which is not a contraction.



Stability of Multivalued Attractors 107

In general, an attracting operator on a compact hyperspace is not a contrac-

tion. Let us demonstrate that we can not drop the condition that the operator

is generated by a multivalued map.

Example 3.10. Let us denote by KC(I) the set of closed subintervals of

I = [0, 1], endowed with Euclidean metric. The space (KC(I), dH) is equivalent

to a filled triangle T = ABC, A = [0, 1], B = [1, 1], C = [0, 0] in R2 endowed

with the maximum metric (cf. e.g. [4]).

Inspired by the examples in [15, Theorem 10] and [31, Theorem 2.1], we will

construct an operator on K(I) which is attractive, but not a contraction. We

consider the space T as a union of triangles Tα, α ∈ [0, 1] with empty interiors and

the common point A as illustrated in Figure 1. Observe that there is a homotopy

h : T × [0, 1]→ T such that Tα = h(T1, α).

Similarly, as discussed in [10], consider the circle X which may be projected

to the set of real numbers and infinity on the real line R∗. Let f∗ : R∗ → R∗ be

such that f∗(x) = x+ 1, x 6=∞ and f∗(∞) =∞.

Observe that the corresponding map f : X → X is continuous with respect

to the Euclidean metric on the circle. Moreover, each point of X is attracted

to the point ∞ (see Figure 2). On the other hand, f is not a contraction since

f(X) = X (cf. [31]).

Figure 2. Construction of an attracting map which is not a contraction.

We can construct a homeomorphism g : X → T1 such that A = ∞. Define

a map G : T → T such that G(t) = h(g(f(g−1(pT (h−1(t))))), α) for t ∈ Tα, α > 0

and G(A) = A where pT : T × I → T is an ordinary projection.

The map G is obviously continuous (see Figure 2) and may be applied

on KC(I). Let us extend the map G : KC(I) → KC(I) to the whole hyper-

space K(I) and define a map Q : K(I) → K(I) by Q(D) = [min(D),max(D)],

which is continuous.
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Defining F : K(I) → K(I), F = G ◦ Q, we obtain an operator on K(I)

which has an attractor I. However, the operator F is not a contraction, since

Fn(K(I)) 9 {I} (see [31] and [15, Theorem 10]).
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