
Topological Methods in Nonlinear Analysis
Volume 53, No. 1, 2019, 127–150

DOI: 10.12775/TMNA.2018.042

c© 2019 Juliusz Schauder Centre for Nonlinear Studies
Nicolaus Copernicus University

ON THE LYAPUNOV STABILITY THEORY

FOR IMPULSIVE DYNAMICAL SYSTEMS

Everaldo Mello Bonotto — Ginnara M. Souto

Abstract. In this work, we establish necessary and sufficient conditions

for the uniform and orbital stability of a special class of sets on impul-
sive dynamical systems. The results are achieved by means of Lyapunov

functions.

1. Introduction

Impulsive systems describe phenomena where the continuous development of

a process is interrupted by abrupt changes of state. It is already known that the

study of impulsive dynamical systems is very challenging, especially when the

impulses occur on the phase space and not in time. Many real world problems

are described by impulsive systems. The reader may consult [1], [2], [8], [9], [11],

[12], [14]–[16], [18] for more details about the theory of impulsive systems and

some applications.

Qualitative properties of solutions as “asymptotic behavior” and “stability of

sets” are very important in the study of trajectories on dynamical systems. Al-

though there are many works of stability on impulsive dynamical systems, some

questions concerning attraction and stability still lack answers. For instance,

let (X,π;M, I) be an impulsive system and A ⊂ X be a nonempty set. There

2010 Mathematics Subject Classification. Primary: 37B25, 54H20; Secondary: 34A37.
Key words and phrases. Lyapunov functions; stability; dynamical systems; impulses.
The first author was supported in part by FAPESP grant # 2014/21224-7, FAPESP grant

# 2016/24711-1 and CNPq grant # 310497/2016-7.

The second author was supported by FAPESP grant # 2012/20933-9.

127



128 E.M. Bonotto — G.M. Souto

exist several examples where A = A \M is stable “in some sense” but A is not

stable, see Examples 3.4 and 3.5. The class of stable sets of the form A \M ,

A ⊂ X, is very important in impulsive systems since this class also includes

global attractors in the sense of [2]. Thereby, we aim to show necessary and

sufficient conditions to obtain results concerning the stability, orbital stability

and the uniform stability for sets under impulsive systems.

In the next lines, we describe the organization of this paper. Section 2 deals

with the basis of the theory of impulsive dynamical systems. In this section,

we present the construction of an impulsive system, we discuss the continuity of

a function which describes the times of meeting impulsive set and we exhibit the

general hypotheses that will be considered in the main results.

Section 3 concerns the main results and is divided into two subsections. In

Subsection 3.1, we establish results about the uniform stability, orbital stability

and the attraction. Proposition 3.9 shows that a relatively compact set A ⊂ X

is uniformly π̃-stable if and only if A is orbitally π̃-stable. The characterization

of the positive prolongation set of a relatively compact set is given in Proposi-

tion 3.11. In locally compact spaces, a relatively compact set A ⊂ X is uniformly

π̃-stable if and only if the positive prolongation set of A coincides with its closure,

see Theorem 3.13. In Theorem 3.15, we present sufficient conditions for a weakly

π̃-attractor set to be π̃-attractor. The last result from this subsection, namely

Proposition 3.16, exhibit conditions to show that the set A \M is contained in

the region of attraction of A ⊂ X.

In Subsection 3.2, we present conditions to obtain π̃-stability and orbital π̃-

stability for sets of the form A \M , A ⊂ X. The results are achieved by means

of Lyapunov functions. Theorem 3.19 concerns sufficient conditions for a set

A \M to be π̃-stable. In the case of orbital stability, see Theorem 3.20, Corolla-

ries 3.21 and 3.25. A result about instability is also presented in Theorem 3.22.

The existence of Lyapunov functions under stability conditions is presented in

Theorem 3.29.

2. Preliminaries

Let (X, d) be a metric space, R be the set of real numbers and

N = {1, 2, 3, . . .} be the set of all natural numbers. We denote by R+ the set

of non-negative real numbers and N0 = N ∪ {0}. Given A ⊂ X and ε > 0, let

B(A, ε) = {x ∈ X : d(x,A) < ε} and S(A, ε) = {x ∈ X : d(x,A) = ε}. We

use the notations ∂A and A to denote the boundary and the closure of A in X,

respectively.

The triple (X,π,R+) is called a semidynamical system (or a semiflow) on X

if the mapping π : X ×R+ → X is continuous with π(x, 0) = x and π(x, t+ s) =

π(π(x, t), s) for all x ∈ X and t, s ∈ R+. If R+ is replaced by R then the triple
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(X,π,R) will be called as a dynamical system (or a flow) on X. Along to this

text, we shall denote the system (X,π,R+) simply by (X,π).

The positive orbit of a point x ∈ X is given by π+(x) = {π(x, t) : t ∈ R+}.
Let A ⊂ X and ∆ ⊂ R+, we define

π(A,∆) = {π(x, t) : x ∈ A and t ∈ ∆} and π+(A) = {π+(x) : x ∈ A}.

For x ∈ X and t ∈ R+, we write F (x, t) = {y ∈ X : π(y, t) = x} and, for

D ⊂ X and J ⊂ R+, we define

F (D,J) = {F (x, t) : x ∈ D and t ∈ J}.

A point x ∈ X is called an initial point if F (x, t) = ∅ for all t > 0.

An impulsive dynamical system (IDS, for short) (X,π;M, I) consists of a se-

midynamical system (X,π), a nonempty closed subset M of X such that for

every x ∈M there exists εx > 0 satisfying

(2.1) F (x, (0, εx)) ∩M = ∅ and π(x, (0, εx)) ∩M = ∅,

and a continuous function I : M → X whose action we explain below in the

description of a positive impulsive trajectory. The set M is called the impulsive

set and the function I is called the impulse function. We also define

M+(x) =

(⋃
t>0

π(x, t)

)
∩M for all x ∈ X.

From the definition of M+(x), x ∈ X, and by condition (2.1), the mapping

φ : X → (0,+∞] given by

(2.2) φ(x) =

s if π(x, s) ∈M and π(x, t) /∈M for 0 < t < s,

+∞ if M+(x) = ∅,

is well defined. Note that if M+(x) 6= ∅, then φ(x) represents the least positive

time for which the trajectory of x ∈ X meets M . Thus for each x ∈ X, we call

π(x, φ(x)) the impulsive point of x.

The positive impulsive trajectory of x in (X,π;M, I) is an X-valued function

π̃x defined in an interval Jx ⊂ R+, 0 ∈ Jx, given inductively by the following rule:

if M+(x) = ∅, then π̃x(t) = π(x, t) for all t ∈ R+ and φ(x) = +∞. However,

if M+(x) 6= ∅, then φ(x) < +∞, π(x, φ(x)) = x1 ∈ M and π(x, t) /∈ M for

0 < t < φ(x). Then we define π̃x in [0, φ(x)] by

π̃x(t) =

π(x, t) if 0 ≤ t < φ(x),

x+1 if t = φ(x),

where x+1 = I(x1). Since φ(x) < +∞, the process now continues from x+1
onwards and so on. Notice that π̃x is defined on each interval [tn(x), tn+1(x)],
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where

t0(x) = 0 and tn+1(x) =

n∑
i=0

φ(x+i ), n = 0, 1, . . . ,

where x+0 := x. Hence, π̃x is defined on [0, tn+1(x)].

The process above ends after a finite number of steps, whenever M+(x+n ) = ∅
for some n ∈ N0. However, it continues infinitely if M+(x+n ) 6= ∅ for all n ∈ N0,

and in this case π̃x is defined on the interval [0, T (x)), where T (x) =
+∞∑
i=0

φ(x+i ).

The impulsive positive orbit of a point x ∈ X in (X,π;M, I) is defined by

the set

π̃+(x) = {π̃(x, t) : t ∈ [0, T (x))}.

Analogously to the non-impulsive case, an impulsive dynamical system satis-

fies the following standard properties: π̃(x, 0) = x and π̃(π̃(x, t), s) = π̃(x, t+ s)

for all x ∈ X and for all t, s ∈ [0, T (x)) such that t+ s ∈ [0, T (x)).

In the next lines, we discuss the continuity of the function φ defined in (2.2).

The reader may consult [8] for additional details.

Let (X,π) be a semidynamical system. Any closed set S ⊂ X containing x

(x ∈ X) is called a section or a λ-section through x, with λ > 0, if there exists

a closed set L ⊂ X such that:

(a) F (L, λ) = S;

(b) F (L, [0, 2λ]) is a neighbourhood of x;

(c) F (L, µ) ∩ F (L, ν) = ∅, for 0 ≤ µ < ν ≤ 2λ.

The set F (L, [0, 2λ]) is called a tube or a λ-tube and the set L is called a bar.

Now, let (X,π;M, I) be an IDS. Any tube F (L, [0, 2λ]) given by a section S

through x ∈ X such that S ⊂ M ∩ F (L, [0, 2λ]) is called TC-tube on x. We say

that a point x ∈ M fulfills the Tube Condition and we write TC, if there exists

a TC-tube F (L, [0, 2λ]) through x. In particular, if S = M ∩ F (L, [0, 2λ]) we

have a STC-tube on x and we say that a point x ∈ M fulfills the Strong Tube

Condition (we write STC), if there exists a STC-tube F (L, [0, 2λ]) through x.

The following result concerns the continuity of φ which is accomplished out-

side of M .

Theorem 2.1 ([8, Theorem 3.8]). Let (X,π;M, I) be an IDS. Assume that

no initial point in (X,π) belongs to the impulsive set M and that each element

of M satisfies the condition TC. Then φ is continuous at x if and only if x /∈M .

Let (X,π;M, I) be an impulsive dynamical system. Throughout this work,

we shall assume that the following conditions are satisfied:

(H1) No initial point in (X,π) belongs to the impulsive set M and each ele-

ment of M satisfies STC, consequently φ is continuous on X \M .

(H2) M ∩ I(M) = ∅.
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(H3) For each x ∈ X, the motion π̃(x, t) is defined for every t ≥ 0, that is,

[0,+∞) denotes the maximal interval of definition of π̃(x, t).

Under conditions (H1)–(H3), the impulsive system (X,π;M, I) behaves well

and several important properties can be obtained, see [7]–[2].

Given A ⊂ X and ∆ ⊂ R+, we denote

π̃(A,∆) = {π̃(x, t) : x ∈ A, t ∈ ∆} and π̃+(A) =
⋃
x∈A

π̃+(x).

If π̃+(A) ⊂ A, we say that A is positively π̃-invariant.

Next, we mention a result that will be useful later on.

Lemma 2.2 ([2, Corollary 3.9]). Let (X,π;M, I) be an IDS and x ∈ X \M .

Suppose that {xn}n∈N is a sequence in X which converges to x. Then, given

t ≥ 0, there is a sequence {εn}n∈N ⊂ R+ such that

εn
n→+∞−−−−−→ 0 and π̃(xn, t+ εn)

n→+∞−−−−−→ π̃(x, t).

In general, the closure of a positively π̃-invariant set is not positively π̃-inva-

riant, see Examples 3.4 and 3.5 in the next section. However, we may obtain

invariance of the closure of a positively π̃-invariant set by excluding the points

of M , see the next lemma.

Lemma 2.3 ([6, Lemma 3.37]). Let B ⊂ X be positively π̃-invariant. Then

B \M is positively π̃-invariant.

The positive limit set, the positive prolongation limit set and the positive

prolongation set of a subset A ⊂ X are given respectively by

L̃+(A) =
⋂
t≥0

⋃
τ≥t

π̃(A, τ), J̃+(A) =
⋂
ε≥0

⋂
t≥0

⋃
τ≥t

π̃(B(A, δ), τ)

and

D̃+(A) =
⋂
ε>0

⋃
t≥0

{π̃(B(A, ε), t).

For each x ∈ X, we set L̃+(x) = L̃+({x}), J̃+(x) = J̃+({x}) and D̃+(x) =

D̃+({x}). It is clear that L̃+(A), J̃+(A) and D̃+(A) are closed sets for all

A ⊂ X. Moreover, by Lemma 2.3, we conclude that L̃+(A) \M , J̃+(A) \M and

D̃+(A)\M are positively π̃-invariant sets. We have the following straightforward

result about impulsive limit sets.

Lemma 2.4 ([4, Lemma 3.27]). Let A ⊂ X. The following statements hold:

(a) y ∈ L̃+(A) if and only if there are sequences {xn}n∈N ⊂ A and {tn}n∈N ⊂
R+ such that tn

n→+∞−−−−−→ +∞ and π̃(xn, tn)
n→+∞−−−−−→ y;

(b) y ∈ J̃+(A) if and only if there are sequences {xn}n∈N ⊂ X, {tn}n∈N ⊂
R+ such that d(xn, A)

n→+∞−−−−→ 0, tn
n→+∞−−−−→ +∞ and π̃(xn, tn)

n→+∞−−−−→ y;
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(c) y ∈ D̃+(A) if and only if there are sequences {xn}n∈N ⊂ X and

{tn}n∈N ⊂ R+ such that d(xn, A)
n→+∞−−−−−→ 0 and π̃(xn, tn)

n→+∞−−−−−→ y.

For more details about the structure of these types of impulsive systems, the

reader may consult [2]–[5], [7]–[10], [13], [16], [17].

3. Main results

This section, which presents the main results, is divided into two subsections.

The first subsection concerns results about the uniform and orbital stability and

their relations. In the second subsection, we present results on the stability by

the use of Lyapunov functions.

In order to present the main results, we start by defining the concepts of

regions of attraction. Also, we recall the definitions of the stability, the uniform

stability and the orbital stability for impulsive systems.

Definition 3.1. The region of the weak attraction of a set A ⊂ X is defined

by

P̃w(A) =
{
x ∈ X : L̃+(x) ∩A 6= ∅

}
and the region of the attraction of A ⊂ X is defined by

P̃ (A) =
{
x ∈ X : L̃+(x) 6= ∅ and L̃+(x) ⊂ A

}
.

We say that a set A ⊂ X is a weak π̃-attractor if P̃w(A) is a neighbourhood of

A and a π̃-attractor if P̃ (A) is a neighbourhood of A.

Note that P̃ (A) ⊂ P̃w(A) for all A ⊂ X.

Lemma 3.2. The sets P̃ (A), P̃w(A), P̃ (A) \M and P̃w(A) \M are positively

π̃-invariant for all A ⊂ X.

Proof. Let x ∈ X be such that L̃+(x) 6= ∅ and t ≥ 0. Note that L̃+(π̃(x, t))

= L̃+(x). This shows that P̃ (A) and P̃w(A) are positively π̃-invariant. Using 2.3,

we conclude that the sets P̃ (A) \M and P̃w(A) \M are positively π̃-invariant.�

Next, we present the concepts of stability of a set A ⊂ X. Although the

definitions are stated in general situation and some results are proved in general

form, the meaningful case of investigation appears for a set A with A \M closed

in X \M .

Definition 3.3. A subset A ⊂ X is said to be:

(a) π̃-stable if for every ε > 0 and x ∈ A there exists a δ = δ(x, ε) > 0 such

that π̃(B(x, δ), [0,+∞)) ⊂ B(A, ε);

(b) uniformly π̃-stable if for every ε > 0 there exists a δ = δ(ε) > 0 such

that π̃(B(A, δ), [0,+∞)) ⊂ B(A, ε);
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(c) orbitally π̃-stable if for every neighbourhood U of A there exists a posi-

tively π̃-invariant neighbourhood V of A with V ⊂ U .

Let A ⊂ X be a nonempty set and suppose that A is stable in some sense. Is

the closure A stable too? In general, the answer is negative as the next examples

show.

Example 3.4. Let (R, π;M, I) be an IDS, where the semidynamical system

(R, π) is given by

π(x, t) = x+ t, x ∈ R and t ∈ R+,

M = {1} and I : M → R is given by I(1) = 0. Let A = [0, 1). See Figure 1.

I(M) M

I

A

Figure 1. π̃+(A) = A and π̃+(A) = [0,+∞).

Note that A is a π̃-attractor, orbitally π̃-stable and π̃-stable but it is not

uniformly π̃-stable. On the other hand, the set A is neither a π̃-attractor, nor it

is orbitally π̃-stable and π̃-stable.

Example 3.5. Let (R2, π;M, I) be an IDS, where the semidynamical system

(R2, π) is given by

π((x, y), t) = (x+ t, y), (x, y) ∈ R2 and t ≥ 0,

M = {(x, y) ∈ R2 : x = 2} and I : M → X is given by I(x, y) = (0, y/2),

(x, y) ∈M . Let A = [0, 2)× {0}. See Figure 2.

The set A is π̃-stable but it is neither orbitally π̃-stable nor uniformly π̃-

stable. However, the set A is neither π̃-stable, orbitally π̃-stable nor uniformly

π̃-stable. Moreover, A is a π̃-attractor with region of attraction P̃ (A) = {(x, y) ∈
R2 : x < 2}, while A is not a π̃-attractor.

In many cases, the points of M are responsible for destroying the stability of

A provided that A is stable in some sense. There are many unstable sets that

become stable when we exclude their impulsive points, for instance, as presented

in Examples 3.4 and 3.5, the set A is unstable while the set A \M is stable.

There is still no theory that characterizes the stability of sets of the form A\M .

The class of the sets A \M , A ⊂ X, is very important in the theory of impulsive

dynamical systems. For instance, a global attractor in the sense as presented

in [2], belongs to this class. In this way, we shall present results concerning

stability of sets of the form A \M , A ⊂ X. Moreover, we shall study results

about uniform stability for relatively compact sets.
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U0

z

M

z1

z2z+1

z3z+2
z4z+3
zn+1z+n

A

Figure 2. Impulsive trajectory of z ∈ R2. There is no positively π̃-
invariant neighbourhood V of A such that V ⊂ U0, where U0 is the hatched

area.

3.1. Uniform and orbital stability. When X is locally compact and A ⊂
X is compact, the concepts of the π̃-stability, orbital π̃-stability and the uniform

π̃-stability of A are equivalent. See the next result.

Theorem 3.6 ([7, Theorem 3.3], [9, Theorem 4.1]). Let (X,π;M, I) be

an IDS, X be locally compact and A be a compact subset of X. Then the following

conditions are equivalent :

(a) A is π̃-stable;

(b) A is orbitally π̃-stable;

(c) A is uniformly π̃-stable;

(d) D̃+(A) = A.

Remark 3.7. In Theorem 3.6, the implications (b)⇒ (a) and (c)⇒ (a) hold

for any metric space X and for any nonempty set A ⊂ X.

In continuous dynamical systems theory, the positive invariance of the closure

of a set is preserved provided this set is positively invariant. Nonetheless, this fact

is not true in general for impulsive systems (see Example 3.4). Under stability

condition, it is well-known that compact π̃-stable sets are positively π̃-invariant

sets, see [9, Theorem 2.3]. But we may not assure that the closure of a non-

compact positively π̃-invariant set still positively π̃-invariant, even if this set

is π̃-stable or orbitally π̃-stable, see Example 3.4. Yet, in the case of uniform

π̃-stability, we have the following straightforward result.
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Lemma 3.8. Let (X,π;M, I) be an IDS and A ⊂ X. If A ⊂ X is uniformly

π̃-stable then A is positively π̃-invariant.

The concepts of the uniform π̃-stability and the orbital π̃-stability are not

equivalent in general. However, we may relate the uniform π̃-stability of a rela-

tively compact set with the orbital π̃-stability of its closure. See the next result.

Proposition 3.9. Let (X,π;M, I) be an IDS and A ⊂ X be relatively com-

pact. Then the set A is uniformly π̃-stable if and only if A is orbitally π̃-stable.

Proof. First, let us assume that A is orbitally π̃-stable. Given ε > 0 there

exists a positively π̃-invariant neighbourhood V of A such that V ⊂ B(A, ε).

Since A is compact one can obtain δ = δ(ε) > 0 such that B(A, δ) ⊂ V . Conse-

quently, we obtain

π̃(B(A, δ), [0,+∞)) ⊂ π̃(V, [0,+∞)) ⊂ V ⊂ B(A, ε)

and we conclude that A is uniformly π̃-stable.

Now, let us assume that A is uniformly π̃-stable. Let U be a neighbourhood

of A. By compactness there is ε > 0 such that B(A, ε) ⊂ U . Since A is uniformly

π̃-stable there exists δ = δ(ε) > 0 such that π̃(B(A, δ), [0,+∞)) ⊂ B(A, ε),

that is,

π̃(B(A, δ), [0,+∞)) ⊂ B(A, ε).

Taking V = π̃(B(A, δ), [0,+∞)), we conclude that A is orbitally π̃-stable. �

Remark 3.10. According to the Proposition 3.9, we obtain the equivalence

(b)⇔ (c) from Theorem 3.6 for compact sets without assuming that X is locally

compact.

Let A ⊂ X. In general, the positive prolongation set D̃+(A) is not equal to

the set
⋃{

D̃+(a) : a ∈ A
}

, see [4, Example 3.29]. But, when A ⊂ X is compact

we get the equality D̃+(A) =
⋃{

D̃+(a) : a ∈ A
}

, see [4, Proposition 3.30]. In

the case of relatively compact sets, we have the following result.

Proposition 3.11. If A ⊂ X is relatively compact then

D̃+(A) =
⋃{

D̃+(a) : a ∈ A
}
.

Proof. It is enough to see that

D̃+(A) = D̃+(A) and D̃+(A) =
⋃{

D̃+(a) : a ∈ A
}

by [4, Proposition 3.30]. �

In Theorem 3.6, the equivalence (c) ⇔ (d) holds for compact sets in locally

compact spaces. If we assume that A ⊂ X is relatively compact and uniformly π̃-

stable, then we get the following result without assume that X is locally compact.
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Theorem 3.12. Let A ⊂ X be relatively compact and uniformly π̃-stable.

Then D̃+(A) = A.

Proof. Since D̃+(A) is closed we have A ⊂ D̃+(A). On the other hand, let

z ∈ D̃+(A). By Proposition 3.11 there is a ∈ A such that z ∈ D̃+(a). Conse-

quently, there are sequences {tn}n∈N ⊂ R+ and {an}n∈N ⊂ X with an
n→+∞−−−−−→ a

and

π̃(an, tn)
n→+∞−−−−−→ z.

Let ε > 0 be arbitrary. By the uniform π̃-stability of A, there exists

δ = δ(ε) > 0 such that

π̃(B(A, δ), [0,+∞)) ⊂ B(A, ε).

Then, for n sufficiently large, we have π̃(an, tn) ∈ B(A, ε) which implies in

z ∈ B(A, ε).

Since ε>0 is taken arbitrary, we have z∈
⋂
ε>0

B(A, ε)=A. Hence, D̃+(A)=A. �

Assuming X is locally compact, we obtain the converse of Theorem 3.12.

Theorem 3.13. Let (X,π;M, I) be an IDS, X be locally compact and

A ⊂ X be relatively compact. Then the set A is uniformly π̃-stable if and only if

D̃+(A) = A.

Proof. Assume that D̃+(A) = A. Since D̃+(A) = D̃+(A) it follows by

Theorem 3.6 that A is uniformly π̃-stable. But it is equivalent to A be uniformly

π̃-stable. The necessary condition follows by Theorem 3.12. �

Theorem 3.15 establishes sufficient conditions for a relatively compact set to

be π̃-attractor. Before presenting Theorem 3.15 we exhibit an auxiliary result.

Lemma 3.14 ([4, Lemma 3.31]). Let x /∈ M and y ∈ L̃+(x), then J̃+(x) ⊂
J̃+(y).

Theorem 3.15. Let (X,π;M, I) be an IDS and A ⊂ X be relatively com-

pact. Assume that A is uniformly π̃-stable and weakly π̃-attractor. Then A is

π̃-attractor and A ⊂ P̃ (A).

Proof. Since A is weakly π̃-attractor then there is an open set O in X such

that A ⊂ O ⊂ P̃w(A). We claim that O ⊂ P̃ (A). Indeed, let x ∈ O and take

v ∈ L̃+(x) ∩A.

First, let us assume that x /∈M . By Lemma 3.14 we have

L̃+(x) ⊂ J̃+(x) ⊂ J̃+(v) ⊂ D̃+(v) ⊂ D̃+(A),

where the last set inclusion follows by Proposition 3.11. By Theorem 3.12 we

have D̃+(A) = A. Therefore, L̃+(x) ⊂ A and x ∈ P̃ (A), that is, O ⊂ P̃ (A).
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Second, if x ∈ M , we may choose η ∈ (0, φ(x)) such that y = π̃(x, η) =

π(x, η) ∈ O \M . Then L̃+(y) ∩ A = L̃+(x) ∩ A 6= ∅ and using the proof of the

previous case we obtain L̃+(x) = L̃+(y) ⊂ A. Thus x ∈ P̃ (A), that is, O ⊂ P̃ (A).

Therefore, A is π̃-attractor.

At last, let us show that A ⊂ P̃ (A). Since A is uniformly π̃-stable it follows

that A is positively π̃-invariant, see Lemma 3.8. Thus ∅ 6= L̃+(x) ⊂ A for all

x ∈ A. �

As shown in Example 3.5 the set A is not contained in P̃ (A) while A \M ⊂
P̃ (A). In the next result, we present sufficient conditions for the set A to satisfy

the property A \M ⊂ P̃ (A).

Proposition 3.16. Let A ⊂ X be a relatively compact set such that A \M
is π̃-stable. Then A \M ⊂ P̃ (A).

Proof. Let x ∈ A \M and ε > 0. Then there is δ = δ(x, ε) > 0 such that

π̃(B(x, δ), [0,+∞)) ⊂ B(A \M, ε). Thus,

π̃+(x) ⊂
⋂
ε>0

B
(
A \M, ε

)
⊂ A.

Since A is a relatively compact set we obtain ∅ 6= L̃+(x) ⊂ A for all x ∈ A \M .

Hence, A \M ⊂ P̃ (A). �

3.2. Stability via Lyapunov functions. In this subsection, we present

sufficient conditions for the π̃-stability and the orbital π̃-stability for sets of the

form A \M , A ⊂ X, obtained by the use of Lyapunov functions (non-negative

scalar functions of the state which decrease monotonically along trajectories).

We also include a result about instability. First, we present an auxiliary result.

Lemma 3.17. Let (X,π;M, I) be an IDS and O ⊂ X be an open set such that

I(O∩M) ⊂ O. Assume that there exist x ∈ O and t0 > 0 such that π̃(x, t0) 6∈ O.

Then there exists τ ∈ (0, t0] such that π̃(x, [0, τ)) ⊂ O and π̃(x, τ) ∈ ∂O \M .

Proof. Let τ = min{t > 0 : π̃(x, t) /∈ O}. By the openness of O there is

ε ∈ (0, φ(x)) such that π̃(x, [0, ε)) ⊂ O and this fact shows that τ > 0.

We claim that τ 6=
n∑
i=0

φ(x+i ) for all n ∈ N0. In fact, if τ =
n∑
i=0

φ(x+i ) for

some n ∈ N0 then

π̃(x, τ) = x+n+1.

By the minimality of τ we have π(x+n , (0, φ(x+n ))) ⊂ O and, consequently, xn+1 =

π(x+n , φ(x+n )) ∈ O ∩M . Using the hypothesis I(O ∩M) ⊂ O we get x+n+1 =

I(xn+1) ∈ O which contradicts the definition of τ . Hence, τ 6=
n∑
i=0

φ(x+i ) for all



138 E.M. Bonotto — G.M. Souto

n ∈ N0. Thus, there exists k ∈ N0 such that

k−1∑
i=−1

ψ(x+i ) < τ <

k∑
i=−1

ψ(x+i ),

where ψ(x+−1) = 0 and ψ(x+i ) = φ(x+i ) for i = 0, . . . , k. Denote
k−1∑
i=−1

ψ(x+i ) by

η1 and
k∑

i=−1
ψ(x+i ) by η2. Since

π̃
(
x, (η1, τ)

)
= π

(
x+k , (0, τ − η1)

)
⊂ O, π̃(x, τ) = π

(
x+k , τ − η1

)
/∈ O

and π is continuous, it implies that π̃(x, τ) = π(x+k , τ − η1) ∈ ∂O. Now, note

that π̃(x, t) /∈ M for all t > 0, as I(M) ∩M = ∅ by condition (H2). Hence,

π̃(x, τ) ∈ ∂O \M . �

Remark 3.18. If A ⊂ X is such that d(I(x), A) < d(x,A) for all x ∈ M ,

then the set O = B(A, r) satisfies the condition I(O ∩M) ⊂ O.

Note in the next result that we do not need any hypothesis on the bounded-

ness of A.

Theorem 3.19. Let (X,π;M, I) be an IDS, A ⊂ X and r0 > 0 be a number

such that I(B(A, r) ∩ M) ⊂ B(A, r) for all 0 < r < r0. Let γ > 0 and U
be a neighbourhood of A with B(A, γ) ⊂ U . Assume that there are k > 0 and

a mapping V : U → R+ continuous on U \M satisfying the following conditions:

(a) V (x) = 0 for x ∈ A and for every sequence {xn}n∈N ⊂ U such that

V (xn)
n→+∞−−−−−→ 0 implies d(xn, A)

n→+∞−−−−−→ 0;

(b) V (π̃(x, t)) ≤ kV (x) for all x ∈ U \M and t ≥ 0 such that π̃(x, [0, t]) ⊂ U .

Then A \M is π̃-stable.

Proof. Suppose to the contrary that there are x ∈ A\M , 0 < ε < min{γ, r0}
and sequences {xn}n∈N ⊂ X and {tn}n∈N ⊂ R+ such that xn

n→+∞−−−−−→ x and

(3.1) π̃(xn, tn) /∈ B(A, ε) for all n ∈ N.

By the continuity of V in U \M we conclude that V (z) = 0 for all z ∈ A \M .

Since x ∈ A \M , we may assume that xn /∈ M for all n ∈ N and, consequently,

we have

(3.2) V (xn)
n→+∞−−−−−→ V (x) = 0.

Let n0 ∈ N be such that xn ∈ B(A, ε) for all n ≥ n0. By Lemma 3.17, there

exists a sequence {τn}n∈N ⊂ R+ such that

(3.3) τn ≤ tn, π̃(xn, [0, τn)) ⊂ B(A, ε) and π̃(xn, τn) ∈ S(A, ε) for all n ≥ n0.
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Using condition (b) and (3.2) we obtain

V (π̃(xn, τn))
n→+∞−−−−−→ 0.

Thus, by condition (a), we get d(π̃(xn, τn), A)
n→+∞−−−−−→ 0. But it contradicts the

fact that π̃(xn, τn) ∈ S(A, ε) for all n ≥ n0. Therefore, A \M is π̃-stable. �

Theorem 3.20. Let (X,π;M, I) be an IDS, A ⊂ X and r0 > 0 be a number

such that I(B(A, r)∩M) ⊂ B(A, r) for all 0 < r < r0. Let U be a neighbourhood

of A, O be an open set in X and α ∈ (0, r0) be such that A \M ⊂ O ⊂ U and

d(z,A) ≥ α for all z ∈ X \ O. Assume that there is a mapping V : U → R+

continuous on U \M satisfying the following conditions:

(a) V (x) = 0 for x ∈ A and for every sequence {xn}n∈N ⊂ U such that

V (xn)
n→+∞−−−−−→ 0 implies d(xn, A)

n→+∞−−−−−→ 0;

(b) V (π̃(x, t)) ≤ V (x) for all x ∈ U \M and t ≥ 0 such that π̃(x, [0, t]) ⊂ U .

Then A \M is orbitally π̃-stable.

Proof. Let O1 = {z ∈ O : d(z,A) < α}. Note that O1 is open and

A \M ⊂ O1. Also, we have I(O1 ∩M) ⊂ O1. In fact, if x ∈ O1 ∩M then

x ∈ O ∩M and d(x,A) ≤ α. By hypothesis we get I(x) ∈ B(A,α). Moreover,

I(x) ∈ O since d(z,A) ≥ α for all z ∈ X \ O.

Now, note that d(z,A) = α for all z ∈ ∂O1 \M and define

µ = inf{V (z) : z ∈ ∂O1 \M}.

We assert that µ > 0. Indeed, if there is a sequence {vn}n∈N ⊂ ∂O1 \M such

that V (vn)
n→+∞−−−−−→ 0 then d(vn, A)

n→+∞−−−−−→ 0 as we have condition (a). But it

is a contradiction since d(vn, A) = α for all n ∈ N. Hence, µ > 0.

Let K = {x ∈ O1 \M : V (x) < µ}. By the continuity of V in U \M it is

not difficult to see that V (z) = 0 for all z ∈ A ∪ (∂A \M). This shows that

A \M ⊂ K.

Now, we claim that K is positively π̃-invariant. In fact, let x ∈ K. First, let

us show that π̃(x, t) ∈ O1 for all t ≥ 0. For that, suppose to the contrary that

there is t∗ > 0 such that π̃(x, t∗) 6∈ O1. By Lemma 3.17, there is τ ∈ (0, t∗] such

that π̃(x, [0, τ)) ⊂ O1 and π̃(x, τ) ∈ ∂O1 \M . Then, using condition (b) and the

definition of µ, we obtain

µ ≤ V (π̃(x, τ)) ≤ V (x) < µ

which is a contradiction. In conclusion, using again condition (b), we have

π̃(x, t) ∈ K for all x ∈ K and t ≥ 0. Therefore, K is an open positively π̃-

invariant neighbourhood of A \M . �

For relatively compact sets, we have the following consequence of Theo-

rem 3.20.



140 E.M. Bonotto — G.M. Souto

Corollary 3.21. Let (X,π;M, I) be an IDS, A ⊂ X be compact and r0 > 0

be such that I(B(A, r)∩M) ⊂ B(A, r) for all 0 < r < r0. Let U be a neighbour-

hood of A and assume that there is a mapping V : U → R+ continuous on U \M
satisfying the conditions:

(a) V (x) = 0 for x ∈ A and for every sequence {xn}n∈N ⊂ U such that

V (xn)
n→+∞−−−−−→ 0 implies d(xn, A)

n→+∞−−−−−→ 0;

(b) V (π̃(x, t)) ≤ V (x) for all x ∈ U \M and t ≥ 0 such that π̃(x, [0, t]) ⊂ U .

Then A \M is orbitally π̃-stable.

In the next result, we characterize the sets whose closure are unstable.

Theorem 3.22. Let A ⊂ X and U be a neighbourhood of A. Assume that

there exists a mapping V : U → R+ continuous on U \M satisfying the following

conditions:

(a) V (x) = 0 for x ∈ A;

(b) there exist a ∈ A and s > 0 such that V (π̃(a, s)) > 0.

Then A is not π̃-stable. In particular, A is neither orbitally π̃-stable nor uni-

formly π̃-stable.

Proof. Suppose to the contrary that A is π̃-stable. Then given ε > 0 there

is δ > 0 such that π̃(B(a, δ), [0,+∞)) ⊂ B(A, ε). Thus π̃+(a) ⊂
⋂
ε>0

B(A, ε) = A.

The hypothesis (H2) implies π̃(a, s) ∈ A \M . Since V is continuous on U \M
and we have condition (a), one can conclude that V (π̃(a, s)) = 0. But this

contradicts the condition (b). �

Example 3.23. Consider a linear differential equation ẋ = Ax in the Hilbert

space H = L2[0, 1], with the continuous operator A : L2[0, 1] → L2[0, 1] de-

fined by

(Aϕ)(τ) = −τϕ(τ) for all τ ∈ [0, 1] and ϕ ∈ L2[0, 1].

Let U(t) be given by

(U(t)ϕ)(τ) = e−τtϕ(τ) for all t ∈ R and ϕ ∈ L2[0, 1].

Thus, the dynamical system generated by ẋ = Ax is given by (L2[0, 1], π,R),

where

π(ϕ, t) = U(t)ϕ for all ϕ ∈ L2[0, 1] and t ∈ R.

Consider the impulsive set

M =

{
ψ ∈ L2[0, 1] :

∫ 1

0

|ψ(s)|2 ds = 1

}
and let I : M → L2[0, 1] be an impulse function such that

‖I(ψ)‖2 ≤ α‖ψ‖2 for all ψ ∈M , where 0 < α < 1.



On the Lyapunov Stability Theory for Impulsive Dynamical Systems 141

Thus, we have the associate impulsive system (L2[0, 1], π;M, I). Note that

I(M) ∩M = ∅ and each point of M satisfies STC.

Let r > 2 and BL2
(0, r) be the open ball in L2[0, 1] with center 0 and radius r,

where ‖ · ‖2 is the usual norm in L2[0, 1].

(1) The set A1 = {ψ ∈ L2[0, 1] : 1 ≤ ‖ψ‖2 ≤ 2} is not π̃-stable.

In fact, define the mapping V : BL2
(0, r)→ R+ by

V (x) =

 inf
a∈A1

‖x− a‖2 if x ∈ BL2(0, r) \A1,

0 if x ∈ A1,

which is continuous on BL2
(0, r) \M . Let ϕ ∈ A1 ∩M . Since ‖π(ϕ, t)‖2 < 1 for

all t > 0 we have φ(ϕ) = +∞ and

‖π̃(ϕ, t)‖2 = ‖π(ϕ, t)‖2 < 1, for all t > 0.

Thus, for an arbitrary s > 0 we get π̃(ϕ, s) 6∈ A1 and

V (π̃(ϕ, s)) = inf
a∈A1

‖π̃(ϕ, s)− a‖2 ≥ inf
a∈A1

‖a‖2 − ‖π̃(ϕ, s)‖2 ≥ 1− ‖π̃(ϕ, s)‖2 > 0.

By Theorem 3.22, we have A1 is not π̃-stable.

(2) Let A2 = {ψ ∈ L2[0, 1] : ‖ψ‖2 ≤ 1}. Then A2 \M is orbitally π̃-stable.

Indeed, consider the mapping V : BL2
(0, r)→ R+ defined by

V (x) =

‖x‖2 if x ∈ BL2(0, r) \A2,

0 if x ∈ A2.

Note that V is continuous on BL2(0, r) \M and I(BL2(0, µ) ∩M) ⊂ BL2(0, µ)

for all µ > 0. Let U = BL2
(0, r) and O = BL2

(0, (r + 1)/2). As presented in [4,

Example 3.53], we have ‖π̃(ϕ, t)‖2 ≤ ‖ϕ‖2 for all ϕ ∈ L2[0, 1] and t ≥ 0. Then

V (π̃(ϕ, t)) ≤ V (ϕ) for all ϕ ∈ BL2
(0, r) and t ≥ 0. By Theorem 3.20, the set

A2 \M is orbitally π̃-stable.

Proposition 3.24 presents sufficient conditions for a set A ⊂ X to be a π̃-

attractor.

Proposition 3.24. Let (X,π;M, I) be an IDS and A ⊂ X be a nonempty

subset. Assume that there is a real valued function V defined on a neighbourhood

U of A and continuous on U \M satisfying:

(a) V (π̃(x, t)) ≤ V (x) for all x ∈ U \M and t ≥ 0 such that π̃(x, [0, t]) ⊂ U .

(b) If L̃+(x) ∩ (U \ A) 6= ∅ for some x ∈ U , then V is not constant along

trajectories in L̃+(x) ∩ (U \A).

If there exist an open relatively compact positively π̃-invariant set K and an open

set O ⊂ X with A ⊂ K ⊂ K ⊂ O ⊂ U , then A is π̃-attractor.
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Proof. Since K is a relatively compact positively π̃-invariant set we have

∅ 6= L̃+(x) ⊂ K for each x ∈ K. We claim that K ⊂ P̃ (A). Indeed, let x ∈ K
and y ∈ L̃+(x). Let {sn}n∈N ⊂ R+ be a sequence such that sn

n→+∞−−−−−→ +∞ and

π̃(x, sn)
n→+∞−−−−−→ y.

Case 1. y /∈ M . Suppose to the contrary that y /∈ A. Let t > 0 be

such that π̃(y, [0, t]) ∩ A = ∅. Since L̃+(x) \M is positively π̃-invariant we get

π̃(y, [0, t]) ⊂ L̃+(x). Then there is a sequence {tn}n∈N in R+ such that tn ≤ sn,

for n ∈ N, tn
n→+∞−−−−−→ +∞ and

π̃(x, tn)
n→+∞−−−−−→ π̃(y, t).

We may assume that π̃(x, sn) /∈ A and π̃(x, tn) /∈ A for all n ∈ N. As I(M)∩M =

∅ and K ⊂ O we have π̃(x, sn) ∈ U \ (M ∪A) and π̃(x, tn) ∈ U \ (M ∪A) for all

n ∈ N. By the condition (b) and the continuity of V , we obtain

V (y) = lim
n→+∞

V (π̃(x, sn)) = lim
n→+∞

V (π̃(π̃(x, tn), sn − tn))

≤ lim
n→+∞

V (π̃(x, tn)) = V (π̃(y, t)) ≤ V (y),

that is, V (π̃(y, t)) = V (y). But condition (b) implies that V (π̃(y, t)) 6= V (y),

which is a contradiction. Hence, y ∈ A and L̃+(x) ⊂ A.

Case 2. y ∈ M . Since M satisfies STC (see hypothesis (H1)) there ex-

ists a STC-tube F (L, [0, 2λ]) through y given by a section S. As the tube is

a neighbourhood of y, there is η > 0 such that B(y, η) ⊂ F (L, [0, 2λ]).

Denote H1 and H2 by

H1 = F (L, (λ, 2λ]) ∩B(y, η) and H2 = F (L, [0, λ]) ∩B(y, η).

In the sequel, we consider only the cases:

• either {π̃(x, sn)}n∈N ⊂ H1

• or {π̃(x, sn)}n∈N ⊂ H2

(in the other cases we take subsequences).

If {π̃(x, sn)}n∈N ⊂ H2 then π̃(x, sn + ε)
n→+∞−−−−−→ π̃(y, ε) ∈ L̃+(x) for all

ε ∈ (0, φ(y)). Note that π̃(y, ε) /∈ M for all ε ∈ (0, φ(y)) since I(M) ∩M = ∅.
As in the proof of Case 1, we may conclude that π̃(y, ε) ∈ A for all ε ∈ (0, φ(y)).

Consequently, y ∈ A and L̃+(x) ⊂ A.

If {π̃(x, sn)}n∈N ⊂ H1, then φ(π̃(x, sn))
n→+∞−−−−−→ 0. Assume that sn > λ > 0

for all n ∈ N and consider the sequence {π̃(x, sn − λ/2)}n∈N ⊂ K. By the

compactness of K we may assume that

π̃

(
x, sn −

λ

2

)
n→+∞−−−−−→ z.
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Since

π̃

(
π̃

(
x, sn −

λ

2

)
,
λ

2

)
= π̃(x, sn),

φ(π̃(x, sn))
n→+∞−−−−−→ 0 and F (L, (λ, 2λ]) ∩M = ∅,

we have

φ

(
π̃

(
x, sn −

λ

2

))
=
λ

2
+ φ(π̃(x, sn)), z /∈M

and

π̃(x, sn) = π

(
π̃

(
x, sn −

λ

2

)
,
λ

2

)
n→+∞−−−−−→ π

(
z,
λ

2

)
∈ L̃+(x).

By the uniqueness, we get y = π(z, λ/2). Now, note that π̃(z, [0, λ/2)) ⊂ L̃+(x)\
M as z ∈ L̃+(x) \M and L̃+(x) \M is positively π̃-invariant. By the proof of

Case 1, we have π(z, [0, λ/2)) ⊂ A. Hence, y ∈ A and L̃+(x) ⊂ A.

In conclusion, we have ∅ 6= L̃+(x) ⊂ A for all x ∈ K, that is, K ⊂ P̃ (A).

Therefore, A is π̃-attractor. �

As a consequence of Corollary 3.21 and Proposition 3.24, we can state the

following result.

Corollary 3.25. Let (X,π;M, I) be an IDS, X be locally compact, A ⊂ X
be a relatively compact set and r0 > 0 be such that I(B(A, r)∩M) ⊂ B(A, r) for

all 0 < r < r0. Assume that there exists a non-negative real valued function V

defined on a neighbourhood U of A and continuous on U \M satisfying:

(a) V (x) = 0 for x ∈ A and for every sequence {xn}n∈N ⊂ U such that

V (xn)
n→+∞−−−−−→ 0 implies d(xn, A)

n→+∞−−−−−→ 0;

(b) V (π̃(x, t)) ≤ V (x) for all x ∈ U \M and t ≥ 0 such that π̃(x, [0, t]) ⊂ U .

(c) If L̃+(x) ∩ (U \ A) 6= ∅ for some x ∈ U , then V is not constant along

trajectories in L̃+(x) ∩ (U \A).

Then A \M is orbitally π̃-stable and A is π̃-attractor.

Proof. By Corollary 3.21 the set A \M is orbitally π̃-stable. On the other

hand, since A is relatively compact and X is locally compact there exists α ∈
(0, r0) such that B(A,α) ⊂ U with B(A,α) compact. Define µ = inf{V (z) : z ∈
S(A,α/2)}. By condition(a) we have µ > 0. Now, consider the set

K =

{
x ∈ B

(
A,

α

2

)
: V (x) < µ

}
.

As in the proof of Theorem 3.20, we conclude that K is positively π̃-invariant.

Hence, K is an open relatively compact positively π̃-invariant set with

A ⊂ K ⊂ K ⊂ B(A,α) ⊂ U . By Proposition 3.24, A is π̃-attractor. �
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Example 3.26. Consider an impulsive dynamical system

(3.4)


ẋ = f(x),

x(0) = x0,

I : M → Rn,

where f ∈ C1(Rn,Rn), x0 ∈ Rn, M ⊆ Rn is the impulsive set and I : M → Rn

is the impulse function such that ‖I(x)− I(y)‖ ≤ η‖x− y‖ for all x, y ∈M with

0 < η < 1. We assume that conditions (H1)–(H3) hold. Also, we assume that

all the solutions of the non-impulsive system ẋ = f(x), x(0) = x0, are defined in

the whole real line and give rise to a semigroup π on Rn.

Now, let V ∈ C1(Rn,R+) be a function satisfying the following conditions:

(a) There exists a bounded subset A ⊂ Rn such that V (x) = 0 if and only

if x ∈ A;

(b) ∇V (x) · f(x) ≤ −αV (x) for all x ∈ Rn \ A, where α > 0;

(c) V (I(x)) < V (x) for all x ∈M \A and V (I(x)) = V (x) for all x ∈M ∩A.

First, let us prove that I(B(A, r) ∩M) ⊂ B(A, r) for all r > 0. It is enough

to assume that A ∩M 6= ∅. According to the hypotheses (a) and (c), we have

I(A ∩M) ⊂ A. Since I is a Lipschitz function, we have

I

(
B

(
A ∩M,

r

η

)
∩M

)
⊂ B(I(A ∩M), r) ⊂ B(A, r) = B(A, r) for all r > 0.

Moreover, it is easy to see that

B(A, r) ∩M ⊂ B(A ∩M, r) ∩M ⊂ B
(
A ∩M,

r

η

)
∩M.

Thus, the assertion is proved.

Let µ > 0, γ > 0 and define U = {x ∈ B(A, γ) : V (x) < µ}. Note that U is

a neighbourhood of A. Let π̃(x0, · ) be the impulsive solution of (3.4). It is not

difficult to see that V satisfies the condition (a) from Theorem 3.25.

Now, for x ∈ U \ A and s > 0 such that π(x, [0, s]) ⊂ U \ A, we have

d

dt
V (π(x, t)) = ∇V (π(x, t)) · f(π(x, t)) ≤ −αV (π(x, t)) for t ∈ [0, s].

Therefore,

V (π(x, t)) ≤ e−αtV (x) < V (x) for all t ∈ (0, s].

Since V (I(x)) < V (x), x ∈ M \ A, we conclude that V (π̃(x, t)) < V (x) for all

x ∈ U \ A and t > 0 such that π̃(x, [0, t]) ⊂ U \ A. This implies conditions (b)

and (c) from Theorem 3.25. In conclusion, the set A \M is orbitally π̃-stable

and A is π̃-attractor.

Our next aim is to show the existence of a Lyapunov function satisfying the

conditions (a)–(c) of Corollary 3.25 provided that A\M is orbitally π̃-stable and

A is π̃-attractor. For that, we present some auxiliary results.
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Lemma 3.27 ([3, Lemma 4.15]). If L̃+(x) 6= ∅ for some x ∈ X, then

L̃+(x) \M 6= ∅.

Lemma 3.28. Let (X,π;M, I) be an IDS and A be a relatively compact subset

of X. Let A be a π̃-attractor and A \M be a π̃-stable set. Then the mapping

W : P̃ (A)→ R+ given by

W (x) =

 sup
t∈R+

d(π̃(x, t), A) for x ∈ P̃ (A) \M,

d(x,A) for x ∈ P̃ (A) ∩M,

is continuous on P̃ (A) \M . Moreover, if A is π̃-stable then W is continuous on

P̃ (A) \ (M \A).

Proof. Let x ∈ P̃ (A) \M . Then ∅ 6= L̃+(x) ⊂ A. By Lemma 3.27 there

exists y ∈ L̃+(x) \M ⊂ A \M . Thus there is a sequence {tn}n∈N ⊂ R+ such

that tn
n→+∞−−−−−→ +∞ and π̃(x, tn)

n→+∞−−−−−→ y. Since A \M is π̃-stable, for a given

ε0 > 0, there exists δ > 0 such that

π̃(B(y, δ), [0,+∞)) ⊂ B(A, ε0).

Hence, there is n0 ∈ N such that π̃(x, [tn0
,+∞)) ⊂ B(A, ε0). Consequently, we

have W (x) ≤ sup{d(π̃(x, [0, tn0
]), A), ε0} < +∞ and W is well defined.

Let us show the continuity of W in P̃ (A) \M . Indeed, let x ∈ P̃ (A) \M and

assume that φ(x+k ) <∞ for all k = 0, 1, . . . Then we have

(3.5) W (x) = sup
t∈R+

d(π̃(x, t), A) = sup
k∈N0

sup
0≤t<φ(x+

k )

d(π(x+k , t), A).

Let {wn}n∈N ⊂ P̃ (A) be a sequence such that wn
n→+∞−−−−−→ x. Since M is closed,

I(M)∩M = ∅, I is continuous on M , φ is continuous on X \M and x /∈M , one

can show that for each k ∈ N we have

(wn)+k = I(π((wn)+k−1, φ((wn)+k−1)))
n→+∞−−−−−→ I(π(x+k−1, φ(x+k−1))) = x+k

and

sup
0≤t≤φ((wn)

+
k−1)

d(π((wn)+k−1, t), A)
n→+∞−−−−−→ sup

0≤t≤φ(x+
k−1)

d(π(x+k−1, t), A).

This shows that W (wn)
n→+∞−−−−−→W (x) and W is continuous on P̃ (A) \M .

Now, suppose that A is π̃-stable. It is enough to prove that W is continuous

on A∩M ∩ P̃ (A) in order to conclude the continuity of W in P̃ (A)\(M \A). For

x ∈ A∩M ∩ P̃ (A) we have W (x) = d(x,A) = 0. Since A is π̃-stable, given ε > 0

there is δ = δ(x, ε) > 0 such that π̃(B(x, δ), [0,+∞)) ⊂ B(A, ε). If {zn}n∈N
is a sequence in P̃ (A) such that zn

n→+∞−−−−−→ x, then there is a positive integer

n0 > 0 such that zn ∈ B(x, δ) for all n > n0. Consequently, π̃(zn, [0,+∞)) ⊂
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B(A, ε) for all n > n0. Then W (zn) < ε for all n > n0 and it implies that

W (zn)
n→+∞−−−−−→ 0 = W (x). Therefore, W is continuous in P̃ (A) \ (M \A). �

Theorem 3.29. Let (X,π;M, I) be an IDS, A ⊂ X be a relatively compact

set and r0 > 0 be such that I(B(A, r)∩M) ⊂ B(A, r) for all 0 < r < r0. Assume

that A\M is π̃-stable and A is π̃-attractor. Then there exists a non-negative real

valued function V defined on a neighbourhood U of A and continuous on U \M
satisfying:

(a) V (x) = 0 for x ∈ A and for every sequence {xn}n∈N ⊂ U such that

V (xn)
n→+∞−−−−−→ 0 implies d(xn, A)

n→+∞−−−−−→ 0;

(b) V (π̃(x, t)) < V (x) for all x ∈ U\(M∪A) and t > 0 such that π̃(x, [0, t]) ⊂
U \ (M ∪A).

Proof. Let U = P̃ (A) be a positively π̃-invariant neighbourhood of A, see

Lemma 3.2. By Proposition 3.16 we have A \M ⊂ P̃ (A). Define a mapping

W : P̃ (A)→ R+ by

W (x) =

 sup
t∈R+

d(π̃(x, t), A) for x ∈ P̃ (A) \M,

d(x,A) for x ∈ P̃ (A) ∩M.

By Lemma 3.28 the mapping W is well defined and continuous on P̃ (A) \M .

Note that W (x) = 0, for all x ∈ A \ M since A \ M is π̃-stable, W (x) = 0

for x ∈ A ∩M and d(x,A) ≤ W (x) for all x ∈ P̃ (A). Hence, W satisfies the

condition (a).

Now, we assert that W (π̃(x, t)) ≤W (x) for all x ∈ P̃ (A) \M and t ≥ 0. Let

us assume that φ(x+k ) < ∞ for all k = 0, 1, . . . If 0 ≤ s < φ(x) and y = π̃(x, s),

then x+k = y+k for each k = 1, 2, . . . Thus

W (π̃(x, s)) = sup
t∈R+

d(π̃(x, t+ s), A) = sup
t≥s

d(π̃(x, t), A) ≤W (x)

and

W (π̃(x, φ(x))) = W (x+1 ) = sup
t∈R+

d(π̃(x+1 , t), A) ≤ sup
t∈R+

d(π̃(x, t), A) = W (x).

Now, for each t ≥ φ(x), there is n = n(t) ∈ N such that t = tn(x) + r with

0 < r ≤ φ(x+n ). Thus

(3.6) W (π̃(x, t)) = W (π(x+n , r)) ≤W (x+n ).

In this way, we conclude that W (π̃(x, t)) ≤W (x) for all x ∈ P̃ (A)\M and t ≥ 0.

However, the function W may not be strictly decreasing along to the trajectories
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in P̃ (A) \ (A ∪M). Thus, we define the mapping V : P̃ (A)→ R+ by

V (x) =


∫ +∞

0

W (π̃(x, τ)) exp(−τ)dτ for x ∈ P̃ (A) \M,

0 for x ∈ A ∩M,

1 for x ∈ (P̃ (A) \A) ∩M.

It is not difficult to see that V satisfies the condition (a). It is also clear that

V (π̃(x, t)) ≤ V (x) for all x ∈ P̃ (A) \ (A ∪ M) and t ≥ 0. Suppose to the

contrary that V (π̃(x0, s)) = V (x0) for some x0 ∈ P̃ (A)\ (A∪M) and s > 0 with

π̃(x0, [0, s]) ⊂ P̃ (A) \ (A ∪M). Then∫ +∞

0

[W (π̃(x0, s+ τ))−W (π̃(x0, τ))] exp(−τ) dτ = 0,

that is, W (π̃(x0, s + τ)) = W (π̃(x0, τ)) for every τ ∈ [0,+∞). In particular,

W (π̃(x0,ms)) = W (x0) for all m ∈ N.

We claim that W (x0) = 0. In fact, given ε > 0 there is t0 > 0 such that

π̃(x0, [t0,+∞)) ⊂ B(A, ε)

as A is π̃-attractor, A\M is π̃-stable and we have Lemma 3.27. Thus the sequence

{π̃(x0, ns)}n∈N admits a convergent subsequence. We may assume that

π̃(x0, ns)
n→+∞−−−−−→ a ∈ L̃+(x0).

Case 1. a ∈ L̃+(x0) \M . In this case a ∈ A \M as A is π̃-atractor. Using

the continuity of W in P̃ (A) \M we get W (a) = 0 and

W (x0) = W (π̃(x0, ns))
n→+∞−−−−−→W (a) = 0.

Hence, W (x0) = 0.

Case 2. a ∈ L̃+(x0)∩M . By hypothesis (H1) the set M satisfies STC. Then

there is a STC-tube F (L, [0, 2λ]) through a given by a section S. Moreover, since

the tube is a neighbourhood of a, there is η > 0 such that

B(a, η) ⊂ F (L, [0, 2λ]).

Denote H1 = F (L, (λ, 2λ]) ∩B(a, η) and H2 = F (L, [0, λ]) ∩B(a, η).

Next, we consider just two subcases since the others cases are analogous by

taking subsequences.

Subcase 2.1. {π̃(x0, ns)}n∈N ⊂ H1. Then φ(π̃(x0, ns))
n→+∞−−−−−→ 0 and

π̃(π̃(x0, ns), φ(π̃(x0, ns)))
n→+∞−−−−−→ I(a) ∈ L̃+(x0) \M ⊂ A \M.

Consequently,

W (π̃(π̃(x0, ns), φ(π̃(x0, ns))))
n→+∞−−−−−→W (I(a)).
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On the other hand, we have

W (π̃(x0, φ(π̃(x0, ns)))) = W (π̃(π̃(x0, ns), φ(π̃(x0, ns))))

and

W (π̃(x0, φ(π̃(x0, ns))))
n→+∞−−−−−→W (x0).

Hence, W (x0) = W (I(a)) = 0 as W (x) = 0 for all x ∈ A \M .

Subcase 2.2. {π̃(x0, ns)}n∈N ⊂ H2. By Lemma 2.2, there is a sequence

{εn}n∈N ⊂ R+ with εn
n→+∞−−−−−→ 0 such that

π̃(π̃(x0, ns), s+ εn)
n→+∞−−−−−→ π̃(a, s).

Note that π̃(a, s) ∈ L̃+(x0) \ M ⊂ A \ M . Since W (π̃(π̃(x0, ns), s + εn)) =

W (π̃(x0, εn)), n ∈ N, we conclude that W (x0) = W (π̃(a, s)) = 0.

In conclusion, W (x0) = 0 and it contradicts the fact that x0 /∈ A. Therefore,

V satisfies the condition (b). �

As a consequence of Theorem 3.29, we have a converse type of Corollary 3.25.

Corollary 3.30. Let (X,π;M, I) be an IDS, A ⊂ X be a relatively compact

set and r0 > 0 be such that I(B(A, r)∩M) ⊂ B(A, r) for all 0 < r < r0. Assume

that A \M is orbitally π̃-stable and A is π̃-attractor. Then there exists a non-

negative real valued function V defined on a neighbourhood U of A and continuous

on U \M satisfying:

(a) V (x) = 0 for x ∈ A and for every sequence {xn}n∈N ⊂ U such that

V (xn)
n→+∞−−−−−→ 0 implies d(xn, A)

n→+∞−−−−−→ 0;

(b) V (π̃(x, t)) ≤ V (x) for all x ∈ U \M and t ≥ 0 such that π̃(x, [0, t]) ⊂ U .

(c) If L̃+(x) ∩ (U \ A) 6= ∅ for some x ∈ U , then V is not constant along

trajectories in L̃+(x) ∩ (U \A).

Finally we present a result that concerns the existence of a relatively compact

positively π̃-invariant set.

Proposition 3.31. Let (X,π;M, I) be an IDS, X be locally compact, A ⊂ X
be relatively compact and r0 > 0 be such that I(B(A, r) ∩ M) ⊂ B(A, r) for

all 0 < r < r0. Assume that there is a function V : U → R+, where U is

a neighbourhood of A, continuous on U \ M satisfying the conditions (a)–(c)

of Corollary 3.30. Then there is α0 > 0 such that for 0 < α < α0 the set

Gα = {x ∈ U \M : V (x) < α} admits a relatively compact positively π̃-invariant

subset Kα such that Kα is a neighbourhood of A ∪ (∂A \M), Kα ⊂ P̃ (A) and

Kα ∩
(
Gα \Kα

)
= ∅.

Proof. Let ε > 0, ε < r0, be such that B(A, ε) ⊂ U is compact. Set

m(ε) = inf{V (x) : x ∈ S(A, ε)}.
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By condition (a), m(ε) > 0. Now let 0 < α < m(ε) and define the set

Kα = Gα ∩B(A, ε).

By the continuity of V in U \M we have A ∪ (∂A \M) ⊂ Gα. Then Kα is an

open relatively compact neighbourhood of A ∪ (∂A \M). Using the last part of

the proof of Theorem 3.20, we conclude that Kα is positively π̃-invariant. Now,

by the proof of Lemma 3.24, we get Kα ⊂ P̃ (A). Since Kα ∩
(
Gα \Kα

)
= ∅,

the proof is complete. �

Acknowledgements. The authors thank the anonymous referee for the

careful correction and useful suggestions.

References

[1] R. Ambrosino, F. Calabrese, C. Cosentino and G. De Tommasi, Sufficient conditions

for finite-time stability of impulsive dynamical systems, IEEE Trans. Autom. Control 54

(2009), 861–865.

[2] E.M. Bonotto, M.C. Bortolan, A.N. Carvalho and R. Czaja, Global attractors for

impulsive dynamical systems — a precompact approach, J. Differential Equations 259

(2015), 2602–2625.

[3] E.M. Bonotto and J. Costa Ferreira, Dissipativity in impulsive systems via Lyapunov

functions, Math. Nachr. 289 (2016), 213–231.

[4] E.M. Bonotto and D.P. Demuner, Autonomous dissipative semidynamical systems with

impulses, Topol. Methods Nonlinear Anal. 41 (2013), no. 1, 1–38.

[5] E.M. Bonotto, L.P. Gimenes and G.M. Souto, On Jack Hale’s problem for impulsive

systems, J. Differential Equations 259 (2015), no. 2, 642–665.

[6] E.M. Bonotto, L.P. Gimenes and G.M. Souto, Asymptotically almost periodic motions

in impulsive semidynamical systems, Topol. Methods Nonlinear Anal. 49 (2017), 133–163.

[7] E.M. Bonotto and N.G. Grulha Jr., Lyapunov stability of closed sets in impulsive

semidynamical systems, Electron. J. Differential Equations 78 (2010), 1–18.

[8] K. Ciesielski, On semicontinuity in impulsive dynamical systems, Bull. Polish Acad. Sci.

Math., 52 (2004), 71–80.

[9] K. Ciesielski, On stability in impulsive dynamical systems, Bull. Polish Acad. Sci. Math.,

52 (2004), 81–91.

[10] K. Ciesielski, On time reparametrization and isomorphisms of impulsive dynamical sys-

tem, Ann. Polon. Math., 84 (2004), 1–25.

[11] J. Cortés, Discontinuous dynamical systems: a tutorial on solutions, nonsmooth analy-

sis, and stability, IEEE Control Syst. Mag. 28 (2008), no. 3, 36–73.

[12] M.H.A. Davis, X. Guo and Gouliang Wu, Impulsive control of multidimentional jump

diffusions, SIAM J. Control Optim. 48 (2010), 5276–5293.

[13] C. Ding, Lyapunov quasi-stable trajectories, Fund. Math. 220 (2013), 139–154.

[14] A. El-Gohary and A.S. Al-Ruzaiza, Chaos and adaptive control in two prey, one preda-

tor system with nonlinear feedback, Chaos Solitons Fractals 34 (2007), 443–453.

[15] H. Hu, K. Wang and D. Wu, Permanence and global stability for nonautonomous N-

species Lotka–Volterra competitive system with impulses and infinite delays, J. Math.

Anal. Appl. 377 (2011), no. 1, 145–160.

[16] S.K. Kaul, On impulsive semidynamical systems, J. Math. Anal. Appl. 150 (1990), 120–

128.



150 E.M. Bonotto — G.M. Souto

[17] S.K. Kaul, Stability and asymptotic stability in impulsive semidynamical systems,

J. Appl. Math. Stochastic Anal. 7 (1994), no. 4, 509–523.

[18] J. Vasundhara Devi and N. Giribabu, On hybrid Caputo fractional differential equa-

tions with variable moments of impulse, Eur. J. Pure Appl. Math. 7 (2014), 115–128.

Manuscript received October 5, 2017

accepted February 27, 2018

Everaldo M. Bonotto

Instituto de Ciências Matemáticas e de Computação
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