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A DIFFUSIVE LOGISTIC EQUATION

WITH U-SHAPED DENSITY DEPENDENT DISPERSAL

ON THE BOUNDARY
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Catherine Payne — Ratnasingham Shivaji

Abstract. We study positive solutions to the steady state reaction diffu-

sion equation: −∆v = λv(1− v), x ∈ Ω0,
∂v

∂η
+ γ
√
λ(v −A)2v = 0, x ∈ ∂Ω0,

where Ω0 is a bounded domain in Rn; n ≥ 1 with smooth boundary ∂Ω0,

∂/∂η is the outward normal derivative, A ∈ (0, 1) is a constant, and λ,

γ are positive parameters. Such models arise in the study of population
dynamics when the population exhibits a U-shaped density dependent dis-

persal on the boundary of the habitat. We establish existence, multiplicity,

and uniqueness results for certain ranges of the parameters λ and γ. We
obtain our existence and mulitplicity results via the method of sub-super

solutions.

1. Introduction

Let Ω0 = (0, 1) or be a bounded domain in Rn; n = 2, 3 with smooth bound-

ary ∂Ω0 and |Ω0| = 1. Let Ω = {`x | x ∈ Ω0}, where ` is a positive parameter

representing the patch size of Ω. We will consider a population that satisfies
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a logistic growth in the patch Ω. We will also assume that the diffusion rate in Ω

is D and that Ω is surrounded by a matrix ΩM , where the matrix diffusion rate

is D0 and the matrix death rate is S0, with D, D0 and S0 > 0 (see Figure 1).

Figure 1. Illustration of a patch Ω surrounded by a matrix ΩM with dis-

persal across the boundary.

We will further assume that the population exhibits density dependent dis-

persal (DDD) on the boundary. Denoting by α(u) the probability of the pop-

ulation staying in Ω when it reaches the boundary (here u is the population

density), the resulting model is (see [18], [19] and [4]):

(1.1)


ut = D∆u+ ru

(
1− u

K

)
, x ∈ Ω, t > 0,

u(0, x) = u0(x), x ∈ Ω,

Dα(u)
∂u

∂η
+

√
S0D0

κ
[1− α(u)]u = 0, x ∈ ∂Ω, t > 0,

with corresponding steady state equation:

(1.2)


−∆u =

1

D
ru(1− u

K
), x ∈ Ω,

Dα(u)
∂u

∂η
+

√
S0D0

κ
[1− α(u)]u = 0, x ∈ ∂Ω

or equivalently,

(1.3)


−∆u =

`2

D
ru

(
1− u

K

)
, x ∈ Ω0,

D

`
α(u)

∂u

∂η
+ S∗[1− α(u)]u = 0, x ∈ ∂Ω0,

where r > 0 is the patch intrinsic growth rate, K > 0 is the carrying capacity,

and S∗ =
√
S0D0/κ. Here κ is a positive parameter that encapsulates hypotheses

regarding the patch/matrix interface (see [4]).

In this paper, we will be interested in the case when the dispersal [1− α(u)]

on the boundary is U-shaped (i.e. negative density dependent dispersal for lower
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densities and positive density dependent dispersal for higher densities, see Fi-

gure 2). In empirical studies several important factors have been found that

influence emigration (the first stage of dispersal), particularly conspecific density.

The paradigmatic view is that dispersal increases with density; i.e. positive

density-dependent dispersal (see [22], [20], [3]). However, alternate forms of

density dependent dispersal (DDD) have been reported in the literature ([5]).

Negative or U-shaped relationships between conspecific density and dispersal

have been observed in a wide range of taxa. In fact, seemingly contradictory

evidence for both negative and positive DDD has simultaneously been observed in

the same organism for both the Glanville fritillary butterfly, Melitaea cinxia (see

[16] and [17] for negative and [5] for positive) and the Blue-footed Booby, Sula

nebouxii, (see [15]). Kim et al. and Enfjall et al. both independently proposed

a hypothesis to reconcile these contradictory patterns of DDD by integrating

the conspecific hypothesis with the traditional competition hypothesis (see [15]

and [5]). They suggested that the relationship between density and dispersal is

not linear but U-shaped (see Figure 1). Kim et al. empirically confirmed this

U-shaped relationship between density and dispersal in the Blue-footed Booby

Sula nebouxii (see [15]). To date, U-shaped DDD has received little attention

with regard to theoretical population modeling. However, see [1], [2], [6]–[9], [12]

and [13] for development and analysis of several negative DDD models.

(a) Graph of α(u) (b) Graph of 1− α(u)

Figure 2. Example of α(u) which gives rise to U-shaped density dependent
dispersal, 1− α(u).

In particular, we will consider α(u) of the form α(u) = (m1)/(m1 + g(u))

where m1 > 0 and g(u) = (u−A)2/m2 where m2 > 0 and A ∈ (0,K). Applying

the change of variables v = u/K, λ = r`2/D, γ = S∗K2/(
√
rDm1m2), and

A = A/K, (1.3) reduces to:

(1.4)


−∆v = λv(1− v) x ∈ Ω0,

∂v

∂η
+ γ
√
λ(v −A)2v = 0, x ∈ ∂Ω0.
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(a) Graph of α(u) (b) Graph of 1− α(u)

Figure 3. Specific form of α(u) and its effects on dispersal [1− α(u)].

We now state our results. Let λ1(ε, γ) > 0 be the principal eigenvalue of the

problem:

(1.5)


−∆w = λw, x ∈ Ω0,

∂w

∂η
= −γ

√
λεw, x ∈ ∂Ω0,

for a given ε > 0 (see Appendix and also [10]). We establish:

Theorem 1.1. Let γ > 0 and

Γ = {u ∈ C2(Ω0) ∩ C1(Ω0) | u(x) ∈ [A, 1] for all x ∈ Ω0}.

For each λ > 0, (1.4) has a positive solution v1,λ ∈ Γ and this solution is

unique. Further, for λ ∈ (0, λ1(A2, γ)), (1.4) has another positive solution v2,λ ∈
C2(Ω0) ∩ C1(Ω0) with v2,λ 6∈ Γ.

Theorem 1.2. Let γ � 1. There exists δγ > λ1(A2, γ) so that for λ = δγ ,

(1.4) has at least two positive solutions vi,λ ∈ C2(Ω0)∩C1(Ω0) with vi,λ 6∈ Γ for

i = 2, 3.

Remark 1.3. Combining Theorem 1.2 with the unique solution v1,λ ∈ Γ for

each λ > 0, when γ � 1, for λ = δγ , (1.4) has at least three positive solutions.

In the case when n = 1 and Ω0 = (0, 1), (1.4) was studied in detail in [11]

via a quadrature method. In particular, they obtain exact bifurcation curves for

positive solutions of the form described in Figure 4. Our results (Theorems 1.1

and 1.2) extend some of the conclusions obtained in the n = 1 case to the higher

dimensional case.

In Section 2, we will recall some important results in the theory of sub and

supersolutions and some preliminary results. In Section 3, we will provide the

proofs of Theorems 1.1 and 1.2. We also include results for certain eigenvalue

problems that we use in our proofs in Appendix (these results also appear in [10]).
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(a) Case γ ≈ 0 (b) Case γ � 1

Figure 4. Bifurcation diagrams exhibited in [11] for the one-dimensional

case of (1.4).

2. Preliminaries

Consider the boundary value problem:

(2.1)


−∆u = f(u), x ∈ Ω0,

∂u

∂η
= g(u), x ∈ ∂Ω0,

where f and g are in C1(R). By a solution u of (2.1), we will mean a u ∈
C2(Ω0) ∩ C1(Ω0) which satisfies (2.1).

Definition 2.1. A function u ∈ C2(Ω0) ∩ C1(Ω0) is called a subsolution

(supersolution) of (2.1) if u satisfies
−∆u ≤ (≥) f(u), x ∈ Ω0,

∂u

∂η
≤ (≥) g(u), x ∈ ∂Ω0.

A subsolution or supersolution which is not a solution is called strict.

We now state some well-known results in the theory of sub-supersolutions.

Lemma 2.2 (see [14, Theorem 1]). Let u and u be sub- and supersolutions

of (2.1) respectively such that u ≤ u, x ∈ Ω0. Then (2.1) has a maximal solution

û and a minimal solution ǔ such that u ≤ ǔ ≤ û ≤ u.

Lemma 2.3 (see [14, Theorem 2]). Let u1 and u2 be sub- and super solutions

of (2.1) respectively such that u1 ≤ u2, x ∈ Ω0. Let u2 and u1 be strict sub-

and supersolutions of (2.1) respectively such that u2, u1 ∈ [u1, u2] and u2 6≤ u1.

Then (2.1) has at least three solutions ui, i = 1, 2, 3 where ui ∈ [ui, ui], i = 1, 2

and u3 ∈ [u1, u2] \
(
[u1, u1] ∪ [u2, u2]

)
.
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Next, we consider positive solutions z ∈ C2(Ω0) ∩ C1(Ω0) to the boundary

value problem:

(2.2)


−∆z = λz(1− z), x ∈ Ω0,

∂z

∂η
= −
√
λγεz, x ∈ ∂Ω0,

for a given ε > 0.

We recall the following result from [10].

Lemma 2.4. There exists a unique positive solution zλ to (2.2) when λ >

λ1(ε, γ), and when λ < λ1(ε, γ), there is no positive solution to (2.2). Further-

more, ‖zλ‖∞ → 0+ as λ→ λ1(ε, γ)+ and ‖zλ‖∞ → 1− as λ→∞.

Figure 5. Bifurcation curve for (2.2).

3. Proofs of Theorems 1.1 and 1.2

3.1. Proof of Theorem 1.1. Clearly v2 ≡ 1 is a supersolution and v2 ≡ A
is a strict subsolution for (1.4) for every λ > 0. Hence, by Lemma 2.2, (1.4)

has a maximal positive solution v2,λ ∈ Γ. Suppose there exist another distinct

solution v1,λ ∈ Γ to (1.4). Since v2,λ is the maximal solution, we have v2,λ ≥ v1,λ.

Let v1 = v1,λ and v2 = v2,λ. Now, by Green’s second identity, we have∫
Ω0

[(∆v2)v1 − (∆v1)v2] dx =

∫
∂Ω0

[(
∂v2

∂η

)
v1 −

(
∂v1

∂η

)
v2

]
ds

=

∫
∂Ω0

√
λγv1v2

[
(v1 −A)2 − (v2 −A)2

]
ds

=
√
λγ

∫
∂Ω0

v1v2[v1 − v2][v1 + v2 − 2A] ds ≤ 0,
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since v2 ≥ v1 ≥ A. However,∫
Ω0

[(∆v2)v1 − (∆v1)v2] dx = λ

∫
Ω0

v1v2(v2 − v1) dx > 0,

since we are assuming v1 and v2 are distinct. This is a contradiction, and hence

v1 ≡ v2 and hence the solution v2,λ ∈ Γ is unique.

Next, consider the case when λ < λ1(A2, γ). Let µ1 be the principal eigen-

value and φ̃ > 0 be the corresponding eigenfunction such that ‖φ̃‖∞ = 1 for the

eigenvalue problem:

(3.1)


−∆φ̃ = λφ̃+ µφ̃, x ∈ Ω0,

∂φ̃

∂η
= −
√
λγA2φ̃+ µφ̃, x ∈ ∂Ω0.

Note that µ1 > 0 when λ < λ1(A2, γ), where λD1 is the principle eigenvalue of the

−∆ operator with Dirichlet boundary conditions (see Appendix). Let v1 = αφ̃

where α ∈ (0, A) will be chosen later.

Now, since µ1 > 0,

−∆v1 = α
{
λφ̃+ µ1φ̃

}
≥ λαφ̃(1− αφ̃) = λv1(1− v1),

for x ∈ Ω0. Also, for x ∈ ∂Ω0, we have

∂v1

∂η
= α

∂φ̃

∂η
= α

[
−
√
λγA2φ̃+ µφ̃

]
≥ −
√
λγ
[
αφ̃−A

]2
αφ̃ = −

√
λγ[v1 −A]2v1,

provided

(3.2) αφ̃
{
µ1 +

√
λγα2φ̃2 − 2

√
λγαφ̃A

}
> 0 for all x ∈ ∂Ω0.

Since µ1 > 0, (3.2) will clearly hold for α sufficiently small. Hence, v1 = αφ̃

with α ∈ (0, A) and sufficiently small is a strict supersolution to (1.4). Note that

v1 ≡ 0 is a solution, and hence a subsolution. Thus, by Lemma 2.3, for λ <

λ1(A2, γ), (1.4) has at least three distinct solutions, v1,λ ∈ [A, 1], v3,λ ∈
[
0, αφ̃

]
,

and v2,λ ∈ [0, 1] \
([

0, αφ̃
]
∪ [A, 1]

)
. Clearly v1,λ and v2,λ are positive solutions,

and Theorem 1.1 is proved. �

3.2. Proof of Theorem 1.2. Let λ > λ1(A2, γ). Clearly v2 ≡ 1 is a su-

persolution and v2 ≡ A is a strict subsolution. Let v1 = βφ̃ where φ is as before

(see the proof of Theorem 1.1) and β > 0 will be chosen later. Now

−∆v1 = β
[
λφ̃+ µ1φ̃

]
≤ λ

[
βφ̃(1− βφ̃)

]
= λv1(1− v!), x ∈ Ω0,

provided,

(3.3) βφ̃
[
µ1 + λβφ̃

]
≤ 0, x ∈ Ω0,



342 J. Goddard II — Q. Morris — C. Payne — R. Shivaji

holds. Also,

∂v1

∂η
= β

∂φ̃

∂η
= β

[
−
√
λγA2φ̃+µ1φ̃

]
≤ −
√
λγ
(
βφ̃−A

)2

βφ̃ = −
√
λγ(v1−A)2v1,

for all x ∈ ∂Ω0 provided,

(3.4) βφ̃
{
µ1 +

√
λβ2φ̃2 − 2

√
λγβφ̃A

}
≤ 0, x ∈ ∂Ω0,

holds. But µ1 < 0 since λ > λ1(A2, γ) (see Appendix). Hence both (3.3) and

(3.4) will hold for β > 0 sufficiently small, and v1 = βφ̃ will be a small positive

subsolution to (1.4).

Next, consider the boundary value problem (2.2) with ε = A2/4, namely,

(3.5)


−∆z = λz(1− z), x ∈ Ω0,

∂z

∂η
= −
√
λγ

A2

4
z, x ∈ ∂Ω0.

By Lemma 2.4, there exists δγ > λ1(A2/4, γ) such that the unique positive

solution zλ to (3.5) satisfies ‖zλ‖∞ = A/3 when λ = δγ .

Figure 6. Bifurcation curve for (2.2) showing A/3 and δγ .

Note that λ1(A2/4, γ) < λ1(A2, γ) and, as γ → ∞, λ1(A2, γ) → λD1 (see

Appendix). However, lim
γ→∞

δγ > λD1 (see Figure 6). For λ = δγ , let v1 ≡ zλ,

where zλ is the unique solution of (3.5). Note that ‖v1‖∞ ≤ A/3. Now, −∆v1 =

λv1(1− v1), x ∈ Ω0 and

∂v1

∂η
= −
√
λγ
A2

4
v1 > −

√
λγ(v1 −A)2v1, x ∈ ∂Ω0,

provided,

(3.6)
A2

4
< (A− v1)2, x ∈ ∂Ω0,

holds. But clearly (3.6) holds since ‖v1‖∞ = ‖zλ‖∞ = A/3 and hence v1 = zλ
is a strict supersolution to (1.4). Now, combining with v1 (where β is chosen
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sufficently small so that v1 ≤ v1), v2 ≡ A, and v2 ≡ 1, by Lemma 2.3, (1.4)

has at least three positive solutions, v1,λ ∈ Γ, v2,λ ∈ [v1, v1] and v3,λ ∈ [v1, v2] \(
[v1, v1] ∪ [v2, v2]

)
for λ = δγ and Theorem 1.2 is proven. �

Appendix A. Results for eigenvalue problems (1.5) and (3.1)

First we consider the eigenvalue problem

(A.1)


−∆z = λz in Ω0,

∂z

∂η
= kz in ∂Ω0,

for a given k ∈ R. We recall the following result from [21].

Lemma A.1. For each k ∈ R, (A.1) has a principal eigenvalue λ1(k) and the

eigencurve λ1(k) ⊂ R2 is Lipschitz continuous, strictly decreasing, and concave.

Furthermore, λ1(0) = 0 and the eigenfunciton associated with any point on λ1(k)

is strictly positive in Ω0.

We now state and prove a result regarding the limiting value of λ1(k) as

k → −∞. Figure 7 illustrates Lemma A.2.

Figure 7. Plot of k vs. λ1(k). The curve illustrates the fact that λ1(k)→
λD1 as k → −∞.

Lemma A.2. λ1(k)→ λD1 as k → −∞ where λD1 is the principal eigenvalue

of the −∆ operator with Dirichlet boundary conditions.

Proof. We note that for any k ∈ R, we may characterize λ1(k) by

(A.2) λ1(k) = min
u∈H1(Ω0)\{0}

∫
Ω0

|∇u|2 dx− k
∫
∂Ω0

u2 ds∫
Ω0

u2 dx

.
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Let φD1 the corresponding eigenfunction to the eigenvalue λD1 be chosen such

that
∫

Ω0
φD1 = 1. Testing (A.2) with u = 1 and u = φD1 shows that

λ1(k) ≤ −k |∂Ω0|
|Ω0|

and λ1(k) ≤ λD1 ,

respectively. Taking a sequence kn → −∞ such that the corresponding eigen-

functions un, without loss of generality, satisfy
∫

Ω0
u2
n dx = 1, we observe that

λ1(kn) =

∫
Ω0

|∇un|2 dx− kn
∫
∂Ω0

u2
n ds.

Since kn < 0, we have 0 = λ1(0) < λ1(kn) < λD1 . By Lemma A.1,

lim
k→−∞

λ1(k) = λ1(−∞) ≤ λD1 for some λ1(−∞) ∈ R.

Without loss of generality, we may assume that

−kn
∫
∂Ω0

u2
n ds→ α ≥ 0,

and thus ∫
∂Ω0

u2
n → 0.

Since {un} is bounded in H1(Ω0), we may select a subsequence so that un ⇀ u

in H1(Ω0), un → u in L2(Ω0) and in L2(∂Ω0). It follows that∫
Ω0

u2 dx = 1 and

∫
∂Ω0

u2 ds = 0,

and hence u ∈ H1
0 (Ω0).

By the weak lower semicontinuity of
∫

Ω0
|∇u|2 dx, we get that,∫

Ω0

|∇u|2 dx+ α ≤ lim inf
n→∞

(∫
Ω0

|∇un| dx− kn
∫
∂Ω0

u2
n ds

)
= λ1(−∞) ≤ λD1 .

But by Poincaré’s Inequality, we have

λD1 ≤
∫

Ω0

|∇u|2 dx,

and hence we must have α = 0 and λ1(−∞) = λD1 . Furthermore,∫
Ω0

|∇u|2 dx = λD1 ,

and thus, without loss of generality, u = φD1 . Moreover,

lim
n→∞

∫
Ω0

|∇un|2 dx =

∫
Ω0

|∇u|2 dx,

and hence un → u = φD1 in H1(Ω). �
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Figure 8. Illustration of the existence of λ1(γ̃).

Next, we consider the eigenvalue problem of the form (1.5), namely,

(A.3)

−∆w = λw in Ω0,
∂w

∂η
+ γ̃
√
λw = 0, in ∂Ω0.

for a given γ̃ > 0. It is easy to see that the principal eigenvalue λ1(γ̃) of (A.3) is

nothing but the y-coordinate of the intersection of the curves λ1(k) and k2/γ̃2

(see Figure 8).

It is also straightforward to show that λ1(γ̃) is an increasing function of γ̃,

λ1(γ̃)→ λD1 as γ̃ →∞, and λ1(γ̃)→ 0 as γ̃ → 0 (see Figure 9).

Figure 9. The plot illustrates that λ1(γ̃) is an increasing function. Note
that γ̃2 > γ̃1.

Now, we consider the eigenvalue problem:

(A.4)


−∆ψ − λψ = σψ in Ω0,

∂ψ

∂η
+ γ̃
√
λψ = 0 in ∂Ω0
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for a given λ > 0 and γ̃ > 0. Once again, it is easy to see that the principal

eigenvalue σ1(λ, γ̃) of (A.4) exists and must satisfy

(A.5) λ+ σ1(λ, γ̃) = λ1

(
−
√
λγ̃
)

(see Figure 10). Furthermore, the following result holds:

Figure 10. The plot illustrates the existence of σ1(λ, γ̃).

Lemma A.3. If λ < λ1(γ̃) then σ1(λ, γ̃) > 0 and, if λ = λ1(γ̃), then

σ1(λ, γ̃) = 0. Also, if λ > λ1(γ̃), then σ1(λ, γ̃) < 0.

Proof. Note that,

if λ < (>) λ1(γ̃), then −
√
λγ̃ > (<) −

√
λ1(γ̃)γ̃.

Hence,

(A.6) λ =

(
−
√
λγ̃
)2

γ̃2
< (>)λ1

(
−
√
λγ̃
)

(see Figure 9) and, by (A.5), we have σ1(λ, γ̃) > (<) 0 Note that λ = λ1(γ̃)

implies that we have equality in (A.6), and thus σ1(λ, γ̃) = 0. �

Next, for fixed λ and γ̃ we consider the eigenvalue problem,

(A.7)


−∆φ− λφ = δπ in Ω0,

∂φ

∂η
+ γ̃
√
λφ = δφ in ∂Ω0.

Notice that by letting δ̃ = δ −
√
λγ̃ implies that (A.7) becomes

(A.8)


−∆φ =

(
λ+
√
λγ̃ + δ̃

)
φ in Ω0,

∂φ

∂η
= δ̃φ, in ∂Ω0
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and the principle eigenvalue δ̃1(λ, γ̃) is nothing but the x-coordinate of the in-

tersection of the curves λ1(δ̃) and δ̃ +
(
λ +
√
λγ̃
)

(see Figure 11). Hence the

principal eigenvalue δ1(λ, γ̃) of (A.7) exists and is given by:

(A.9) δ1(λ, γ̃) = δ̃1(λ, γ̃) +
√
λγ̃.

Figure 11. The plot illustrates the existence of δ̃1(λ, γ̃).

We next establish a relationship between the signs of δ1(λ, γ̃) and σ1(λ, γ̃) in

the following result.

Lemma A.4. sign(δ1(λ, γ̃)) = sign(σ1(λ, γ̃)).

Proof. Let φ1 and φ2 be corresponding positive eigenfunctions in (A.7) and

(A.8). Then by Green’s Second Identity, we have that

(A.10)

∫
Ω0

[
(∆φ1)φ2 − (∆φ2)φ1

]
dx =

∫
∂Ω0

[
∂φ1

∂η
φ2 −

∂φ2

∂η
φ1

]
ds

which implies

(A.11)
[
δ1(λ, γ̃)− σ1(δ, γ̃)

] ∫
Ω0

φ1φ2 dx = −δ1(λ, γ̃)

∫
∂Ω0

φ2φ1 ds.

Now, it immediately follows that σ1(λ, γ̃) = 0 if and only if δ1(λ, γ̃) = 0 and if

δ1(λ, γ̃) 6= 0 then we have

(A.12)
σ1(λ, γ̃)− δ1(λ, γ̃)

δ1(λ, γ̃)
> 0.

Thus, if δ1(λ, γ̃) > 0 then we must have that σ1(λ, γ̃) > δ1(λ, γ̃) > 0 and if

δ1(λ, γ̃) < 0 then σ1(λ, γ̃) < δ1(λ, γ̃) < 0. Hence the result. �

Finally, combining Lemmas A.3 and A.4, the following lemma immediately

follows:

Lemma A.5. If λ < λ1(γ̃) then δ1(λ, γ̃) > 0. Also, if λ > λ1(γ̃) then

δ1(λ, γ̃) < 0.
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