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RAYLEIGH–BÉNARD PROBLEM

FOR THERMOMICROPOLAR FLUIDS

Piotr Kalita — Grzegorz  Lukaszewicz — Jakub Siemianowski

Abstract. The two-dimensional Rayleigh–Bénard problem for a ther-
momicropolar fluids model is considered. The existence of suitable weak

solutions which may not be unique, and the existence of the unique strong

solution are proved. The global attractor for the m-semiflow associated
with weak solutions and the global attractor for semiflow associated with

strong solutions are shown to be equal.

1. Introduction

The theory of micropolar fluids is a generalization of the Navier–Stokes

model in the sense that it takes into account the microstructure of the fluid.

The theory is expected to provide a more realistic mathematical model for the

non-Newtonian fluid behaviour observed in certain fluids such as polymers sus-

pensions where polymer chains exhibit a complicated evolution. Colloidal fluids,

liquid crystals, polymer suspensions in blood, ferro liquid or nanofluids are exam-

ples of applications where the micropolar fluid theory is used. It was introduced

by Eringen in [14] and its mathematical analysis is presented in [22].
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The theory of thermomicropolar fluids, proposed by Eringen in [15], extends

the theory of micropolar fluid by including the heat conduction and heat dissi-

pation effects.

In particular, the system of equations of the Rayleigh–Bénard problem be-

tween two horizontal planes for an incompressible, isotropic thermomicropolar

fluid, after a reasonable modification of the complete system of the field equa-

tions, reads [16], [25] as

(1.1)

ut + (u · ∇)u− (ν + νr)∆u+
1

ρ
∇p = 2νr rotω + gαTe3,

div u = 0,

j(ωt + (u · ∇)ω)− α∆ω − β∇ divω + 4νrω = 2νr rotu,

Tt + u · ∇T − κ∆T = δ rotω · ∇T.

In the above system e3 = (0, 0, 1), ν is the usual kinematic Newtonian viscosity,

νr is the kinematic microrotation viscosity, α is the thermal expansion, g is the

gravitational acceleration, j is the moment of inertia, α and β are micropolar ma-

terial viscosities, κ is the thermal conductivity, and δ is the micropolar thermal

conduction. We assume that ν, νr, α, j, α, β, κ and δ are positive constants [15].

The unknowns in the above equations are the velocity vector field u, the pressure

p, the microrotation vector field ω and the temperature T .

In this paper, we consider the two-dimensional version of the problem (1.1).

For the initial data in L2 spaces, we prove the existence of weak solutions which

may not be unique, see Theorem 5.1. If the initial data belongs to H1, the exis-

tence of a strong solution and weak-strong uniqueness are shown in Theorem 7.2.

We are not able to obtain the weak solution due to the term rotω · ∇T in

the heat equation in the system (1.1). This term makes that the time derivative

of temperature belongs only to L2(0, τ ;D(A3/2)∗), where A is the −∆ operator

with the boundary conditions defined below, which is insufficient for the unique-

ness. We prove, however, that each weak solution of the system becomes smooth

instantaneously.

This result is obtained by the bootstrap argument applied to the first three

equations of (1.1) whence we deduce that u and ω regularize. Once ω is more

smooth, we can deal with the “bad” term rotω ·∇T in the last equation of (1.1).

Thus, we prove that every weak solution becomes strong instantaneously and,

due to the weak-strong uniqueness result, no weak solutions originate from the

point on the strong trajectory. Thus, the nonuniqueness of weak solutions can

possibly occur only at the initial time point if the initial data is in L2 and not

in H1. Next, in Sections 8 and 9, we deal with the asymptotic behavior of both

weak and strong solutions. To this end, we need a subclass of weak solutions

obtained by the Galerkin method which we show to be nonempty. Weak solutions
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in this class still can be nonunique. The reason is that we need the maximum

principle type estimate for temperature, up to the initial time point, for which

the regularity Tt ∈ L2(0, τ ;D(A3/2)∗) is insufficient. This estimate, however

holds if our weak solution is the weak limit of the Galerkin problems.

Using the theory of multivalued semiflows we show the existence of the global

attractor for weak solutions. We are not assuming anything about continuity of

the graph, nor closedness of the multivalued map and hence we do not obtain

any invariance of the multivalued attractor.

Next, using the classical theory of dissipative semiflows we show the existence

of the global attractor for strong solutions. From the bootstrap arguments and

the weak-strong uniqueness property it follows that both attractors coincide, and

hence the multivalued attractor turns out to be invariant. This regularization

effect turns out to be similar to that in the surface quasi-geostrophic (SQG)

equation, where, however, one needs to use de Giorgi iterations and the method

of nonlinear lower bounds to obtain the bootstrapping effect [4], [6], [7], [11], [12].

Finally, Section 10 is devoted to the relations between the energy dissipation rate

and the Nusselt number.

2. Formulation of the problem

Let us consider a two-dimensional problem in the domain (−∞,∞)× (0, h),

and assume that the temperature at the bottom part of the boundary is T1 +

4T with 4T > 0, and at the top is T1, with T1 and 4T constants. The

introduction of two-dimensional problem is done in [23, p. 488] or [29, p. 1216–

1217]. Introducing the dimensionless variables

x′ =
x

h
, t′ =

κ

h2
t,

u′ =
h

κ
u, p′ =

h2

ρκ2
p, ω′ =

h2

κ
ω, T ′ =

T − T1

4T
,

and dropping the primes we obtain the dimensionless form of the two-dimensional

Rayleigh–Bénard problem

(2.1)

1

Pr
(ut + (u · ∇)u+∇p) = ∆u+

N

1−N
(2 rotω + ∆u) + RaTe2,

div u = 0,

M

Pr
(ωt + u · ∇ω) = L∆ω + 2

N

1−N
( rot u− 2ω),

Tt + u · ∇T = ∆T +D rotω · ∇T,

where u = (u1, u2) is the velocity field, p is the pressure, ω is the microrotation,

T is the temperature, and e2 is the unit upward vector (0, 1) ∈ R2.
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In the above system there appear several dimensionless constants.

N =
νr

ν + νr
, coupling parameter — relation between

the Newtonian and microrotation viscosities.

M =
j

h2
, relation between the moment of inertia and geometry.

L =
α

h2ν
, couple stress parameter — relation between geometry

and properties of the fluid.

D =
δ

h2
, micropolar heat conduction parameter — relation between

micropolar thermal conduction and geometry.

Pr =
ν

κ
, Prandtl number — relation between kinematic viscosity

and thermal diffusivity.

Ra =
αg4Th3

νκ
, Rayleigh number — relation between the buoyancy force

and damping coefficients.

To avoid confusion we denote

div u =
∂u1

∂x1
+
∂u2

∂x2
, rotu =

∂u2

∂x1
− ∂u1

∂x2
, rotω =

(
∂ω

∂x2
,− ∂ω

∂x1

)
.

In the new variables the fluid occupies the (nondimensionalized) region

Ω∞ = (−∞,∞)× (0, 1).

The system (2.1) is equipped with the following boundary conditions:

(2.2) u = 0 �x2=0,1, ω �x2=0,1= 0, T �x2=0= 1 and T �x2=1= 0

with l-periodicity in the x1-direction assumed. The initial conditions are

u �t=0= u0, ω �t=0= ω0, T �t=0= T0 for x = (x1, x2) ∈ Ω∞.

The above dimensionless problem is a model for the Rayleigh–Bénard heat con-

vection in a layer of thermomicropolar fluid bounded by two horizontal one-

dimensional parallel plates at distance h from each other with the bottom heated

at temperature T1 +4T and the top cooled at temperature T1. Therefore, the

fluid motion is induced by the difference of temperatures at the bottom and the

top parts of the boundary of the flow domain.

Observe that if in (2.1) the coupling parameter N and the micropolar heat

conduction parameter D equal to zero then the velocity field u and the tem-

perature T become independent of the microrotation field ω and satisfy the

Boussinesq system of equations of classical hydrodynamics.
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When D = 0, system (2.1) becomes the Boussinesq system of equations for

micropolar fluid model. Its mathematical theory involving existence of global

in time solutions, existence of global attractors, nonlinear stability, bifurcation

problem, etc. was considered in [18], [29], [30]. As in the micropolar fluid

model [14], [16], [22] the presence of microrotation, measured by N , 0 ≤ N < 1,

stabilizes the fluid motion (in comparison to the classical Boussinesq model with

N = 0), since the upper bounds of the averaged heat transfer in the vertical

direction, measured by the Nusselt number Nu, suggest that Nu decreases when

N increases. We know that if the micropolar parameters N and L are large

enough, the convective part of the upward heat transfer may be completely

blocked (then Nu = 1) [18]. The physical explanation may be such that with

the increase of the kinematic microrotation viscosity coefficient νr the friction

between the rotating particles increases and impedes the fluid motion (observe

that if νr →∞ then N → 1).

The thermomicropolar fluid model allows to take into account the direct

influence of the microrotation field ω on the temperature distribution. The term

D rotω ·∇T in the last equation of (2.1) comes from the presence of an additional

term in the heat flux vector field q in this model, given by q = −κ∇T+γ(T ) rotω.

With this q, assuming that γ(T ) = −δT , the equation for the temperature has

the form (1.1) and, in dimensionless variables, we obtain (2.1).

3. Preliminaries

We define Ω ⊂ Ω∞ to be a rectangular box of length equal to the period

Ω = (0, l)× (0, 1), for some l > 0. We introduce

ṼS =
{
u ∈ C∞(Ω)2 | div u = 0, u �x2=0,1= 0,

u and all its derivatives are l-periodic in x1-direction
}
,

Ṽ = {ω ∈ C∞(Ω) | ω �x2=0,1= 0,

ω and all its derivatives are l-periodic in x1-direction},

HS = closure of ṼS in L2(Ω)2, H = L2(Ω),

VS = closure of ṼS in H1(Ω)2, and V = closure of Ṽ in H1(Ω).

Spaces H and HS are Hilbert spaces with the inner product

(u, v) = (u, v)L2 =

∫
Ω

u(x) · v(x) dx

and the corresponding norms |v| = (v, v)1/2 for v ∈ H,HS .

Spaces V and VS are Hilbert spaces with the norms ‖v‖ = (∇v,∇v)1/2 for

v ∈ V, VS .
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Remark 3.1. We use the uniform notation in the whole paper. The spaces

H, V , D(A) are related with the Laplace operator whereas the spaces HS , VS ,

D(AS) are associated with the Stokes operator.

We have the Poincaré inequality λ1|v|2 ≤ ‖v‖2, for v ∈ V, VS , where the

optimal (largest) constant is equal to π2. By 〈 · , · 〉 we will denote the duality

pairings between various spaces and their duals.

We define the standard trilinear forms (see [26] or [31])

bS(u, v, w) =

2∑
i,j=1

∫
Ω

ui
∂vj
∂xi

wj and b(u, v, w) =

2∑
i=1

∫
Ω

ui
∂v

∂xi
w.

We introduce the Laplace operator associated with our boundary conditions

A : D(A)→ H, where

D(A) = {v ∈ V | −∆v ∈ H} and Av = −∆v, v ∈ D(A).

Clearly, the eigenvectors {vk}k≥1 ⊂ D(A) of A form the orthonormal basis of H

and

(3.1) Avk = βkvk and 0 < β1 ≤ . . . ≤ βk →∞.

Since the domain Ω is a rectangle, these eigenvectors and eigenvalues can be

explicitly determined: for n ∈ Z, m ≥ 1 there holds

(3.2)

βnm =

(
2nπ

l

)2

+ (2mπ)2,

vnm =

√
2

l

[
sin

(
2nπ

l
x1

)
+ cos

(
2nπ

l
x1

)]
sin(mπx2).

Note that each vnm belongs to C∞(Ω). We can relabel them so that {vk}k≥1

satisfy (3.1).

Since we know the exact formulas for eigenfunctions we can prove the fol-

lowing result. The proofs is standard so it is omitted.

Lemma 3.2. Let f ∈ H and let u ∈ D(A) satisfy Au = f . Then u ∈ H2(Ω)

and ‖u‖H2 ≤ C|f | for some constant C > 0. As a result, norms ‖u‖H2 and |Au|
are equivalent on D(A).

We introduce the fractional power of the Laplacian, see [26, Chapters 3

and 6]. Let

D(A3/2) =

{
u ∈ H

∣∣∣∣ u =
∑
k≥1

(u, vk)vk (in H),
∑
k≥1

(u, vk)2β3
k <∞

}
,

and define

A3/2u =
∑
k≥1

β
3/2
k (u, vk)vk.
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To make D(A3/2) a Hilbert space we equip it with the inner product

(u, v)D(A3/2) = (A3/2u,A3/2v)

which gives the corresponding norm ‖u‖D(A3/2) = |A3/2u|.

Lemma 3.3. We have D(A3/2) ⊂ H3(Ω) and norms ‖ · ‖H3 , ‖ · ‖D(A3/2) are

equivalent on D(A3/2).

Now, we introduce the Stokes operator AS , see [26] or [31] for details. Let

D(AS) = {u ∈ VS | ∃w ∈ HS , ∀ϕ ∈ VS (w,ϕ) = (∇u,∇ϕ)}

and define AS(u) = w.

It is known that AS = −P∆, where P stands for the Helmholtz–Leray pro-

jector from L2(Ω)2 onto HS . The eigenfunctions of the operator AS form the

orthonormal basis of HS and they are smooth. In fact one can provide explicit

formulas for those eigenfunctions, see [27] where those formulas are derived for

the three-dimensional case with similar boundary conditions. Moreover, the re-

sult analogous to Lemma 3.2 holds also for the Stokes operator.

We present two versions of the Gagliardo–Nirenberg inequality — see [1,

Theorem 5.8]:

‖v‖L4 ≤ k1|v|1/2‖v‖1/2H1 , for v ∈ H1(Ω),(3.3)

‖v‖L∞ ≤ k2|v|1/2‖v‖1/2H2 , for v ∈ H2(Ω).(3.4)

Combining (3.3) with the Poincaré inequality yields the so-called Ladyzhenskaya

inequality

(3.5) ‖v‖L4 ≤ k3|v|1/2‖v‖1/2, for v ∈ V, VS ,

and combining (3.3) with Lemma 3.2 gives

(3.6) ‖∇v‖L4 ≤ k4‖v‖1/2|Av|1/2, v ∈ D(A).

Similarly, combining (3.4) with regularity theorems for the Laplace operator

(Lemma 3.2) and for the Stokes operator we get so-called Agmon’s inequalities

‖v‖L∞ ≤ k5|v|1/2|Av|1/2, for v ∈ D(A),(3.7)

‖u‖L∞ ≤ k6|u|1/2|ASu|1/2, for u ∈ D(AS).(3.8)

We remark that in all proofs by C we will denote a generic constant which,

in Sections 4, 6, and 7 depends on Ω, constants present in the equations, final

time τ , and the initial data, and in Sections 8 and 9 depends only on Ω and

the constants present in the equations. By ε we will denote an arbitrarily small

constant, and by C(ε) a constant which depends only on ε and the problem data.
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4. Weak solutions: definitions

Following a traditional approach, we change the temperature equation from

(2.1) so that the perturbative variable will satisfy the homogeneous boundary

conditions

θ(x1, x2, t) = T (x1, x2, t)− (1− x2).

We also change the pressure p to p− Pr Ra (x2 − x2
2/2) in the velocity equation

in (2.1). These transform (2.1) into

1

Pr
(ut + (u · ∇)u+∇p) = ∆u+

N

1−N
(2 rotω + ∆u) + Ra θe2,(4.1)

div u = 0,(4.2)

M

Pr
(ωt + u · ∇ω) = L∆ω + 2

N

1−N
( rot u− 2ω),(4.3)

θt + u · ∇θ = ∆θ +D rotω · ∇θ +D
∂ω

∂x1
+ u2(4.4)

on Ω× (0,∞), equipped with the boundary conditions

(4.5) u �x2=0,1= 0, ω �x2=0,1= 0, θ �x2=0,1= 0

and periodic in the horizontal direction. The initial conditions now read

(4.6) u(0) = u0, ω(0) = ω0, θ(0) = θ0 = T0 − (1− x2).

We define three classes of weak solutions. In the first one, given by Defini-

tion 4.1 we impose only that the equations are satisfied in the weak sense, and

solutions at zero are equal to the initial datum.

Definition 4.1. Let τ > 0, u0 ∈ HS , ω0 ∈ H and θ0 ∈ H. By a weak

solution of the problem (4.1)–(4.6) we mean a triple of functions (u, ω, θ),

u ∈ L2(0, τ ;VS) ∩ C([0, τ ], HS) ∩W 1,2(0, τ ;V ∗S ),

ω ∈ L2(0, τ ;V ) ∩ C([0, τ ], H) ∩W 1,2(0, τ ;V ∗),(4.7)

θ ∈ L2(0, τ ;V ) ∩ Cw([0, τ ];H) ∩W 1,2(0, τ ;D(A3/2)∗)

such that u(0) = u0, ω(0) = ω0, θ(0) = θ0 satisfying the following identities (1):

(4.8)
1

Pr

(
d

dt
(u(t), ϕ) + bS(u(t), u(t), ϕ)

)
+ (∇u(t),∇ϕ)

+
N

1−N
[
(∇u(t),∇ϕ)− 2( rot ω(t), ϕ)

]
= Ra (θ(t)e2, ϕ)

(1) Recall that the symbol Cw([0, τ ];H) stands for the space of functions f : [0, τ ] → H

such that for every h ∈ H the map [0, τ ] 3 t 7→ (f(t), h) ∈ R is continuous.
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for every ϕ ∈ VS ,

(4.9)
M

Pr

(
d

dt
(ω(t), ψ) + b(u(t), ω(t), ψ)

)
+

N

1−N
[
4(ω(t), ψ)− 2( rot u(t), ψ)

]
+ L(∇ω(t),∇ψ) = 0

for every ψ ∈ V ,

(4.10)
d

dt
(θ(t), η) + b(u(t), θ(t), η) + (∇θ(t),∇η)

= −D(θ(t), rotω(t) · ∇η) +D

(
∂ω

∂x1
(t), η

)
+ (u2(t), η)

for every η ∈ D(A3/2), in the sense of scalar distributions on (0, τ).

Remark 4.2. Clearly, the regularity of the weak solution imposed in the

above definition implies that θ ∈ L∞(0, τ ;H).

In the second class of weak solutions we additionally assume that the tem-

perature θ is continuous at t = 0 with values in H.

Definition 4.3. Let τ > 0, u0 ∈ HS , ω0 ∈ H and θ0 ∈ H. By a weak

solution of the problem (4.1)–(4.6) with temperature continuous at zero we mean

a triple of functions (u, ω, θ) satisfying Definition 4.1 such that, additionally,

(4.11) lim sup
t→0+

|θ(t)| ≤ |θ0|.

Finally, we define a class of weak solutions which are the limits of the Galerkin

approximations.

Definition 4.4. Let τ > 0, u0 ∈ HS , ω0 ∈ H and θ0 ∈ H. By a weak

solution of the Galerkin type of the problem (4.1)–(4.6) we mean a triple of

functions (u, ω, θ) satisfying Definition 4.1 which are weak limits of the Galerkin

approximations (um, ωm, θm) in the spaces spanned by the eigenfunctions of the

operators AS and A, i.e.

um → u weakly in L2(0, τ ;VS) and weakly-* in L∞(0, τ ;HS),

umt → ut weakly in L2(0, τ ;V ∗S ),

ωm → ω weakly in L2(0, τ ;V ) and weakly-* in L∞(0, τ ;H),

ωmt → ωt weakly in L2(0, τ ;V ∗),

θm → θ weakly in L2(0, τ ;V ) and weakly-* in L∞(0, τ ;H),

θmt → θt weakly in L2(0, τ ;D(A3/2)∗).

Remark 4.5. We will prove in Section 5 the existence of a weak solution of

the Galerkin type, given by Definition 4.4. We will also prove that every weak
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solution of the Galerkin type has temperature continuous at zero, i.e. satisfies

condition (4.11). Hence we have the implications

(u, ω, θ) is of the Galerkin type ⇒ (u, ω, θ) has temperature continous at zero,

(u, ω, θ) has temperature continuous at zero ⇒ (u, ω, θ) is a weak solution.

It is unknown if there exist weak solutions which do not have temperature contin-

uous at zero, or if there are weak solutions with temperature continuous at zero

which are not of the Galerkin type, i.e. both inclusions can, in principle, be strict.

Since we prove the existence of the Galerkin type weak solution, it follows that

for a given initial datum all three classes are nonempty. We also remark that

for neither of these three classes we are able to obtain uniqueness of solutions.

It is unknown how to approach numerically solutions which are non-unique and

are not limits of the approximative finite dimensional problems. Therefore, from

the physical point of view, it is reasonable to consider only the solutions which

are limits of Galerkin problems. To give our results more mathematical gen-

erality, however, we obtain our results for the two wider classes. In particular

in Sections 6 and 7 we obtain the bootstrapping results which are valid for all

weak solutions which not necessarily have temperature continuous at zero and

are not necessarily limits of the Galerkin approximations. In order to obtain the

existence of the global attractor for weak solution we will need (4.11), cf. Sec-

tion 8, so the global attractor will be given for weak solutions with temperature

continuous at zero. Since this attractor coincides with the global attractor for

the strong solutions, cf. Section 9, it is also the global attractor for the Galerkin

type weak solutions.

5. Existence of weak solutions

In this section we prove the existence of the Galerkin type weak solution

to the problem (4.1)–(4.6) in the spaces spanned by the eigenfunctions of AS
and A. As the technique is standard, we will show only the a priori estimates.

The reader unfamiliar with this technique is encouraged to see [26] or [31].

Theorem 5.1. Let u0 ∈ HS, ω0, θ0 ∈ H, and τ > 0. There exists a weak so-

lution of the Galerkin type to (4.1)–(4.6). Moreover, each solution of the Galerkin

type has the temperature continuous at zero.

Proof. Take the inner product in L2(Ω)2 of (4.1) and u, to get

(5.1)
1

Pr

(
∂

∂t
u, u

)
+

1

Pr
bS(u, u, u) + (ASu, u)

+
N

1−N
[
(ASu, u)− 2( rot ω, u)

]
= Ra (θe2, u).
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We have (
∂

∂t
u, u

)
=

1

2

d

dt
|u|2, (ASu, u) = ‖u‖2.

Since

bS(u, v, w) = −bS(u,w, v), u, v, w ∈ VS ,

we obtain

(5.2) bS(u, u, u) = 0.

We estimate

(5.3) Ra (θe2, u) ≤ Ra |θ||u| ≤ C(ε)|θ|2 + ε|u|2 ≤ C(ε)|θ|2 + ε‖u‖2,

where we used the Poincaré inequality. As a result (5.1) turns into

(5.4)
1

Pr

d

dt
|u|2 + ‖u‖2 + 2

N

1−N
[
‖u‖2 − 2( rot ω, u)

]
≤ C|θ|2.

Multiply (4.3) by ω and integrate over Ω

(5.5)
M

Pr

(
∂

∂t
ω, ω

)
+
M

Pr
b(u, ω, ω)+

N

1−N
[
4|ω|2−2( rot u, ω)

]
+L(Aω, ω) = 0.

As above, we have(
∂

∂t
ω, ω

)
=

1

2

d

dt
|ω|2, b(u, ω, ω) = 0, (Aω, ω) = ‖ω‖2.

and from (5.5), we obtain

(5.6)
M

Pr

d

dt
|ω|2 + 2L‖ω‖2 + 2

N

1−N
[
4|ω|2 − 2( rot u, ω)

]
= 0.

Using the fact that ‖u‖2 = |rotu|2 and (rotu, ω) = (rotω, u), we add (5.4), (5.6)

which yields

(5.7)
1

Pr

d

dt
(|u|2 +M |ω|2) + ‖u‖2 + 2L‖ω‖2 + 2

N

1−N
|2ω − rotu|2 ≤ C|θ|2.

Multiply (4.4) by θ and integrate over Ω

(5.8)

(
∂

∂t
θ, θ

)
+b(u, θ, θ)+(Aθ, θ) = D

∫
Ω

( rot ω ·∇θ)θ+D

(
∂ω

∂x1
, θ

)
+(u2, θ).

We have (
∂

∂t
θ, θ

)
=

1

2

d

dt
|θ|2, b(u, θ, θ) = 0, (Aθ, θ) = ‖θ‖2,

and we estimate the following two terms:(
∂ω

∂x1
, θ

)
≤ |θ|

∣∣∣∣ ∂ω∂x1

∣∣∣∣ ≤ |θ|‖ω‖ ≤ C(ε)|θ|2 + ε‖ω‖2,

and

(u2, θ) ≤ |u2||θ| ≤ |u||θ| ≤ C(ε)|u|2 + ε‖θ‖2.
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We assume for the moment that θ is smooth enough so that the integral∫
Ω

( rot ω · ∇θ)θ

is well-defined. In fact, we estimate the Galerkin–Faedo approximations θm(x, t)

=
m∑
j=1

θmj(t)vj(x) of θ which are of class C∞(Ω) with respect to the variable x,

see (3.2). Integrating by parts leads to∫
Ω

( rot ω · ∇θ)θ =
1

2

∫
Ω

(
∂

∂x2
ω,− ∂

∂x1
ω

)
· ∇(θ2)

= −1

2

∫
Ω

ω rot (∇(θ2)) +
1

2

∫
∂Ω

ω

(
∂θ

∂x1
θn2 −

∂θ

∂x2
θn1

)
dS =: I1 + I2.

The symmetry of second derivatives implies I1 = 0. Since each ∂vk/∂x2 is l-

periodic in x1 (see (3.2)), the boundary conditions yield I2 = 0. Therefore, (5.8)

leads to

(5.9)
d

dt
|θ|2 + ‖θ‖2 ≤ C(ε)|θ|2 + ε‖ω‖2 + C|u|2.

Adding (5.7) and (5.9) yields

(5.10)
d

dt
(|u|2 +M |ω|2 + |θ|2)+c1(‖u‖2 +‖ω‖2 +‖θ‖2) ≤ c2(|u|2 +M |ω|2 + |θ|2),

where c1, c2 are positive constants dependent only on the problem data. Write

y(t) = |u(t)|2 +M |ω(t)|2 + |θ(t)|2 and α(t) = ‖u(t)‖2 + ‖ω(t)‖2 + ‖θ(t)‖2.

Multiply (5.10) by exp(−c2t)

d

dt
(y(t)e−c2t) + c1e

−c2tα(t) ≤ 0

and integrate from 0 to some s > 0

y(s) + c1

∫ s

0

ec2(s−t)α(t) dt ≤ ec2sy(0).

Recall that

y(0) = (≤)|u0|2 +M |ω0|2 + |θ0|2.

Fix τ > 0, the above inequality implies that

(5.11) u ∈ L∞(0, τ ;HS) ∩ L2(0, τ ;VS), ω, θ ∈ L∞(0, τ ;H) ∩ L2(0, τ ;V ).

The proof of the continuity of the functions

[0, τ ] 3 t 7→ u(t) ∈ HS and [0, τ ] 3 t 7→ ω(t) ∈ H

is standard: we show that the time derivatives have the regularity ut∈L2(0, τ ;V ∗S )

and ωt ∈ L2(0, τ ;V ∗) and use [17, Theorem 3, Chapter 5.9]. We will only show
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that ut ∈ L2(0, τ ;V ∗S ), the proof that ωt ∈ L2(0, τ ;V ) is similar. Taking the

duality of (4.1) with v(t) where v ∈ L2(0, τ ;VS) we obtain

(5.12) 〈ut, v〉 = −bS(u, u, v)− Pr
1

1−N
(∇u,∇v)

+ 2 Pr
N

1−N
(rotω, v) + Ra Pr(θe2, v).

We use the inequality (3.5) to get

|bS(u, u, v)| = |bS(u, v, u)| ≤ ‖u‖L4‖v‖‖u‖L4 ≤ C|u|‖u‖‖v‖.

From (5.12) we get∫ τ

0

〈ut, v〉 ≤ C
(
‖u‖L∞(0,τ ;HS)‖u‖L2(0,τ ;VS) + ‖u‖L2(0,τ ;VS)

+ ‖ω‖L2(0,τ ;V ) + ‖θ‖L2(0,τ ;V )

)
‖v‖L2(0,τ ;VS),

where we used the Poincaré inequality in the last two terms. Hence and by

(5.11), we have

‖ut‖L2(0,τ ;V ∗S ) ≤ C,

where C depends only on Ω, u0, ω0, θ0 and τ > 0.

Recall that we have

(5.13) θt = −u · ∇θ + ∆θ +D rotω · ∇θ +D
∂ω

∂x1
+ u2.

We show that θt ∈ L2(0, τ ;D(A3/2)∗). Every term from the right-hand side

of (5.13) can be bounded in L2(0, τ ;V ∗) as in (5.12) except from

D rotω · ∇θ.

We write X = D(A3/2) for short. Take η ∈ X, integrate by parts and apply the

Hölder inequality to get

〈 rotω · ∇θ, η〉X∗×X =

∫
Ω

( rot ω · ∇θ)η = −
∫

Ω

( rot ω · ∇η)θ

≤ |θ|
(∫

Ω

| rot ω · ∇η|2
)1/2

≤ |θ|‖ω‖‖∇η‖L∞(Ω).

In view of Lemma 3.3, ∇η ∈ H2(Ω)2 so the Sobolev embedding yields

‖∇η‖L∞(Ω)2 ≤ C‖∇η‖H2(Ω)2 ≤ C‖η‖H3(Ω) ≤ C‖η‖X ,

where the last inequality follows from Lemma 3.3. Summing up, we have

〈 rotω · ∇θ, η〉X∗×X ≤ C|θ|‖ω‖‖η‖X

so

‖ rot ω · ∇θ‖X∗ ≤ C|θ|‖ω‖.



490 P. Kalita — G.  Lukaszewicz — J. Siemianowski

Therefore, we have

‖ rot ω · ∇θ‖L2(0,τ ;X∗) ≤ C
(∫ τ

0

|θ|2‖ω‖2
)1/2

≤ C‖θ‖L∞(0,τ ;H)‖ω‖L2(0,τ ;V ).

The continuous embedding V ∗ ⊂ X∗ yields the continuous embedding

L2(0, τ ;V ∗) ⊂ L2(0, τ ;X∗)

and all the bounds on the components of (5.13) made in the space L2(0, τ ;V ∗)

are valid in the space L2(0, τ ;X∗). As a result, we get

‖θt‖L2(0,τ ;X∗) ≤ C,

where C depends only on Ω, τ > 0 and initial conditions (4.6). Finally, the fact

that θ ∈ Cw([0, τ ];H) follows from the Lions–Magenes lemma, see [21, Chapter 3,

Lemma 8.1]. We conclude the proof by showing that the obtained weak solution

satisfies (4.11). Integrating (5.10) in time from 0 to t we obtain (we use the

index m to denote the m-th Galerkin approximation)

|um(t)|2 +M |ωm(t)|2 + |θm(t)|2 + c1

∫ t

0

(‖um(s)‖2 + ‖ωm(s)‖2 + ‖θm(s)‖2)

≤ |um(0)|2 +M |ωm(0)|2 + |θm(0)|2 + c2

∫ t

0

(|um(s)|2 +M |ωm(s)|2 + |θm(s)|2).

Let m tend to infinity. We can pass to the limit with all terms on the right-hand

side as we have the strong convergence in the corresponding norms (we use the

Aubin–Lions lemma to pass to the limit in the time integrals). As for the terms

on the left-hand side we only have weak convergence but we can use the weak

lower-semicontinuity of the corresponding norms to deduce that

|u(t)|2 +M |ω(t)|2 + |θ(t)|2 + c1

∫ t

0

(‖u(s)‖2 + ‖ω(s)‖2 + ‖θ(s)‖2)

≤ |u0|2 +M |ω0|2 + |θ0|2 + c2

∫ t

0

(|u(s)|2 +M |ω(s)|2 + |θ(s)|2).

The assertion follows by letting t tend to zero. �

6. Bootstrapping

The weak solution obtained in the previous section can be nonunique. In

this section we demonstrate that the unknowns u, ω, and θ become more smooth

after arbitrarily small time. We cannot, however, bootstrap the regularity of all

three functions (u, ω, θ) immediately. Since the “bad” term rotω · ∇θ appears

in the equation for θ we first observe that if (u, ω, θ) is the weak solution, then

we can fix θ and construct the Galerkin approximation for the functions u, ω

only. Then u, ω are defined uniquely for a given θ and this observation allows
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us to bootstrap u and ω in the original triple (u, ω, θ). Extra regularity of u, ω

immediately implies the extra regularity of θ.

We start from defining an auxiliary problem, where temperature is prescribed

and we look only for u and ω. This auxiliary problem, together with Theorem 6.2

on the uniqueness of its solutions are useful in the proof of the first bootstrapping

result, namely Theorem 6.3.

Definition 6.1. Let τ > 0, u0 ∈ HS , ω0 ∈ H and θ ∈ L∞(0, τ ;H). We look

for a pair (u, ω),

u ∈ L2(0, τ ;VS) ∩ C([0, τ ], HS) ∩W 1,2(0, τ ;V ∗S ),

ω ∈ L2(0, τ ;V ) ∩ C([0, τ ], H) ∩W 1,2(0, τ ;V ∗)

such that u(0) = u0, ω(0) = ω0, satisfying the following identities:

(6.1)
1

Pr

(
d

dt
(u(t), ϕ)) + bS(u(t), u(t), ϕ)

)
+ (∇u(t),∇ϕ)

+
N

1−N
[
(∇u(t),∇ϕ)− 2( rot ω(t), ϕ)

]
= Ra (θ(t)e2, ϕ)

for every ϕ ∈ VS ,

(6.2)
M

Pr

(
d

dt
(ω(t), ψ)) + b(u(t), ω(t), ψ)

)
+

N

1−N
[
4(ω(t), ψ)− 2( rot u(t), ψ)

]
+ L(∇ω(t),∇ψ) = 0

for every ψ ∈ V in the sense of scalar distributions on (0, τ).

Theorem 6.2. Solution u, ω to the problem given in Definition 6.1 is unique

and is a limit of the Galerkin approximation built on the spaces V n = span{v1,

. . . , vn}, V nS = span{vS1 , . . . , vSn} spanned by the eigenfunctions of the operators

A and AS.

Proof. The proof, by the Faedo–Galerkin method, follows the lines of the

proof of Theorem 5.1 and is standard, so we omit it here. To prove the unique-

ness, assume that (u, ω) and (û, ω̂) are two solutions with the same initial datum.

Subtracting (6.1) written for u and û and taking u − û as the test function we

obtain, denoting u = u− û and ω = ω − ω̂
1

Pr

(
1

2

d

dt
|u|2 + bS(u, û, u)

)
+ ‖u‖2 +

N

1−N
[
|rotu|2 − 2( rot ω, u)

]
= 0.

Proceeding similarly with (6.2) we obtain

M

Pr

(
1

2

d

dt
|ω|2 + b(u, ω̂, ω)

)
+

N

1−N
[
4|ω|2 − 2( rot u, ω)

]
+ L‖ω‖2 = 0.

The Ladyzhenskaya inequality (3.5) implies the bounds

−bS(u, û, u) ≤ C|u|‖u‖‖û‖ and −b(u, ω̂, ω) ≤ C|u|1/2‖u‖1/2‖ω̂‖|ω|1/2‖ω‖1/2,
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whence, after adding the two energy equations we get

1

2 Pr

d

dt
(|u|2 +M |ω|2) +

N

1−N
|2ω − rotu|2 + L‖ω‖2 + ‖u‖2

≤ C(|u|‖u‖‖û‖+ |u|‖u‖‖ω̂‖+ |ω|‖ω‖‖ω̂‖).

Simple calculations yield

d

dt
(|u|2 +M |ω|2) ≤ C(|u|2‖û‖2 + |u|2‖ω̂‖2 + |ω|2‖ω̂‖2),

and the assertion follows from the Gronwall lemma as û ∈ L2(0, τ ;V ) and ω̂ ∈
L2(0, τ ;V ). �

The above theorem is useful in the proof of the following result.

Theorem 6.3. Let (u, ω, θ) solve the problem (4.1)–(4.6) in the sense of

Definition 4.1. Then, for any 0 < ρ < τ , we have

u ∈ L2(ρ, τ ;D(AS)) ∩ C([ρ, τ ], VS) ∩W 1,2(ρ, τ ;HS),

ω ∈ L2(ρ, τ ;D(A)) ∩ C([ρ, τ ], V ) ∩W 1,2(ρ, τ ;H),

θ ∈ L2(ρ, τ ;V ) ∩ C([ρ, τ ], H) ∩W 1,2(ρ, τ ;V ∗).

Proof. We “freeze” θ ∈ L∞(0, τ ;H). Due to Theorem 6.2 the pair (u, ω)

which, together with this θ, constitutes the solution of the problem given in

Definition 4.1, is unique, and is a limit of the Galerkin approximation. The next

estimates will be derived for the Galerkin equations for (6.1) and (6.2), we omit

the index m in order to avoid technicalities. Testing the Galerkin equations with

ASu and Aω, respectively, gives

1

Pr

(
1

2

d

dt
‖u‖2 + bS(u, u,ASu)

)
+ |ASu|2 +

N

1−N
[
|ASu|2 − 2( rot ω,ASu)

]
= Ra (θe2, ASu),

M

Pr

(
1

2

d

dt
‖ω‖2 + b(u, ω,Aω)

)
+

N

1−N
[
4‖ω‖2 − 2( rot u,Aω)

]
+ L|Aω|2 = 0.

Using the Ladyzhenskaya and Agmon inequalities (3.5), (3.6), and (3.8), we get

the bounds

−bS(u, u,ASu) ≤ C|u|1/2‖u‖|ASu|3/2 ≤ ε|ASu|2 + C(ε)|u|2‖u‖4,

−b(u, ω,Aω) ≤ C|u|1/2‖u‖1/2‖ω‖1/2|Aω|3/2 ≤ ε|Aω|2 + C(ε)|u|2‖u‖2‖ω‖2,

whence from two above equations we obtain, after adding them, the following

bound:

1

2 Pr

d

dt
(‖u‖2 +M‖ω‖2) + |ASu|2 + L|Aω|2

≤C(ε)|θ|2 + ε|ASu|2 + ε|ASu|2 + C(ε)|u|2‖u‖4 + ε|ASu|2

+ C(ε)‖ω‖2 + ε|Aω|2 + C(ε)|u|2‖u‖2‖ω‖2 + ε|Aω|2 + C(ε)‖u‖2.
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After the appropriate choice of ε, we obtain

(6.3)
1

Pr

d

dt
(‖u‖2 +M‖ω‖2) + |ASu|2 + L|Aω|2

≤ C(|θ|2 + |u|2‖u‖4 + ‖ω‖2 + |u|2‖u‖2‖ω‖2 + ‖u‖2).

Denoting y(t) = ‖u‖2 +M‖ω‖2, and dropping the terms with ASu, Aω we get

d

dt
y(t) ≤ C|θ|2 + C(|u|2‖u‖2 + 1)y(t).

We want to use the uniform Gronwall Lemma, see e.g. [31, Lemma 1.1, p. 91].

For any s ∈ [0, τ) and t ∈ (0, τ − s] we have∫ s+t

s

y(r) ≤ ‖u‖2L2(0,τ ;VS) +M‖ω‖2L2(0,τ ;V ),∫ s+t

s

|θ(r)|2 ≤ τ‖θ‖2L∞(0,τ ;H),∫ s+t

s

(|u|2‖u‖2 + 1) ≤ τ + ‖u‖2L∞(0,τ ;HS)‖u‖
2
L2(0,τ ;VS).

We deduce the bound y(t) ≤ C(1 + 1/t) valid for t ∈ (0, τ ]. Integrating (6.3)

from ρ to τ we get∫ τ

ρ

(|ASu|2 + L|Aω|2) ≤ C
(

1 +
1

ρ

)
+ C‖θ‖2L∞(0,τ ;H)

+ C‖u‖2L∞(0,τ ;HS)

∫ τ

ρ

(
1 +

1

t

)2

+ C

∫ τ

ρ

(
1 +

1

t

)
≤ C

(
1 +

1

ρ
− ln ρ

)
.

We have proved that u ∈ L∞(ρ, τ ;VS) ∩ L2(ρ, τ ;D(AS)) and ω ∈ L∞(ρ, τ ;V ) ∩
L2(ρ, τ ;D(A)). These bounds hold for the Galerkin problems, but they are

preserved in their weak limit. We will show that ut ∈ L2(ρ, τ ;HS) (the proof

that ωt ∈ L2(ρ, τ ;H) is analogous). In the sense of distributions we have the

equality

ut = −PrASu−
PrN

1−N
ASu+

2 PrN

1−N
rotω + Pr Ra θe2 + bS(u, u, · ).

It is sufficient to show that bS(u, u, · ) defines a linear and continuous functional

on L2(ρ, τ ;HS). Let φ ∈ L2(ρ, τ ;HS). We have, by (3.8),∫ τ

ρ

bS(u(t), u(t), φ(t)) ≤ C
∫ τ

ρ

|ASu|1/2|u|1/2‖u‖|φ|

≤ C‖φ‖L2(ρ,τ ;HS)‖u‖
1/2
L∞(ρ,τ ;HS)‖u‖L∞(ρ,τ ;VS)‖u‖L2(ρ,τ ;D(AS)),

and the assertion holds.

We pass to the proof that the extra regularity of (u, ω) implies the extra

regularity of θ. It is enough to prove that θt ∈ L2(ρ, τ ;V ∗). In the sense of
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distributions we have the equality

〈θt, η〉 = −D(θ, rotω · ∇η) +D

(
∂ω

∂x1
, η

)
+ (u2, η)− b(u, θ, η)− (∇θ,∇η).

All terms on the right-hand side of the last equation constitute linear and

continuous functionals of the variable η on the space L2(ρ, τ ;V ) and hence

θt ∈ L2(ρ, τ ;V ∗). We provide the proof only for the term (θ, rotω · ∇η). We

have, by (3.5) and (3.6),∫ τ

ρ

(θ(t), rotω(t) · ∇η(t)) ≤ C
∫ τ

ρ

|θ|1/2‖θ‖1/2‖ω‖1/2|Aω|1/2‖η‖

≤ C‖θ‖1/2L∞(ρ,τ ;H)‖ω‖
1/2
L∞(ρ,τ ;V )‖θ‖

1/2
L2(ρ,τ ;V )‖ω‖

1/2
L2(ρ,τ ;D(A))‖η‖L2(ρ,τ ;V ),

and the proof is complete. �

If the initial data has the regularity u0 ∈ VS and ω0 ∈ V then we do not need

to use the uniform Gronwall lemma in the proof of the last theorem, and the

regularity holds on the whole interval (0, τ). Hence, the following result holds.

Theorem 6.4. Let (u, ω, θ) solve the problem given in Definition 4.1 with

the initial data u0 ∈ VS, ω0 ∈ V , θ0 ∈ H. Then each weak solution has the

regularity

u ∈ L2(0, τ ;D(AS)) ∩ C([0, τ ], VS) ∩W 1,2(0, τ ;HS),

ω ∈ L2(0, τ ;D(A)) ∩ C([0, τ ], V ) ∩W 1,2(0, τ ;H),

θ ∈ L2(0, τ ;V ) ∩ C([0, τ ], H) ∩W 1,2(0, τ ;V ∗).

Moreover, the solution is unique.

Proof. The proof that each weak solution has the desired regularity follows

the lines of the proof of Theorem 6.3. We only prove the uniqueness. To this end

let (u, ω, θ) and (û, ω̂, θ̂) be two solutions with the same initial data and denote

(u, ω, θ) = (u− û, ω− ω̂, θ− θ̂). We subtract the equation (4.8) written for u and

û and test the difference with ASu which gives

1

2 Pr

d

dt
‖u‖2 +

1

Pr
(bS(u, u,ASu)− bS(û, û, ASu)) + |ASu|2

+
N

1−N
[
|ASu|2 − 2( rot ω,ASu)

]
= Ra (θe2, ASu).

Similarly testing the subtracted two equations (4.9) with Aω we get

M

2 Pr

d

dt
‖ω‖2 +

1

Pr
(b(u, ω,Aω)− b(û, ω̂, Aω))

+
N

1−N
[
4‖ω‖2 − 2( rot u,Aω)

]
+ L|Aω|2 = 0.
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Subtracting (4.10) written for θ and θ̂ and testing with θ we obtain

1

2

d

dt
|θ|2 + ‖θ‖2 + b(u, θ, θ)− b(û, θ̂, θ)

= −D
[
(θ, rotω · ∇θ)− (θ̂, rot ω̂ · ∇θ)

]
+D

(
∂ω

∂x1
, θ

)
+ (u2, θ).

We must estimate four differences of the trilinear terms. We have

−(bS(u, u,ASu)− bS(û, û, ASu)) = − (bS(u, u,ASu) + bS(u, û, ASu))

≤C(‖u‖1/2‖u‖|ASu|3/2 + |u|1/2‖û‖|ASu|3/2)

≤ ε|ASu|2 + C(ε)‖u‖2(‖u‖4 + ‖û‖4),

−(b(u, ω,Aω)− b(û, ω̂, Aω)) = − (b(u, ω,Aω) + b(u, ω̂, Aω))

≤C(‖u‖‖ω‖1/2|Aω|3/2 + ‖u‖|Aω̂||Aω|)

≤ ε|Aω|2 + C(ε)(‖ω‖2‖u‖4 + ‖u‖2|Aω̂|2),

−(b(u, θ, θ)− b(û, θ̂, θ)) = − b(u, θ̂, θ) = b(u, θ, θ̂)

≤C‖u‖‖θ‖‖θ̂‖ ≤ ε‖θ‖2 + C(ε)‖u‖2‖θ̂‖2,

−
[
(θ, rotω · ∇θ)− (θ̂, rot ω̂ · ∇θ)

]
= − (θ, rotω · ∇θ)

≤C|θ|1/2‖θ‖1/2‖ω‖1/2|Aω|1/2‖θ‖

≤ ε‖θ‖2 + ε|Aω|2 + C(ε)|θ|2‖θ‖2‖ω‖2.

The bilinear terms can be estimated in the following way

2N

1−N
( rot ω,ASu) ≤ ε|ASu|2 + C(ε)‖ω‖2,

Ra (θe2, ASu) ≤ ε|ASu|2 + C(ε)|θ|2,
2N

1−N
( rot u,Aω) ≤ ε|Aω|2 + C(ε)‖u‖2,

D

(
∂ω

∂x1
, θ

)
≤ ε‖θ‖2 + C(ε)‖ω‖2,

(u2, θ) ≤ ε‖θ‖2 + C(ε)‖u‖2.

Combining all above estimates and choosing appropriately small ε yields

d

dt

(
1

Pr
‖u‖2 +

M

Pr
‖ω‖2 + |θ|2

)
+ |ASu|2 + L|Aω|2 + ‖θ‖2

≤ C|θ|2 +C‖ω‖2(1 + ‖u‖4 + |θ|2‖θ‖2) +C‖u‖2(1 + ‖û‖4 + ‖u‖4 + |Aω̂|2 + ‖θ̂‖2)

= a(t)

(
1

Pr
‖u‖2 +

M

Pr
‖ω‖2 + |θ|2

)
,

where a(t) ∈ L1(0, τ) is nonnegative. The assertion follows from the Gronwall

lemma. �
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We continue the bootstrapping by showing the additional regularity result

on the temperature. We prove the following theorem.

Theorem 6.5. Let (u, ω, θ) solve the problem given in Definition 4.1 with

the initial data u0 ∈ VS, ω0 ∈ V , θ0 ∈ H. Then, for each ρ > 0, there holds

θ ∈ L2(ρ, τ ;D(A)) ∩ C([ρ, τ ], V ) ∩W 1,2(ρ, τ ;H).

If, moreover, θ0 ∈ V , then

θ ∈ L2(0, τ ;D(A)) ∩ C([0, τ ], V ) ∩W 1,2(0, τ ;H).

Proof. The estimates are done on the level of Galerkin projections and

they are preserved in weak limits. We test (4.10) with Aθ which yields, after

integrating by parts the term (θ, rotω · ∇Aθ)
1

2

d

dt
‖θ‖2 + b(u, θ, Aθ) + |Aθ|2 = −D( rot ω · ∇θ,Aθ) +D

(
∂ω

∂x1
, Aθ

)
+ (u2, Aθ).

We estimate

|b(u, θ, Aθ)| ≤ C|u|1/2‖u‖1/2‖θ‖1/2|Aθ|3/2 ≤ ε|Aθ|2 + C(ε)|u|2‖u‖2‖θ‖2,

D

(
∂ω

∂x1
, Aθ

)
≤ D‖ω‖|Aθ| ≤ ε|Aθ|2 + C(ε)‖ω‖2,

(u2, Aθ) ≤ |u||Aθ| ≤ ε|Aθ|2 + C(ε)|u|2.

By the Hölder inequality and (3.6) we obtain

D

∫
Ω

( rot ω · ∇θ)Aθ ≤ C‖ω‖1/2|Aω|1/2‖θ‖1/2|Aθ|3/2

≤ ε|Aθ|2 + C(ε)‖ω‖2|Aω|2‖θ‖2.

With these bounds the following estimate holds:

(6.4)
d

dt
‖θ‖2 + |Aθ|2 ≤ C(|u|2‖u‖2 + ‖ω‖2|Aω|2)‖θ‖2 + C ≤ ‖ω‖2 + |u|2).

Clearly, we have the sufficient bounds on |u|2‖u‖2 +‖ω‖2|Aω|2 and ‖ω‖2 + |u|2 to

apply the Gronwall lemma (if θ0 ∈ V ) and uniform Gronwall lemma (if θ0 ∈ H)

to get the required regularity of θ. To get the regularity of θt note that as

θt = −u · ∇θ −Aθ +D rotω · ∇θ +D
∂ω

∂x1
+ u2,

we need to show that two nonlinear terms belong to L2 with respect to time with

values inH. Indeed, we use the embeddingH1(Ω) ⊂ L4(Ω) and Lemma 3.2 to get∫ τ

ρ

∫
Ω

|u · ∇θ|2 ≤
∫ τ

ρ

‖u‖2L4‖∇θ‖2L4

≤ C
∫ τ

ρ

‖u‖2|Aθ|2 ≤ C‖u‖2L∞(ρ,τ ;VS)‖θ‖
2
L2(ρ,τ ;D(A))
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and, similarly, by (3.6),∫ τ

ρ

∫
Ω

| rot ω · ∇θ| ≤
∫ τ

ρ

‖∇ω‖2L4‖∇θ‖2L4 ≤ C
∫ τ

ρ

‖ω‖|Aω|‖θ‖|Aθ|

≤ C‖ω‖L∞(ρ,τ ;V )‖θ‖L∞(ρ,τ ;V )‖ω‖L2(ε,τ ;D(A))‖θ‖L2(ρ,τ ;D(A)),

and the regularity from Theorem 6.4 yields the assertion. �

We summarize all results of this section in the following theorem which will

be useful later.

Theorem 6.6. Let (u, ω, θ) solve the problem given in Definition 4.1 with

the initial data (u0, ω0, θ0) ∈ HS ×H ×H. Then, for any ρ > 0, we have

u ∈ L2(ρ, τ ;D(AS)) ∩ C([ρ, τ ], VS) ∩W 1,2(ρ, τ ;HS),

ω, θ ∈ L2(ρ, τ ;D(A)) ∩ C([ρ, τ ], V ) ∩W 1,2(ρ, τ ;H).

If (u0, ω0, θ0) ∈ VS × V × V then the above regularities hold with ρ = 0.

7. Strong solutions and further bootstrapping

This section is devoted to the strong solutions for the considered problem.

We formulate the definition of the strong solution and prove the theorem on

its existence, uniqueness, and continuous dependence on the data. We also

establish the relation between strong and weak solutions. Moreover we prove

that the regularity can be further increased, indeed, for the the strong solu-

tions we instantaneously get (ut, ωt, θt) ∈ C([ρ, τ ];HS ×H ×H) and (u, ω, θ) ∈
Cw([ρ, τ ];D(AS)×D(A)×D(A)). Although we stop at this point, it is possible

to continue the bootstrapping procedure and establish the Hs regularity of solu-

tions for arbitrarily large s. We also remark that the estimates needed to obtain

the regularity (u, ω, θ) ∈ Cw([ρ, τ ];D(AS) × D(A) × D(A)) will be later useful

to obtain the compactness in VS × V × V of the absorbing sets.

Definition 7.1. Let τ > 0, u0 ∈ VS , ω0 ∈ V and θ0 ∈ V . By a strong

solution of problems (4.1)–(4.6) we mean a triple of functions (u, ω, θ),

u ∈ L2(0, τ ;D(AS)) ∩ C([0, τ ], VS) ∩W 1,2(0, τ ;HS),

ω, θ ∈ L2(0, τ ;D(A)) ∩ C([0, τ ], V ) ∩W 1,2(0, τ ;H),

such that u(0) = u0, ω(0) = ω0, θ(0) = θ0 and the following identities hold

(7.1)
1

Pr

(
d

dt
(u(t), ϕ) + bS(u(t), u(t), ϕ)

)
+ (−∆u(t), ϕ)

+
N

1−N
[(−∆u(t), ϕ)− 2( rot ω(t), ϕ)] = Ra (θ(t)e2, ϕ)
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for every ϕ ∈ HS ,

(7.2)
M

Pr

(
d

dt
(ω(t), ψ) + b(u(t), ω(t), ψ)

)
+

N

1−N
[
4(ω(t), ψ)− 2( rot u(t), ψ)

]
+ L(−∆ω(t), ψ) = 0,

for every ψ ∈ H,

(7.3)
d

dt
(θ(t), η) + b(u(t), θ(t), η) + (−∆θ(t), η)

= D( rot ω(t) · ∇θ(t), η) +D

(
∂ω

∂x1
(t), η

)
+ (u2(t), η)

for every η ∈ H, in the sense of scalar distributions on (0, τ).

Theorem 7.2. Let u0 ∈ VS, ω0 ∈ V , θ0 ∈ V and τ > 0. There is a unique

strong solution (u, ω, θ) in the sense of Definition 7.1. Moreover, the strong

solution depends continuously on the initial data, namely, for each t ≥ 0, the

map

VS × V × V 3 (u0, ω0, θ0) 7→ (u(t), ω(t), θ(t)) ∈ VS × V × V

is continuous. The uniqueness of the strong solution holds also in the class of

weak solutions given by Definition 4.1. Moreover, if (u0, ω0, θ0) ∈ HS ×H ×H
and (u, ω, θ) is the weak solution with this initial data, then for any ρ > 0 this

solution restricted to [ρ, τ ] is strong.

Proof. Theorem 5.1 implies the existence of the weak solution for the

given initial data. In view of Theorem 6.6 for ρ = 0 this weak solution has

the desired regularity. We can integrate by parts all terms in the definition of

the weak solution and the density of embeddings VS ⊂ HS and V ⊂ H im-

plies that this solution is in fact strong. The uniqueness follows immediately

from Theorem 6.4. The weak-strong uniqueness follows from the fact that for

(u0, ω0, θ0) ∈ VS × V × V each weak solution is strong and strong solutions are

unique. The fact that weak solution restricted to [ρ, τ ] is strong follows immedi-

ately from Theorem 6.6 for ρ > 0. It remains to show the continuous dependence

on the data and by the estimates used in the proof of Theorem 6.4 it suffices

to show the continuous dependence of θ. Let (u0, ω0, θ0) and (û0, ω̂0, θ̂0) be two

initial states, and (u, ω, θ), (û, ω̂, θ̂) be two corresponding strong solutions. If we

set (u, ω, θ) = (u− û, ω − ω̂, θ − θ̂), then θ satisfies

θt −∆θ = D rotω · ∇θ −D rot ω̂ · ∇θ̂ +D
∂ω

∂x1
+ u2 − u · ∇θ + û · ∇θ̂.
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We test this equation with Aθ which yields

1

2

d

dt
‖θ‖2 + |Aθ|2 = D

(
∂ω

∂x1
, Aθ

)
+ (u2, Aθ)

+D

∫
Ω

( rot ω · ∇θ)Aθ +D

∫
Ω

( rot ω̂ · ∇θ)Aθ − b(u, θ,Aθ)− b(û, θ, Aθ).

We estimate as above

d

dt
‖θ‖2 + 2|Aθ|2 ≤ ε|Aθ|2 + C(ε)‖ω‖2 + ε|Aθ|2 + C(ε)|u|2

+ C‖ω‖1/2|Aω|1/2‖θ‖1/2|Aθ|1/2|Aθ|

+ C‖ω̂‖1/2|Aω̂|1/2‖θ‖1/2|Aθ|3/2 + C‖u‖|Aθ||Aθ|+ C‖û‖‖θ‖1/2|Aθ|3/2

≤ ε|Aθ|2 + C(ε)‖ω‖2 + C(ε)‖u‖2 + ε|Aθ|2 + C(ε)‖ω‖|Aω|‖θ‖|Aθ|

+ ε|Aθ|2 + C(ε)‖ω̂‖2|Aω̂|2‖θ‖2 + ε|Aθ|2

+ C(ε)‖u‖2|Aθ|2 + ε|Aθ|2 + C(ε)‖û‖4‖θ‖2

≤ ε|Aθ|2 + ε|Aω|2 + C‖ω‖2 + C‖u‖2 + C‖ω‖2‖θ‖2|Aθ|2

+ C‖ω̂‖2|Aω̂|2‖θ‖2 + C‖u‖2|Aθ|2 + C‖û‖4‖θ‖2.

The assertion follows by combining this bound with the estimates from the proof

of Theorem 6.4. �

In the next theorem we establish additional instantaneous regularity of strong

solutions. Although it can be considered as the regularity result of independent

interest, its estimates will be later useful to get the set which is absorbing for the

strong solutions and compact in VS × V × V . Note that some of the estimates

of the next theorem are similar to the ones from [34].

Theorem 7.3. Let (u0, ω0, θ0) ∈ VS × V × V and let (u, ω, θ) be the strong

solution with the initial data (u0, ω0, θ0). For each ρ > 0 we have (ut, ωt, θt) ∈
C([ρ, τ ];HS ×H ×H) and (u, ω, θ) ∈ Cw([ρ, τ ];D(AS)×D(A)×D(A)).

Proof. Differentiating the system (4.1)–(4.4) with respect to time we get

1

Pr
(utt + (ut · ∇)u+ (u · ∇)ut +∇pt)

= ∆ut +
N

1−N
(2 rotωt + ∆ut) + e2Ra θt,

div ut = 0,

M

Pr
(ωtt + ut · ∇ω + u · ∇ωt) = L∆ωt + 2

N

1−N
( rot ut − 2ωt),

θtt + ut · ∇θ + u · ∇θt

= ∆θt +D rotωt · ∇θ +D rotω · ∇θt +D
∂ωt
∂x1

+ u2t.
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We test the first of the above three equations with ut, the third one with ωt, and

the last one with θt and add the three resultant equations which gives us

1

2

d

dt

(
1

Pr
|ut|2 +

M

Pr
|ωt|2 + |θt|2

)
+ bS(ut, u, ut) + b(ut, ω, ωt) + b(ut, θ, θt) + ‖ut‖2 + L‖ωt‖2 + ‖θt‖2

+
N

1−N
(‖ut‖2 − 2( rot ωt, ut)− 2( rot ut, ωt) + 4|ωt|2)

= D( rot ωt · ∇θ, ωt) +D

(
∂ωt
∂x1

, θt

)
+ (1 + Ra )(θte2, ut).

Clearly ‖ut‖2−2( rot ωt, ut)−2( rot ut, ωt)+4|ωt|2 = |ωt−2 rotut|2. We estimate

the remaining terms

|bS(ut, u, ut)| ≤ C|ut|‖ut‖‖u‖ ≤ ε‖ut‖2 + C(ε)‖u‖2|ut|2,

|b(ut, ω, ωt)| ≤ C|ut|1/2‖ut‖1/2‖ω‖|ωt|1/2‖ωt‖1/2

≤ C|ut|‖ut‖‖ω‖+ C|ωt|‖ωt‖‖ω‖

≤ ε‖ut‖2 + ε‖ωt‖2 + C(ε)‖ω‖2(|ut|2 + |ωt|2),

|b(ut, θ, θt)| ≤ C|ut|1/2‖ut‖1/2‖θ‖|θt|1/2‖θt‖1/2

≤ C|ut|‖ut‖‖θ‖+ C|θt|‖θt‖‖θ‖,

≤ ε‖ut‖2 + ε‖θt‖2 + C(ε)‖θ‖2(|ut|2 + |θt|2),

D( rot ωt · ∇θ, ωt) ≤ C‖ωt‖3/2|Aθ|1/2‖θ‖1/2|ωt|1/2

≤ ε‖ωt‖2 + C(ε)|Aθ|2‖θ‖2|ωt|2,

D

(
∂ωt
∂x1

, θt

)
≤ ε‖ωt‖2 + C(ε)|θt|2,

(1 + Ra )(θte2, ut) ≤ ε‖θt‖2 + C(ε)|ut|2.

Putting together all the bounds we obtain

d

dt

(
1

Pr
|ut|2 +

M

Pr
|ωt|2 + |θt|2

)
+ ‖ut‖2 + L‖ωt‖2 + ‖θt‖2(7.4)

≤C(1 + ‖u‖2 + ‖ω‖2 + ‖θ‖2)|ut|2

+ C(‖ω‖2 + |Aθ|2‖θ‖2)|ωt|2 + C(‖θ‖2 + 1)|θt|2

≤C(1 + ‖u‖2 + ‖ω‖2 + ‖θ‖2 + |Aθ|2‖θ‖2)

·
(

1

Pr
|ut|2 +

M

Pr
|ωt|2 + |θt|2

)
.

Since we have (|ut|2/Pr +M |ωt|2/Pr +|θt|2) ∈ L1(0, τ) and 1 + ‖u‖2 + ‖ω‖2 +

‖θ‖2+|Aθ|2‖θ‖2 ∈ L1(0, τ), we apply the uniform Gronwall lemma which implies

that (ut, ωt, θt) ∈ L∞(ρ, τ ;HS×H×H). Integrating from ρ to τ (7.4), it follows

that (ut, ωt, θt) ∈ L2(ρ, τ ;VS × V × V ).
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For utt and ωtt there hold the bounds in L2(ρ, τ ;V ∗S ) and L2(ρ, τ ;V ∗), re-

spectively, which imply that (ut, ωt) ∈ C([ρ, τ ];HS ×H). Estimates are similar

to those in the proof of Theorem 5.1. We provide the estimate only for utt (the

estimate of ωtt is similar to that of utt). Assuming that v ∈ L2(ρ, τ ;VS) we

obtain

〈utt, v〉 = −bS(ut, u, v)− bS(u, ut, v)

− Pr

1−N
(∇ut,∇v) +

2 PrN

1−N
(rotωt, v) + Ra Pr(θte2, v).

All terms on the right-hand side constitute linear and continuous functionals

of the variable v on the space L2(ρ, τ ;VS) and their norms in L2(ρ, τ ;V ∗S ) are

bounded. Indeed, for linear terms the assertion is obvious, while for terms with

bS we have the bounds∫ τ

ρ

|bS(ut, u, v)| ≤ C
∫ τ

ρ

‖u‖‖ut‖‖v‖

≤ C‖u‖L∞(ρ,τ ;VS)‖ut‖L2(ρ,τ ;VS)‖v‖L2(ρ,τ ;VS),∫ τ

ρ

|bS(u, ut, v)| ≤ C
∫ τ

ρ

‖u‖‖ut‖‖v‖

≤ C‖u‖L∞(ρ,τ ;VS)‖ut‖L2(ρ,τ ;VS)‖v‖L2(ρ,τ ;VS).

To deal with θtt we will show the bound in L2(ρ, τ ;V ∗) which will imply that

θt ∈ C([ρ, τ ];H). Taking the test function φ ∈ L2(ρ, τ ;V ) we obtain

〈θtt, φ〉 = −b(ut, θ, φ)− b(u, θt, φ)− (∇θt,∇φ)

+D〈 rotωt · ∇θ, φ〉+D〈 rotω · ∇θt, φ〉+D

(
∂ω

∂x1
, φ

)
+ (u2, φ).

We only show the bounds for the nonlinear terms∫ τ

ρ

|b(ut, θ, φ)| ≤ C
∫ τ

ρ

‖θ‖‖ut‖‖φ‖ ≤ C‖θ‖L∞(ρ,τ ;V )‖ut‖L2(ρ,τ ;VS)‖φ‖L2(ρ,τ ;V ),∫ τ

ρ

|b(u, θt, φ)| ≤ C
∫ τ

ρ

‖u‖‖θt‖‖φ‖ ≤ C‖u‖L∞(ρ,τ ;VS)‖θt‖L2(ρ,τ ;V )‖φ‖L2(ρ,τ ;V ).

To derive the estimates in last two nonlinear terms we first integrate by parts∫
Ω

rotωt · ∇θφ = −
∫

Ω

ωt∇θ · rotφ ≤ C|ωt|1/2‖ωt‖1/2|Aθ|1/2‖θ‖1/2‖φ‖,∫
Ω

rotω · ∇θtφ = −
∫

Ω

rotω · ∇φ θt ≤ C|θt|1/2‖θt‖1/2|Aω|1/2‖ω‖1/2‖φ‖.
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Next we estimate the time integrals∫ τ

ρ

∫
Ω

rotωt · ∇θφ

≤ C‖ωt‖1/2L∞(ρ,τ ;H)‖θ‖
1/2
L∞(ρ,τ ;V )‖ωt‖

1/2
L2(ρ,τ ;V )|θ|

1/2
L2(ρ,τ ;D(A))‖φ‖L2(ρ,τ ;V ),∫ τ

ρ

∫
Ω

rotω · ∇θtφ

≤ C‖θt‖1/2L∞(ρ,τ ;H)‖ω‖
1/2
L∞(ρ,τ ;V )‖θt‖

1/2
L2(ρ,τ ;V )|ω|

1/2
L2(ρ,τ ;D(A))‖φ‖L2(ρ,τ ;V ).

We have proved that it makes sense to consider pointwise values of (ut, ωt, θt)

on [ρ, τ ] as elements in HS ×H ×H. We come back to (6.3). It implies that

|ASu|2 + L|Aω|2

≤ C(|θ|2 + |u|2‖u‖4 + ‖ω‖2 + |u|2‖u‖2‖ω‖2 + ‖u‖2 + |ut|2 + |ωt|2),

and since the right-hand side belongs to L∞(ρ, τ) it follows that |ASu|2 +

L|Aω|2 ∈ L∞(ρ, τ). To obtain the bound for θ, note that (6.4) yields

|Aθ|2 ≤ C(|u|2‖u‖2 + ‖ω‖2|Aω|2)‖θ‖2 + C(‖ω‖2 + |u|2 + |θt|2),

and the proof is complete as from previous estimates the right-hand side belongs

to L∞(ρ, τ). The assertion follows from the Lions–Magenes lemma in [21]. �

Note that although we stop on D(AS) × D(A) × D(A), it is possible to

continuous the bootstrapping and obtain the regularity results in higher order

Sobolev norms. These regularity results would later lead to higher regularity

results on the attractor. Since this results are technical and required estimates

are analogous to the ones that we derive in the present paper, we decide to stop

at H2 regularity.

8. Global attractor for weak solutions

Denote by H the product Hilbert space HS×H×H and by V the space VS×
V × V . We define the family of multivalued maps {SH(t)}t≥0 with SH(t) : H →
2H by

SH(t)(u0, ω0, θ0) := {(u(t), ω(t), θ(t))}

where (u, ω, θ) is (possibly nonunique) weak solution with temperature contin-

uous at zero (i.e. given by Definition 4.3) to the problem (4.1)–(4.6) with the

initial data (u0, ω0, θ0) ∈ H. This class is nonempty by Theorem 5.1. More-

over, all bootstrapping results of previous sections are valid for a wider class of

weak solutions given by Definition 4.1, so they also hold for weak solutions with

temperature continuous at zero. We refer the reader to the appendix for the

necessary abstract theorems and definitions.

We will prove the following theorem.
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Theorem 8.1. The family of maps {SH(t)}t≥0 is an m-semiflow which has

a global attractor AH (in the sense of Definition A.2). This attractor is a bounded

set in D(AS)×D(A)×D(A).

The above theorem is a direct consequence of Theorem A.3 and Lemmas 8.2

and 8.3 below. Note that Theorem A.3 provides the existence of the attractor

which is not necessarily the invariant set. By definition it is only compact and it

is the smallest closed set in H which attracts (also in H) all sets from B(H) (2).

The reason for choosing such approach is the difficulty in proving the continuity

or closedness of the graph for the m-semiflow {SH(t)}t≥0. However, in Section 9

we obtain the global attractor AV for strong solutions which is invariant and

shown to be equal to AH. This, eventually, yields the invariance of AH as well.

Lemma 8.2. The family {SH(t)}t≥0 is an m-semiflow (in the sense of Defi-

nition A.1).

Proof. Non-emptiness of SH(t)(u0, ω0, θ0) follows from Theorem 5.1. The

same theorem implies that (a) of Definition A.1 holds. To prove (b) let s > 0

and let (u(t+s), ω(t+s), θ(t+s)) ∈ SH(t+s)(u0, ω0, θ0), with (u, ω, θ) being the

weak solution. Theorem 7.2 implies that the function (u( ·+s), ω( ·+s), θ( ·+s))
is a strong solution on the interval [0, t−s] with the initial data (u(s), ω(s), θ(s))

and hence it is also a weak solution (note that for strong solutions we have

θ( · + s) ∈ C([0, t− s];H) and this immediately implies that (4.11) holds at the

initial point which implies (b)). �

Lemma 8.3. The m-semiflow {SH(t)}t≥0 has an absorbing set B0 which is

closed and bounded in D(AS)×D(A)×D(A).

Proof. We note that throughout the proof C and κ will denote generic posi-

tive constants which vary from line to line (or even in the same line) independent

of time and the initial data. We will prove that there exists a closed ball B0 in

D(AS) × D(A) × D(A) such that SH(t)B ⊂ B0 for any B ∈ B(H) and for all

t ≥ t0(B) > 0. To this end take B ∈ B(H) and the weak solution (u, ω, θ) with

the initial data (u0, ω0, θ0) ∈ B.

Step 1. Maximum principle in L2 for temperature. Let ρ ∈ (0, τ). We know

that T (x1, x2, t) = θ(x1, x2, t) + (1 − x2) ∈ L2(ρ, τ ;H2(Ω)) ∩ C([ρ, τ ], H1(Ω)) ∩
W 1,2(ρ, τ ;H) and T satisfies the boundary conditions (2.2) so

(T − 1)+ ∈ C([ρ, τ ], V ) ∩W 1,2(ρ, τ ;H).

We have

Tt + u · ∇T −∆T = D rotω · ∇T

(2) The symbol B(H) denotes the family of all bounded subsets of H.
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as an equality in L2(ρ, τ ;H). We multiply it by (T − 1)+ and integrate over Ω:

(8.1)
1

2

d

dt
|(T − 1)+|2 + ‖(T − 1)+‖2 = 0,

because
∫

Ω
(u · ∇T )(T − 1)+ = 0 and

∫
Ω

( rot ω · ∇T )(T − 1)+ = 0. Indeed, the

value of the first integral is well-known. As for the second one, we have∫
Ω

|( rot ω · ∇T )(T − 1)+| ≤ C‖ rot ω‖L4‖T‖‖(T − 1)+‖L4 ≤ C|Aω|‖T‖2,

so it is well-defined and (due to boundary conditions and symmetry of second

derivatives)∫
Ω

( rot ω · ∇T )(T − 1)+ =

∫
T>1

( rot ω · ∇(T − 1))(T − 1)

=
1

2

∫
Ω

rotω · ∇(T − 1)2
+

= −1

2

∫
Ω

( div rotω)(T − 1)2
+ +

1

2

∫
∂Ω

(T − 1)2
+( rot ω · −→n ) dS = 0.

We use the Poincaré inequality in (8.1) and the Gronwall inequality to get

|(T − 1)+(t)|2 ≤ |(T (ρ)− 1)+|2e−C(t−ρ) ≤ C|T (ρ)|2e−Ct, t ≥ ρ.

In a similar way we may show that

|T−(t)|2 ≤ |(T (ρ))−|2e−C(t−ρ) ≤ C|T (ρ)|2e−Ct, t ≥ ρ.

Therefore, for t ≥ ρ,

|T (t)|2 =

∫
{T<0}

T 2 +

∫
{0≤T≤1}

T 2 +

∫
{T>1}

T 2

≤ |T−|2 + |Ω|+
∫
{T>1}

(T − 1)2 +

∫
{T>1}

2T −
∫
{T>1}

1

≤ |T−|2 + |Ω|+ |(T − 1)+|2 +

∫
{T>1}

2

(
1√
2
T

)√
2

(by the Young inequality)

≤ |T−|2 + |Ω|+ |(T − 1)+|2 +
1

2

∫
Ω

T 2 + 2|Ω|

and so

|T (t)|2 ≤ 2(|T−(t)|2 + |(T − 1)+(t)|2 + 3|Ω|) ≤ C|T (ρ)|2e−Ct + C.

As |T (ρ)| ≤ |θ(ρ)|+ C and |θ(t)| ≤ |T (t)|+ C, we deduce that

|θ(t)|2 ≤ C|θ(ρ)|2e−Ct + C for all ρ > 0, t ≥ ρ.

By (4.11) we take lim sup
ρ→0+

, which gives

|θ(t)|2 ≤ C|θ0|2e−Ct + C for every t > 0.
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Step 2. Bounds for |u(t)| and |ω(t)| and absorbing set in H. By (5.7) we get

1

Pr

d

dt
(|u|2 +M |ω|2) + ‖u‖2 + 2L‖ω‖2 ≤ C|θ|2 ≤ C + C|θ0|2e−Ct

so we can apply the Poincaré inequality and get

y′(s) + κy(s) ≤ C + C|θ0|2e−Cs,

where y(s) := |u(s)|2 + M |ω(s)|2 and κ is a constant. By the Gronwall lemma

and some simple calculations we get

y(t) ≤ C + y(0)e−Ct + C|θ0|2e−Ct.

It follows that

|θ(t)|2 + |u(t)|2 + |ω(t)|2 ≤ C + C(|u0|2 + |ω0|2 + |θ0|2)e−Ct.

Hence, there exists B1, a closed and bounded set in H (actually a ball) such

that for every B ∈ B(H) we can find t1(B) such that for every t ≥ t1 we have

(u(t), ω(t), θ(t)) ∈ B1 for all solutions starting from B.

Step 3. Bounds for ‖u(t)‖, ‖ω(t)‖, and ‖θ(t)‖ and absorbing set in V. From

Step 2, for t ≥ t1(B),

|u(t)|2 + |ω(t)|2 + |θ(t)|2 ≤ C,

for all solutions starting from B. Assume that t ≥ t1. From (5.10), noting that

the constants in (5.10) are independent of time and initial data, we get

d

dt
(|u|2 +M |ω|2 + |θ|2) + C(‖u‖2 + ‖ω‖2 + ‖θ‖2) ≤ C

We can integrate this inequality between t and t+ 1

|u(t+ 1)|2 +M |ω(t+ 1)|2 + |θ(t+ 1)|2 + C

∫ t+1

t

‖u(s)‖2 + ‖ω(s)‖2 + ‖θ(s)‖2

≤ |u(t)|2 +M |ω(t)|2 + |θ(t)|2 + C ≤ C

so, for t ≥ t1, ∫ t+1

t

‖u(s)‖2 + ‖ω(s)‖2 + ‖θ(s)‖2 ≤ C.

Now, from (6.3) we get, for t ≥ t1,

(8.2)
d

dt
(‖u‖2 +M‖ω‖2) + Pr |ASu|2 + PrL|Aω|2

≤ C(1 + ‖u‖4 + ‖ω‖2 + ‖u‖2‖ω‖2 + ‖u‖2),

and
d

dt
(‖u‖2 +M‖ω‖2) ≤ C + C(‖u‖2 +M‖ω‖2)(‖u‖2 + 1).

If we denote

y(t) = ‖u(t)‖2 +M‖ω(t)‖2, g(t) = C(‖u(t)‖2 + 1), h(t) = C,
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then y, g and h are locally integrable and there are constants a1, a2, a3 ≥ 0 such

that∫ t+1

t

y(s) ds ≤ a1,

∫ t+1

t

g(s) ds ≤ a2,

∫ t+1

t

h(s) ds ≤ a3, t ≥ t1.

We may use the uniform Gronwall lemma to get

‖u(t)‖2 +M‖ω(t)‖2 ≤ (a2 + a3)ea1 = C for every t ≥ t1 + 1.

From now on all bounds are derived for t ≥ t1 + 1. From (8.2), we have

d

dt
(‖u‖2 +M‖ω‖2) + Pr |ASu|2 + PrL|Aω|2 ≤ C.

We integrate this estimate between t and t+ 1 to get the bound

‖u(t+ 1)‖2 +M‖ω(t+ 1)‖2 + Pr

∫ t+1

t

|ASu(s)|2 + L|Aω(s)|2 ds ≤ C,

hence ∫ t+1

t

|ASu(s)|2 + |Aω(s)|2 ds ≤ C.

Estimate (6.4) implies that

(8.3)
d

dt
‖θ‖2 + |Aθ|2 ≤ C(1 + |Aω|2)‖θ‖2 + C.

Denoting y(t) = ‖θ(t)‖2, g(t) = C(1 + |Aω(t)|2), h(t) = C, we get y′(t) ≤
g(t)y(t) + h(t). There are positive constants a′1, a

′
2, a
′
3 such that∫ t+1

t

y(s) ds ≤ a′1,
∫ t+1

t

g(s) ds ≤ a′2,
∫ t+1

t

h(s) ds ≤ a′3,

hence, by the uniform Gronwall lemma, ‖θ(t)‖2 ≤ C for t ≥ t1 + 2. We integrate

the estimate (8.3) between t and t+ 1, t ≥ t1 + 2 to get the bound∫ t+1

t

|Aθ(s)|2 ds ≤ C.

Summing up, there exists a time t1 = t1(B) > 0 such that for t ≥ t1 + 2

(8.4) ‖u(t)‖2 + ‖ω(t)‖2 + ‖θ(t)‖2 ≤ C,

for all solutions starting from B. This proves that there exists B2, a closed and

bounded absorbing set in V.

Step 4. Bounds for |ASu|, |Aω|, |Aθ| and absorbing set in D(AS)×D(A)×
D(A). We know that, for t ≥ t1 + 2, (8.4) holds. The next estimates will be
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derived for t ≥ t1 + 2. We test (7.1) with ut, (7.2) with ωt, and (7.3) with θt
which yields

1

Pr
(|ut|2 + bS(u, u, ut)) +

1

2

d

dt
‖u‖2 +

N

1−N

(
1

2

d

dt
‖u‖2 − 2( rot ω, ut)

)
= Ra (θe2, ut),

M

Pr
(|ωt|2 + b(u, ω, ωt)) +

2N

1−N

(
d

dt
|ω|2 − ( rot u, ωt)

)
+ L

1

2

d

dt
‖ω‖2 = 0,

|θt|2 + b(u, θ, θt) +
1

2

d

dt
‖θ‖2 = D( rot ω · ∇θ, θt) + (u2, θt) +D

(
∂ω

∂x1
, θt

)
.

We use the following estimates

( rot ω, ut) ≤ ε|ut|2 + C(ε)‖ω‖2, (θe2, ut) ≤ ε|ut|2 + C(ε)|θ|2,

( rot u, ωt) ≤ ε|ωt|2 + C(ε)‖u‖2, (u2, θt) ≤ ε|θt|2 + C(ε)|u|2,(
∂ω

∂x1
, θt

)
≤ ε|θt|2 + C(ε)‖ω‖2,

|bS(u, u, ut)| ≤ C|ut||u|1/2‖u‖|ASu|1/2 ≤ ε|ut|2 + C(ε)|u|‖u‖2|ASu|

≤ ε|ut|2 + C(ε)|u|2‖u‖4 + C(ε)|ASu|2,

|b(u, ω, ωt)| ≤ C|u|1/2‖u‖1/2‖ω‖1/2|Aω|1/2|ωt|

≤ ε|ωt|2 + C(ε)|u|‖u‖‖ω‖|Aω|

≤ ε|ωt|2 + C(ε)|u|2‖u‖2‖ω‖2 + C(ε)|Aω|2

|b(u, θ, θt)| ≤ C|u|1/2‖u‖1/2‖θ‖1/2|Aθ|1/2|θt|

≤ ε|θt|2 + C(ε)|u|‖u‖‖θ‖|Aθ|

≤ ε|θt|2 + C(ε)|u|2‖u‖2‖θ‖2 + C(ε)|Aθ|2

|( rot ω · ∇θ, θt)| ≤ C‖ω‖1/2|Aω|1/2‖θ‖1/2|Aθ|1/2|θt|

≤ ε|θt|2 + C(ε)‖ω‖|Aω|‖θ‖|Aθ|

≤ ε|θt|2 + C(ε)‖ω‖2|Aω|2 + C(ε)‖θ‖2|Aθ|2,

whence the above system implies

(8.5)

1

Pr
|ut|2 +

1

1−N
d

dt
‖u‖2 ≤ C(|θ|2 + ‖ω‖2 + |u|2‖u‖4 + |ASu|2),

M

Pr
|ωt|2 +

4N

1−N
d

dt
|ω|2+L

d

dt
‖ω‖2

≤ C(‖u‖2 + |u|2‖u‖2‖ω‖2 + |Aω|20,

|θt|2 +
d

dt
‖θ‖2 ≤ C

(
‖ω‖2|Aω|2 + ‖θ‖2|Aθ|2 + |u|2

+ ‖ω‖2 + |u|2‖u‖2‖θ‖2 + |Aθ|2
)
.
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The bounds (8.5) imply that

1

Pr
|ut|2 +

1

1−N
d

dt
‖u‖2 ≤ C(1 + |ASu|2),

M

Pr
|ωt|2 +

4N

1−N
d

dt
|ω|2 + L

d

dt
‖ω‖2 ≤ C(1 + |Aω|2),

|θt|2 +
d

dt
‖θ‖2 ≤ C(1 + |Aω|2 + |Aθ|2).

Integrating these bounds over the interval (t, t+ 1) we deduce that∫ t+1

t

|ut(s)|2 + |ωt(s)|2 + |θt(s)|2 ds ≤ C.

From (7.4) we have the estimate

d

dt

(
1

Pr
|ut|2 +

M

Pr
|ωt|2 + |θt|2

)
≤ C(1 + |Aθ|2)

(
1

Pr
|ut|2 +

M

Pr
|ωt|2 + |θt|2

)
.

Denoting

y(t) =
1

Pr
|ut(t)|2 +

M

Pr
|ωt(t)|2 + |θt(t)|2 and g(t) = C(1 + |Aθ(t)|2),

we can use the uniform Gronwall lemma to deduce that |ut|2 + |ωt|2 + |θt|2 ≤ C,

for all t ≥ t1 + 3. From (6.3) it follows that

|ASu|2 + L|Aω|2 ≤ C(|θ|2 + |u|2‖u‖4 + ‖ω‖2 + |u|2‖u‖2‖ω‖2 + ‖u‖2)

− 2

Pr
(ASu, ut)−

2M

Pr
(Aω, ωt),

whence |ASu|2 + |Aω|2 ≤ C, whenever t ≥ t1 + 3. Finally (6.4) implies that

|Aθ|2 ≤ C(|u|2‖u‖2 + ‖ω‖2|Aω|2)‖θ‖2 + C ≤ ‖ω‖2 + |u|2)− 2(Aθ, θt),

whence we deduce that |Aθ|2 ≤ C, for t ≥ t1 + 3, and the proof is complete. �

9. Global attractor for strong solutions

Define SV(t) = SH(t) �V , the restriction to V of the m-semiflow considered

in Section 8. Theorem 7.2 implies that SV is single-valued and

SV(u0, ω0, θ0) = (u(t), ω(t), θ(t)) ∈ V,

where (u, ω, θ) is the unique strong solution with the initial data (u0, ω0, θ0).

Moreover, by Theorem 7.2, for every t ≥ 0, the map SV(t) is continuous in V.

We have also the following lemma.

Lemma 9.1. The family of maps {SV(t)}t≥0 is a semiflow (in the sense of

Definition A.4).
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To prove the existence of a global attractor for strong solutions (cf. Defi-

nition A.5 and Theorem A.6) it is enough to show the existence of a compact

absorbing set for SV . It follows from Lemma 8.3. Indeed, the same set which is

absorbing for SH is also absorbing for SV . Thus, we have

Lemma 9.2. The semiflow {SV(t)}t≥0 has an absorbing set B0 which is closed

and bounded in D(AS)×D(A)×D(A) and therefore compact in V.

Now, we can immediately use Theorem A.6 to deduce the following result.

Theorem 9.3. The semiflow {SV(t)}t≥0 has a global attractor AV , which is

a bounded set in D(AS)×D(A)×D(A).

As to the relation between AH and AV we have the following

Theorem 9.4. The sets AH and AV coincide.

Proof. We know that distH(SH(t)AV ,AH) → 0 as t → ∞. But on AV
the mappings SH(t) and SV(t) coincide, and AV is invariant under SV(t), so

distH(AV ,AH) = 0. This implies that AV ⊂ AH as both sets are closed in H.

For the opposite assertion we will show that AV , which is compact in H, is

attracting in H and hence AH, the smallest closed attracting set in H, must be

its subset. To this end let B ⊂ B(H) and t ≥ t1(B) + 2, cf. Step 3 of Lemma 8.3.

We have

distH(SH(t)B,AV) ≤ distH(SH(t− t1(B)− 2)SH(t1(B) + 2)B,AV).

But SH(t1(B) + 2)B ⊂ B2, where B2 is bounded and absorbing in V. On B2,

SH(t) = SV(t), so

distH(SH(t)B,AV) ≤ distH(SV(t− t1(B)− 2)B2,AV)

≤ CdistV(SV(t− t1(B)− 2)B2,AV).

Passing with t to infinity we obtain the assertion of the theorem. �

We can now summarize all the obtained results in the following theorem.

Theorem 9.5. Weak solutions with temperature continuous at zero given

by Definition 4.3 generate an m-semiflow {SH(t)}t≥0 and strong solutions given

by Definition 7.1 generate a semiflow {SV(t)}t≥0. We have SV(t) = SH(t)|V
for all t ≥ 0. There exists the invariant set A compact in V and bounded in

D(AS) × D(A) × D(A) which is the global attractor both for {SH(t)}t≥0 and

{SV(t)}t≥0.
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10. Relations between heat transport and dissipation rate

For a function g : [0,∞)→ R define

〈g〉 = lim sup
t→∞

1

t

∫ t

0

g(τ) dτ.

Let

Nu = 1 +

〈
1

l

∫
Ω

u2(x, t)T (x, t) dx

〉
be the Nusselt number (note that l = measure of Ω), and ε = Pr〈‖u‖2〉/l be

the time averaged dissipation rate, both expressed in terms of nondimensional

variables.

Our aim is to establish relations between Nu and ε for the thermomicropolar

model (1.1). It is known that for the classical Boussinesq model the relation is

given by the equation (see [8])

ε = Pr Ra (Nu− 1).(10.1)

We denote

J(t) =

∫
Ω

u2(x, t)T (x, t) dx.

From the first three equations of (2.1) we have

d

dt

1

2
|u|2 + Pr ‖u‖2 +

PrN

1−N
(‖u‖2 − 2( rot ω, u)) = Pr Ra J,(10.2)

and

(10.3)
d

dt

M

2
|ω|2 + LPr ‖ω‖2 +

PrN

1−N
(4|ω|2 − 2( rot u, ω)) = 0.

Using ( rot ω, u) = ( rot u, ω), eliminating these terms from the above equations,

and dividing by l we obtain

d

dt

1

2l
|u|2 +

Pr

l(1−N)
‖u‖2 =

d

dt

M

2l
|ω|2 +

LPr

l
‖ω‖2 +

4 PrN

l(1−N)
|ω|2 +

Pr Ra

l
J.

Taking the average 〈 · 〉 and using the boundedness of |u(t)| and |ω(t)| we obtain

(10.4) ε = (1−N)

〈
LPr

l
‖ω‖2 +

4 PrN

l(1−N)
|ω|2 +

Pr Ra

l
J

〉
.

Observe that if we set N = 0 and L = 0, the above equation gives the classical

relation known for the Boussinesq model,

ε =
Pr Ra

l
〈J〉 = Pr Ra (Nu− 1).

From (10.4) we obtain

ε ≥ (1−N)
Pr Ra

l
〈J〉 = (1−N) Pr Ra (Nu− 1)(10.5)

or

Nu ≤ ε

(1−N) Pr Ra
+ 1.
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Now, we estimate ε from below. Adding (10.2) and (10.3) and using ( rot ω, u) =

( rot u, ω) and | rot u|2 = ‖u‖2 we obtain after a few calculations

1

2 Pr

d

dt
(|u|2 +M |ω|2) + ‖u‖2 + L‖ω‖2 +

N

1−N
| rot u− 2ω|2 = Ra J.

Taking the average over time variable and multiplying by Pr /l we have〈
Pr

l
‖u‖2 +

PrL

l
‖ω‖2 +

PrN

l(1−N)
| rot u−2ω|2

〉
=

Pr Ra

l
〈J〉 = Pr Ra (Nu−1).

Therefore,

ε ≤ Pr Ra (Nu− 1).(10.6)

Finally, from (10.5) and (10.6) we have the following relations between the Nus-

selt number and the dissipation rate for the thermomicropolar fluid,

(1−N) Pr Ra (Nu− 1) ≤ ε ≤ Pr Ra (Nu− 1)(10.7)

or
ε

Pr Ra
+ 1 ≤ Nu ≤ ε

(1−N) Pr Ra
+ 1.

The same relations hold for the reduced model, namely, model (2.1) with D = 0

and clearly, forN = 0, we get the usual relation (10.1) for the classical Boussinesq

model.

The numbers ε and Nu can depend on the parameters of the model, in

particular on the coupling number N and micropolar damping L. In our physical

interpretation the coupling number is responsible for the friction between the

particles. If N → 1 and L→∞ (this happens when the kinematic microrotation

viscosity νr → ∞ and micropolar damping α → ∞) the increasing friction

between the particles make the motion slower and more quiet, and possibly may

stop it completely. This would be the situation when ε → 0 and Nu → 1.

Looking at the second inequality in (10.7) we may ask if it is true that

Pr Ra (Nu− 1)→ 0, as N → 1.

Then we would have that Nu(L,N)− 1 ∼ o(1) as N → 1 and L→∞ (or, more

accurately, as Nu can depend on other parameters than N and L only, including

the initial data, Nu has the upper bound which is o(1) + 1). The positive answer

holds for the case D = 0. In fact, in [18] it is proved that assuming Ra > 128,

for sufficiently large N and L we have Nu = 1, the type of result which have no

counterpart in the theory of homogeneous Navier–Stokes fluids.

Appendix A. Attractors for single- and multivalued semiflows

We recall some useful definitions and results from the theory of m-semiflows,

cf. [9], [10], [19], [24]. In the following, X is a Banach space. By B(X) we denote

the family of nonempty and bounded subsets of X.



512 P. Kalita — G.  Lukaszewicz — J. Siemianowski

Definition A.1. A family {S(t)}t≥0 of multivalued maps S(t) : X→2X \{∅}
is an m-semiflow if

(a) For any x ∈ X we have S(0)x = {x}.
(b) For any s, t ≥ 0 and x ∈ X we have S(t+ s)x ⊂ S(t)S(s)x (3).

A set B0 ∈ B(X) is absorbing if for every bounded set B ⊂ X there exists

tB ≥ 0 such that
⋃
t≥tB

S(t)B ⊂ B0. As customary, the main object of study is

the so-called global attractor, whose attraction property is defined in terms of

the Hausdorff semidistance in X, namely distX(A,B) = sup
x∈A

infy∈B ‖x− y‖X .

Definition A.2. The set A ⊂ X is a global attractor for an m-semiflow

{S(t)}t≥0 if

(a) A is a compact set in X.

(b) A uniformly attracts all bounded sets inX, i.e. lim
t→∞

distX(S(t)B,A) = 0

for every B ∈ B(X).

(c) A is the smallest (in the sense of inclusion) closed set which has the

property (b).

Note that we do not impose any continuity or closed graph type condition

on S(t). This way, the attractor will be the minimal closed attracting set, but it

does not have to be invariant (neither positively nor negatively semi-invariant),

see [5], [10]. In our case, the following sufficient condition for the existence of

the global attractor is enough. The theorem was proved in [10, Proposition 4.2],

where more general formalism of pullback attractors is considered.

Theorem A.3. If the m-semiflow {S(t)}t≥0 possesses a compact absorbing

set B0 then it has a global attractor A.

Clearly we have A ⊂ B0 as B0 is the compact absorbing (and hence also

attracting) set.

We also briefly recall some notions concerning singe-valued semiflows and

their attractors. Note that, in contrast to the multivalued case, we include the

continuity in the definition of the semiflow.

Definition A.4. A family {S(t)}t≥0 of maps S(t) : X → X is a semiflow if

(a) For any x ∈ X we have S(0)x = x.

(b) For any s, t ≥ 0 and x ∈ X we have S(t+ s)x = S(t)S(s)x.

(c) For any t ≥ 0 the mapping S(t) is continuous.

Definition A.5. The setA ⊂ X is a global attractor for a semiflow {S(t)}t≥0

if

(3) Here, by a mild abuse of notation, we write S(t)S(s)(x) instead of a formally correct

S(t)(S(s)(x)).



Thermomicropolar Fluids 513

(a) A is a compact set in X.

(b) A uniformly attracts all bounded sets in X, i.e. lim
t→∞

distX(S(t)B,A) = 0

for every B ∈ B(X).

(c) A is invariant, i.e. S(t)A = A for all t ≥ 0.

The following result on the existence of global attractor is classical, cf. [20],

[26], [31].

Theorem A.6. If the semiflow {S(t)}t≥0 possesses a compact absorbing set

B0, then it has a global attractor A.

It is well known that A is the smallest closed attracting set, so we must have

A ⊂ B0, as B0 is closed and attracting.
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