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EXISTENCE OF SOLUTIONS
FOR A CLASS OF DEGENERATE ELLIPTIC EQUATIONS
IN P(X)-SOBOLEV SPACES

BENALI AHARROUCH — MOHAMED BOUKHRIJ — JAOUAD BENNOUNA

ABSTRACT. We study the Dirichlet problem for degenerate elliptic equa-
tions of the form

—diva(z,u, Vu) + H(z,u,Vu) = f in Q,

where a(z,u, Vu) is allowed to degenerate with respect to the unknown wu,
and H(z,u, Vu) is a nonlinear term without sign condition. Under suitable
conditions on a and H, we prove the existence of bounded and unbounded
solution for a datum f € L™, with 1 <m < oco.

1. Introduction

Let Q be a bounded subset of RV, N > 2. In [10], the authors have studied
the quasi-linear elliptic problem

A(u) + H(z,u, Vu) = f in Q,

where Au = —div((a(x,u)Vu)) is a Leray-Lions operator from HE(Q), the
Carathéodory function H satisfies the growth conditions and no sign condition
is posed (i.e. H(z,s,£)s > 0), the data f belongs to L™(2). They showed the
existence of weak solutions if m > N/2, and existence of entropy solutions if
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2N /(N +2) < m < N/2. These results were extended by Porretta and Segura
de Ledn in 2006, [17], to the model case

—div(a(u)|VulP~2Vu) = B(u)|VulP + f(z) in Q,
u=0 on 0f),

with 1 < p < co. Also under the additional hypothesis

they obtained an L°°-estimate. Aharrouch and al. [1] proved the existence
results in the setting of Orlicz space for the unilateral problem associated to the
equation

A(u) + H(z,u,Vu) = f in Q,
where Au = — div((a(x,u)Vu)) is a Leray—Lions operator and no sign condition
is posed on H, and f € L'(Q).

To deal with this kind of problems, it is natural to work under the framework
of Sobolev spaces with variable exponents. The study of differential equations
with variable exponents has been a very active field in recent years, with appli-
cations in electro-rheological fluids and image processing, and so on. We refer
the readers to [15] and references therein.

In [3] Azroul, Hjaij and Touzani proved the existence of entropy solutions for
the following problem:

—diva(z,u, Vu) + H(z,u, Vu) = f —div(¢) in Q,
u=20 on 01},

with f € L}(Q2) and ¢ € CO(R,R™).
Our purpose is to study the existence of a solution for the following degen-
erate problem:

—diva(z,u, Vu) + H(z,u,Vu) = f in Q,

1.1
(1) u=>0 on 012,

in the setting of the Sobolev space with variable exponent VVO1 P ')(Q), where 2
be a bounded subset of RN, N > 2. a and H are a Carathéodory functions. We
assume that there exists a continuous function a: Rt — RT with «(0) = 0, such
that a(z, s, )¢ > a(s)|£[P®) for s € R, £ € RN and almost every z € Q.

There exist two main difficulties in dealing with this problem, which are
related to the facts that the main operator is degenerate for the subset {z € Q :
u(z) = 0} and we cannot use the classical method of Stampacchia to prove L°-
estimates for the solution. To overcome these difficulties, we shall employ a test
function method with respect to the boundary of «, and then following the ideas
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of [6], we make a partition of (2 into a finite number of balls B; (such that for
all continuous functions f < g on €, we have sup(f) < inf(g) on B;), and assure
conditions of [19, Lemma 4] are verified.

This paper is organized as follows: in Section 2 we recall some preliminaries
and useful lemmas. In Section 3, we first prove an estimation for solutions in
L>(Q), then we prove the existence of the weak solution when f € L™(),
m > N/p(-) and m > p’(-). In the last section, we prove the existence of the
entropy solution when f € LY(Q).

2. Preliminaries

In this section we define Lebesgue and Sobolev spaces with variable exponent
and recall some of their properties. Let Q be an open bounded set in RY, N > 2.
The function p(-) satisfies the log-Holder continuity on €2 if

c
@1 ) —p@) < e —

_ 1
, for all z,y € Q such that |y — x| < 2
with C' being a positive constant.
We denote C4 () = {p: Q — R is a log-Hélder continuous function such that
p(x) > 1 for any x € Q}. For every p € C4(Q) we put
pT =maxp(z) and p~ =minp(z).
e zeQ

The variable exponent Lebesgue space is defined as

P (Q) = {u - u is a measurable real-valued function, [ |u(xz)P® d < oo}.

Q
We can introduce the norm on LP(*)(Q) by

||u||p(.):inf{)\>0:/ dxgl}.
Q

The variable exponent Lebesgue spaces resemble classical Lebesgue spaces in

u(m) p(z)

many aspects: they are Banach spaces, the Holder inequality holds, they are
reflexive if and only if 1 < p_ < p; < oo and continuous functions are dense in
LPC)(Q) if py < oo (see Kovacik and Rékosnik [18]).

We denote by LP'(")(Q) the conjugate space of LP(')(Q) where 1/p(-) +
1/p'(-) = 1 (see [13], [14]). For any u € LPC)(Q) and v € LF'()(Q), the
generalized Holder inequality

/ <—<1 1)” H H ”
uv + u ) |1Vlp" (z)»
P p/ p(x) p'(x)

PROPOSITION 2.1 (see [12], [21]). If we denote

holds true.

plu) = / luP@ dz,  for all u € LPC)(Q),
Q
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then the following assertions hold:

(a) [Jullpc.y <1 (resp. =1, > 1) if and only if p(u) <1 (resp. =1, > 1),
(b) if ully(.) > 1 then Jull’; , < p(w) < Jull%F,

if ully <1 then [[ull2? ) < pu) < Jull®; ),
(¢) llullpc.y = 0 if and only if p(u) — 0,

|ullpc.y = oo if and only if p(u) — oo.

We define the variable Sobolev space by

WirC)(Q) = {u € LPU)(Q) : |Vu| € LFC)(Q)},
normed by
(2.2) Null1.pc-y = ullpcy +11Vullpcy  for allu e wrC)(Q).

We denote by Wol'p(')(ﬂ) the closure of C°(Q) in W'P()(Q) and

Np(z)
p*(z) = N —p(z)
00 for p(xz) > N.

for p(z) < N,

PROPOSITION 2.2 (see [12]).

(a) Assuming p_ > 1, the spaces W P()(Q) and Wol'p(')(Q) are separable
and reflexive Banach spaces.

(b) If g € C4(Q) and q(z) < p*(z) for any x € Q, then
(2.3) W, ") - LPO(Q)

is compact and continuous (for more details see [11, Theorem 8.4.2]).
(¢) (The Poincaré inequality) There exists a constant C > 0 such that

lully(.y < CIVUllycy  for allue Wy (@),
(d) (The Sobolev inequality) There ezxists a constant C > 0 such that

po() S CIVullpc.y forallu e Wol'p(‘)(ﬂ).

[ u

REMARK 2.3. By (c) of Proposition 2.2, we know that || Vu||,.y and [[ul[y ()

are equivalent norms on WO1 P )(Q)
Some technical lemmas.

LEMMA 2.4 ([4]). Let ¢ € C4(Q), g € LIC)(Q) and (gn)n € LI (Q) with
lgnllqc.y < C. If gu(x) — g(x) almost everywhere in Q, then g,(x) — g(x) in
L1C)(Q), where C is a positive constant.
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LEmMMA 2.5 ([4]). Let F: R — R be a uniformly Lipshitz function, with
F(0)=0andp € Cy(Q). Ifue Wol'p(')(Q), then F(u) € Wol'p(')(Q). Moreover,
if the set of discontinuity points of F" is finite, then

ou
O ou) = F(w) Ox;
aLL'Z‘

0 for a.e. x € Q\ u(z) € D.

for a.e. x & Q\ u(x) € D,

LEMMA 2.6 ([12]). Let u € W (Q), then Ty(u) € W) (Q), with k > 0.
Moreover, T (u) — u € Wol'p(')(Q) when k — o00.

LEMMA 2.7 ([3]). Let (un)n be a sequence in Wol'p(')(Q) with uy, — u in
WP \(Q), then Ti(un) — Ty(w) in WPt (Q).

LEMMA 2.8 ([4]). Assume that (3.1)—(3.3) hold and there exists A > 0 such
that a(-) > A. Let (un)n be a sequence in Wol'p(')(Q) such that u, — u in
Wol'p(')(Q) and

/[a(m, Un, Vy) — a(z, up, V)|V (u, —u) — 0.
Q
Then u, — u in Wol'p(')(Q).

3. Basic assumptions, notations and definitions

First, we suppose that the functional —div(a(z,u, Vu)) is a Leray-Lions
operator defined on Wy 7' (Q) into W=12'(:)(Q), where a: @ x R x RY — RV
is a Carathéodory function, satisfies the following assumptions:

(3.1) la(z,5,€)| < L(z) + | [P~ 4 g1,
(3.2) a(z, 5,6)€ > a(s)[¢[P@,
(3.3) [a(z,s,8) — a(z,s,8)][§—&]>0 for  #¢,

for almost every x € Q, for all (s,£) € R x RV, where L(-) is a positive function
of L' )(Q). Moreover, H(z,s,£) is a Carathéodory function satisfying

(3.4) |H (x,5,€)| < B(s)|g]P™,

where o, 3: R +— R are continuous functions, with o > 0,
Tepm, oot g L(0.00) UL (00,0,

(3.5) feL™Q).

We define

(3.6) = [ ﬁg; dr,

(3.7 A(s) = / a(T)l/(’ﬁ_l) dr if « is unbounded,
0
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(3.8) A(s) = / ()Y@ =V dr if  is bounded,
0

4. Existence of bounded solutions

DEFINITION 4.1. For all £ > 0 and s € R, the truncation function Tj(-) can
be defined by
s if |s| <k,
k-sign(s) if |s| >k,
and we define Gi(s) = s — T(s).

Tk(s) =

DEFINITION 4.2. A measurable function u € Wol’p( ')(Q), is a weak solution
of (1.1), if a(z,u, Vu) € L' )(Q), H(z,u, Vu) € L*(Q) and

(4.1) /a(m,u,Vu)Vgoder/H(:c,u,Vu)cpd:r:/fapdx
Q Q Q

for all ¢ € Wol’p(')(ﬂ) N L>(9).

THEOREM 4.3. Assume (3.1)—(3.5) hold with m > p/'(+) and m > N/p(-),
if uis a weak solution of (1.1) such that A(u) may be taken as a test function,
then ||u|lo < C, where C > 0 only depends on m, on the norm of f in L™(Q)
and on the parameters of (1.1).

PRrOOF. Case 1. The function « is unbounded, i.e. ligl a(s) = +o0. Then
S—r 100
there exists ag > 0 such that «(s) > 1 for all s > «aq since liI_P a(s) = +oo.
S§——+00

For every k > A(ay), with
A(s) = / a(r)V/® =D gz,
0
taking v = ¢ (G (A(u)))" as an admissible test function in (1.1), we have

/ o, u, Vi) Vaua(u)V @ D gy
{A(w)=k}

a(z,u,Vu uﬁ(u)e(“) u)) dx
+/{A<u>>k} (@, u, Vu)V a(u) TWGR(A(u)) d

+ / H(x,u, Vu)e" ™ G(A(u)) da
{A(w) =k}

= / f WG L(A(w)) d.
{A(u)>k}

On the other hand, by (3.2) and (3.4), we have

/ a(z,u, Vu) Vu Blw) WG L(A(w)) dz
{A(u)>k} a(u)

> / B(u)|Vu|p(’”)ey(“)Gk(A(u)) dz,
{A(w)>k}
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and

/ H(z,u, Vu)e" ™G (A(u)) dx
{A(u) 2k}

> / B(w)[VulP®@ e Gy (A(w)) da.
{A(u)>k}
So we conclude that

/ a(x,u, Vu)Vuoz(u)l/(w*l)e'Y(“) dx < / fWGL(A(v)) de.
{A(u) 2k} {A(u) =k}

By assumption (3.2) we have

/ a(z, u, V) Vua(u) Y @ =D er®) gy
{A(w) =k}

Y]

C/ IVuP@® o (u)? /@D gy
{A(w) 2k}

e / VP ()P @/ ) gy
{A(u)2k)

> / VAP do
{A(u)>k}

and consequently

/ \vmwmmsdf G (A(w))] da,
{A(u)>k} {A(u)>k}

which give
/|VGk NP I)dx<C”/ |FI|1GR(A(u))| d.

Case 2. The function « is bounded, i.e. there exists a constant M > 0 such
that a(s) < M for every s € [0, 400].
Taking v = ¢ (G (A(u)))* as an admissible test function in (1.1), with

As) = [ am) 07V,
0
we have
/ alz, u, Vu)Vua(u)/ P~ ~Der (W gy
{A(u)>k}

+ / a(xz,u, Vu)Vu Me"(")Gk (A(u)) dzx
{A(u)>k} a(u)

+/ H(z,u, Vu)e' ™Gy (A(u)) dz
{A(u)2k}

_ / FEOIGL(A(u)) da.
{A(w)>k}
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The reasoning as above gives

/ a(z, u, Vu)Vua(u) VP —Der (W gy < / fWaL(A(u)) d.
{A(w)=k} {A(u) >k}

By assumption (3.2) we have

/ a(z, u, Vu)Vua(u) VP ~De (W gy
{A(w) =k}
so [ ey
{A(w) =k}
> Ci / |Vu|p(””)o¢(u)l7(z)/(p’fl) dx
{A(w) =k}

> ¢ / VAP da,
{A(u)>k}
and consequently,

@2 [ vAwParsor [ iG]
{Aw)zk} {A(w)zk}

Now let €7(") (G}, (A(u)))~ be an admissible test function in (1.1), and reasoning
as above we get

@y [ waA@PRaE < [ G AW,
{A(u)<k} {A(u)<k}
(4.2) and (4.3) give
(4.4) VG A@P® o < s [ 171Gu(Aw)
Q Q

By the Holder inequality and Sobolev embedding, we have

| IVGLA@P do < call - IGHAGD

<easllfxallp () IVGL(A(W)) [l

1/71
§C3||fXAk||p/*(.)(/Q|VGk(A(u))p(z) dm) ,

with

_Jp i VGRA@) ) = 1,
pr i IVGR(A) ) < 1,

and A, = {z € Q,|A(u)| > k}. The Young and Holder inequalities give

¢ [ WGLA)PE do < e, + ¢ [ IVGLAwW)PE da,
Q * Q
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and

, ’Y{/’Yz
¢ [ 19 A do < a1 ao)
k

< c1|||f|P*||W1/“r/2p () ||XAk||Z(1_/)7/2(S(_)7p;(.))
S 03(@(/{))71/(’72~75) S Cg(@(k))vi/('h'%)’

with ¢/ = ¢” — ¢, > 0, ®(k) = mes(Ay) and

()~ i fxanllp ) > 1,

Yo = ,
()T i [ fxally ) <1,

x) -
- ;(x)) Flxallscy /)= 2 1

(-
V5 = S(x) 1') +

< , x)> XAl /s )-pr0n) <1
By Sobolev embedding, we have

ao) [ IVGaw)r dxm( [ testa)

where

va4/v3
p(@) dm) 7

(pe)” I GR(AW)llp. () > 1,

Y3 = .
() IGe(AW)p. ) <1,

P i [VGLA@)l ) > 1.
pT A [ VGR(A)) [l < 1.

So, by (4.5) and (4.6), we get

(4.7) / |G (A)|P= @) da < &, ((k))7-73/(27570)

Choose h such that h —k > 1 and in A, = {z € Q : |A(u)| > h} we have
h —k < Gi(u). Hence, in view of (4.7), we obtain
C
(h— k)~
First, let p™ be a constant satisfying p™ < mi%(l + 1/N)p(z) which implies that
ze

B(h) < (D(k))7i13/ (25:74)

pt < min(Np(x)/(N — p(z))), then v3/74 > 1 and 7;/72 > 1. By a suitable
zeQ
choice of s(-), we have 8 = 7{.7v3/(y2-75-74) > 1. Now, we use the result of
Stampacchia [19]; then there exists a constant C, such that ||u]|. < C.
Now, let p € C4(Q) be such that

p(z) < m and p(z) < <1 + ;) p(z).
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By the continuity of p(-) on €, there exist two constants d;,d2 > 0 such that

. Np(y)
(4.8) max  p(y) < min = ——2—,
yEB(2,6,)N0 2 yeBonna N —p(y)
1
(4.9) _max _p(y)< _inf (1 + )p(y)
yEB(x,82)N02 yEB(,6)N N

for all x € Q. So, recalling that € is compact, we can cover it with a finite

number of balls (B;);=1,... k. Moreover, there exists a constant A > 0 such that

min(dy,d2) > | > A, Q@ =B;NQ, foralli=1,... k.

We denote by (p;)* and (ps;)T the local maxima of p and p, = Np/(N — p)
on Q; (respectively, (p;)~ and (p.;)~, the local minima of p and p, on Q;). By
(4.7) and the fact that (p.«;)~ < p. = Np/(N — p) on Q;, we have

(4.10) / IGR(A)| P do < (@ (k)OD /02598 =1, k,
Q;

with ®;(k) = mes({x € ; : |[A(u)| > k}) and 7} are the restrictions of v; on Q;.
Choose h such that h — k > 1, and in A} = {z € Q; : |[A(u)| > h} we have
h —k < Gi(u). Hence, in view of (4.10), we obtain

o(h) < ¢

< R (D(k)) OV /(39590 =1, k.

It follows from (4.8)-(4.9) that 43 /7] > 1 and (v/)'/43 > 1 for all z € Q and
j=1,...,k, which give 43 (v})'/(v}74) > 1 and, by a suitable choice of 5(-), we
have (4) .44/ (Ys.4i~4t) > 1, forallz € Qand i = 1,..., k. By Lemma 4 of [19]
we get ||ulleo < C. O

THEOREM 4.4. Under assumptions (3.1)—(3.5), there exists a weak solution
of (1.1) in the sense of Definition 4.1.

PRrROOF. We obtain the solution u by approximation. Consider the following
sequence of problems:
—div ay,(z, upn, Vuy) + Hy (2, upn, Vu,) = f in Q,

(4.11)
Uy =0 on 092,

where

an(.%', 875) = a(x7Tn(S)7§)7
Hn(x, S, f) = min [Tn(ﬁn(sﬂflp(w)a max (_Tn(ﬂn(3)|€|p(x))7 Hy(z,s, 5))]7

() = alT(e). 5ul) = anls) 2

=

~

Q
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Note that « is continuous, so there exists A > 0 such that «,(s) < A and since
an & L1([0,00]) U L1(]—00.0]), we obtain

(4.12) (a(, 5,€))€ > an(s) €[ > N[,
On the other hand, the function H,, is bounded and
(4.13) [Ho(2,5,)] < Tu(Bu(s)[EPW 1) < Bals)[EP
We also observe that 3,/a, = 8/a € L'(R) and
Brn < max{a(s) :|s| < n} g, so that S, € L'(R).
Consider
An(s) = /O an (1)@ D gr.

Applying the classical result by Lions [14], for each n € N, there exists a weak
solution u,, € VVO1 p( )(Q), which is an admissible test function in the weak sense
(4.11). By Theorem 4.3, we have u,, € L>(Q), and so A, (u,) € Wol’p(')(Q) N
L>(Q) for all n € N.

Estimates for the sequences {u,}. We have u, € L>®(Q), so let v =
7yt be a test function in (4.11),

(4.14) / a(x, unp, Vun)Vune'Y(“") dx
Up >0

+/ a(x, Up, Vg )ty Blun) W)y, dr

Un >0 a(un)

+ H(z,uy, Vun)une"Y(“") der = / fune? ) d.
Un >0 un >0

On the other hand, by (3.2) and (3.4) we have

[t Vunyun 2L > [ )l (9 ) i,
Up >0

a(un) Up >0
and

H (U, Vg g e ) do > —/ B(un) [t || Vg |[P® ) d.

Un 20 Up >0

So (4.14) becomes

/ a(, U, Vi) Vi) d < / | Flltnle? ) da,
Up >0

Un, >0

or v is bounded, so for some Cg > 0, we have

(4.15) / |V, [P do < Cg / Flun| dz < Cglun | (o / |f] de.
Up >0 Up >0 Q
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Now, let v = fe’“’(“")u; be a test function in (4.11), by the same way as before
we get, for some C7 > 0,

(4.10 [ 1V de < Colunlo [ 1f1da
Uy, <0 Q

This estimate proves that (u, ), is bounded in Wol’p( )(Q) Hence, up to subse-
quences, (u,), converges weakly; moreover, Rellich-Kondrachov’s theorem im-
plies that we may also assume that converges almost everywhere in €. Let u be
that limit; then u € Wol’p(')(Q) N L>(£)

(4.17) u, —u weakly in Wol’p( ')(Q),
(4.18) U, — u strongly in LP()(Q) and a.e. in Q.

Strong convergence of {u,}. Let v = (") (u,, — u)* be a test function
in (4.11), then we have

(4.19) / a(, Un, Vi) (Vg — Vu)e? ) dg
Up >U

+ / H(x,tp, Vg ) (un — u)e? ) da
Up U

a(uy)

")y, dr

z/ flu, —u)e? ) da.
Up U

In view of (3.2) and (3.4); we conclude that

/ H(z,un, Vug)(un — u)ew(“") dx
Up >U

+/ a(x, Up, V) (uy — w)
Up >U

Consequently, we have
(4.20) / a(z, tp, Vi, ) (Vg — Vu)e ) d
Up >U

<[ Ul =0 e <0 [ il —udn
Up >U Up >U
Now let v = —e~7(%n) (4, —u)~ be a test function in (4.11), we obtain

(4.21) / a(z, U, Vi) (Vg — Vu)e 7W) dy
Up<u

- / H (U, Vi) (uy —u)"e” ) dg
Uy <u



SOLUTIONS FOR A CLASS OF DEGENERATE ELLIPTIC EQUATIONS 401

_ Blun) _
+/ a(x, Uy, Vug)(Uy —u)” —=e V)7, dr
e ( ) ) o)

= - / F (g —u)"e W) dg,
Uy <U

By the same way as above we, get

(4.22) / a(z, iy, Vi) (Vi — Vu)e 700 dg
Up <u

§/ |f\(un—u)_e_7(“”)dac§09/ | f|wn — | da.
Up <u u

TIS“

Adding up (4.20) and (4.22), we conclude that there exists Cp > 0 such that

(4'23) /Qa(xa U, vun)(vun - VU) < ClO”pr’(a:)Hun - u”p(w)'
On the other hand we have

(4.24) /Q(a(x, U, VUg) — a(z, up, Vu))(Vu, — Vu) dx
:/ a(x, Up, V) (Vu, — Vu) — / a(x, up, Vu)(Vu, — Vu) dz
Q Q

< Croll o lltm — llpia) — /Q (@, 1, V) (Vi — V).

Then, by letting n tend to infinity in the right-hand side of (4.24), we conclude
that

(4.25) /Q(a(amun, Vuy,) — a(z, up, Vu))(Vu, — Vu) de — 0.

In view of Lemma 2.8, we deduce that
(4.26) Up —u in WP (Q), ae. in Q.

The equi-integrability of (H(x,u,, Vu,)),. Since, by (3.4) and (4.26),
we already know that H(x,u,, Vu,) — H(x,u, Vu) almost everywhere in 2, it
is enough to see the equi-integrability of this sequence and then apply Vitali’s
convergence theorem. Observe that 3, (u,) = S(u,) for n big enough, so that
the sequence (53, (un))n is bounded, there is C1; > 0 such that

Finally, the equi-integrability of (|Vuy,[P(*)),,, which follows from (4.26), implies
that of H(x,u,, Vuy,), so we have

(4.27) H(z,upn, Vuy,) = H(z,u,Vu) in L*(Q).
By the condition (3.1), we have
(4.28) a(x, un, Vu,) = a(z,u, Vu) in LPC)(Q).
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Let ¢ € Wol’p(')(ﬂ) N L>(§2), then

(4.29) /a(x,un,Vun)godx—l—/H(x,un,Vun)godx:/fgodx,
Q Q Q

it follows from (4.27) and (4.28) that we may pass to the limit in (4.29) obtaining
that u is a weak solution of (1.1). O

5. Existence of unbounded solutions

DEFINITION 5.1. We will say that a function u € WOI’Z)(')(Q) is an entropy
solution of (1.1) if H(z,u, Vu) € L'(Q) and
(5.1)

/ a(x,u, Vu)VTiu — ] dx + / H(z,u, Vu)Ti[u — ¢l dx < / fTilu— pldx
Q Q Q
for all ¢ € WyPC)(Q) N L (Q).

THEOREM 5.2. Assume that (3.1)-(3.8) hold and f € L'(Q), then problem
(1.1) has at least one entropy solution.

PROOF. Approzimate problem. Let (f,)uen be a sequence of smooth func-
tions such f,, — f in LY(Q) and |f,| < |f|, we consider the following problem:

—diva(z,un, Vu,) + H(x,upn, Vu,) = f,,  in Q,

(5.2) ,
u, € WoP) ().

By Theorem 4.3 we have the existence of a weak solution to problem (5.2).

A priori estimates of (T(A(un)))n- Let (Tx(A(uy,))) e ) be a test func-
tion in (5.2), we have

(5.3) / a(z, U, Viun ) VT (A(uy))e ) da
Q

+/ H(x,up, Vg ) (Th(A(uy,))) e ) da
Q

=

P (Al e d

_ /Q Fa(Th(A(un))) @) da.

By (3.2) and (3.4), we have

+ / a(x, Up, Vi, )Vuy,
Q

/Q H (s, Vi) (T (A(n))) €70 da

(T (A(up))) e @) da > 0.

+/ a(z, Up, Vi)V,
Q
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It follows that

/ (@, U, Vun ) VT (Auy,)) e ) dz < / ol (T (A(un))) T e @) da,
A(upn)>0 o
so we get, using (3.7),
[ otV s )
0<A(un)<k
<[ A
0<A(un)
By assumption (3.2), there exists C15 > 0 such that

(5.4) / IV A(un)P®) d < Crokl|ful 21,
0<A(un)<k

and, by (3.8), we obtain
[ oV Tuna o )
0< A(un)<k

= / [l |(Ti ()70 d
0<A(un)

By using the test function —(7}(A(u,)))~"e~7%»)  and reasoning as before, we

get
(5.5) / IV A(un) P@ d < Coak] ful 1.
—k<A(un)<0
Combining (5.4) and (5.5), we get
(5.6) / VT (A(un)) P da < Chak.
o

Therefore,
(5.7) [VTe(A(un)) lpfydo < Crak
with

0, = p+ if ”VTk(A(un))”p(-) <1,

pm I IVTL(A(un)llp) = 1.
Let k > 1, we have
Fmes{|A(un)| > k} = / Tk (Aun))| da < Crak'/%,
[A(un)|>k

which implies that

mes{|A(u,)| >k} < Cua —0 ask — oo.

A
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By the usual method we get that Ty (A(uy,)) is bounded in Wol’p(‘)(ﬂ), then
there exists a subsequence still denoted (T (A(un)))nen such that

Ti(A(u,)) = m  weakly in Wy "' (Q),
and, by the compact embedding, we have
Tr(A(uyn)) — me  strongly in LPC)(Q), and a.e. in €.

Consequently, we can assume that (T (A(uy)))nen is a Cauchy sequence in mea-
sure. Thus,

mes{|Tx(A(un)) — Tk (A(um))| > 6} < for all m,n > ng(d,€).

N ™

We conclude that for all §,& > 0 there exists ng = ng(, &) such that mes{|u,, —
U | > 0} < e for all §,e > 0.

It follows that (T%x(A(un)))nen is a Cauchy sequence in measure, then it
converges almost everywhere, for a subsequence, to some measurable function u.
Consequently, we have

Ti(A(u,)) = Ti(A(u))  weakly in Wy ') (Q),
Tr(A(uyn)) — Ti(A(u))  strongly in LP()(Q), and a.e. in Q.
Strong convergence of truncations. Let w; e?(un) be a test function in prob-

lem (5.2), where w,, = Th(Z,) with Z, = (A(un) — Th(A(un)) + Tk (A(uy)) +
Ti(A(w))), for h > k > 0. Taking M = 4k + h we have

(5.8) / a(, U, Vg ) Ve’ W) da 4 / H(x,tp, Vg )w) e ) dz
wy >0

wp >0
+ / a(x, Up, Vg, )V, Blun)
w,>0 a(un)

wfbeV(“") dr = / . fnw:e““") dz,
Wn >

by (3.2) and (3.4), we have

/ H(x,tp, Vg, )w,) e ) da
wy >0

+ / a(x, Un, Vig) Vi, Blun) w; eV ) dg > 0.
w.

n>0 a(un

So, we get that

/ a(&, tn, Vi) Vwpe? ) dor < / Fw e ) dg.
wn>0

Wy >0
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We have

(5.9) / a(z, Uy, Vi, ) Vw,e ') da
{w, >0}

a(x, up, Vun)ane'V(“”) dx

/{wn>0}ﬂ{|A(“n)|>k}

+ / a(x, Uy, Vun)aneW(“") dx.
{wn>0}N{|A(un)|<k}

Concerning the first term in the right-hand side of (5.9); since Vw, = 0 on
{|A(un)| > M}, we have

/ a(x, U, Vun)anev(“”) dx
{wn>0}N{|A(un)|>k}

= / a(z, Tyj(un), VTﬁ(un))VzneV(“") dx
{wn>0}N{|A(un)|>k}

= a(x, Ty (un), VT]’V[\(Un))VTk(A(u))e'Y(“”) dx

/{wn >0} {[A(un)|>k}

> —¥() / a(@, T (un), VT (un)) VT (A(u)) dz > —eo(n),
{1A(un)|>k}

with M = A1 (M). For the second term in the right-hand side of (5.9); we have
for k = A=1(k)

/ a(@, Tr(un), VI (un)) (VT (A(un)) — VT (A(u)))e? ") da
{wn>0}ﬂ{\A(un)\§k)}

< ev<°0>/ | follwn| dz 4 go(n).
{wn>0}

On the other hand, we have

/ a(@, Ty (un), VT () (VT(A(wn)) — VT(A(w))e™ ) do
{wn>03N{|A(un)|<k}

:/ (a(, T (wn), VT (un)) — ala, T (), VT ()
fun >0} {1 A ()| <)
X (VTi(A(un)) — VT (A(w)))e? ") dx
+ / a(x,TE(un),VTE(u))
fun >0} A(un) | <K}
X (VTi(A(un)) — VTi(A(w)))e ) da.
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The second and third terms in the right-hand side tend to 0, as n tends to
infinity. So, we have

(5.10) (a(z, T;(un), VI3 (un))

/{wn>0}n{|A<un>|Sk}
— a(@, Ty (up), V(W) (VT (A(un)) — VIi(A(u)))e ) dzx
- / 0@, T (utn), VT (1)) (VT (A(un))
{lA(un) <k}
— VTi(A(u)))e" ) da 4 £, (n))

< ew(oo)/ [ f(@)llwnl dz +€1(n) + eo(n) < ea(n),
{wn>o}

as f, — f strongly in L1(2), and w,, — 0 weakly* in L>(Q).
Let —(wy,)~ exp(—7(un)) be a test function in problem (5.2), we obtain
/ a(x, Uy, Vi, )Vw, exp(—v(uy,)) dzx
wp, <0

+/wn<0 (2, Up, Vg (wy) ™ Vg, igzzg exp(—y(uy,)) dz

+ / H(z, up, Vuy)w, exp(—y(uy,)) dx
wy <0

:/ frnwp exp(—y(uy)) dz,
wy, <0
so we get
/ a(x, Uy, Vg, )Vw, exp(—y(uy,)) de < / | Frl|wn | exp(—7(uy)) dx.
w<0 w<0
Reasoning as before, we get that
/ a(x, Up, Vg, )Vw, exp(—v(uy,))dx > —e5(n),
{w<0n{|A(un)|>k}
where £3(n) tends to 0 as n tends to infinity.
[ ol Ti), VT ) (VT ) = VE(w) expl(=1 () de
w<0

sA@umwwmvw%»w+@m>

Since w,, tends to 0 weakly * in L>°(Q) and f,, converges strongly to f in L(£2),
we conclude that

/<O a(x, Ty (un ), VT (un)) (VTk(A(un)) = VI (A(w))) exp(=y(un)) do < e4(n).
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By adding the term to the last expression, we get

(5.11) /<O[a(x,T@(un), VT;(un)) — a(x, T (un), VI7(un))]

X (VT (A(un)) = VTi(A(u))) exp(=7(un)) dr < e5(n).

Combining (5.10) and (5.11), we get

/Q [, T (n), VT () — @, T (1), VT ()]

X (VT (A(un)) = VTi(A(u))) exp(—7(un)) dz < e6(n),

so, by Lemma 2.8, we conclude that Tj(A(uy)) — Tk(A(u)) in Wol’p(')(Q),
VA(u,) = VA(u) almost everywhere in €.
By assumption (3.7), we have

VT3 (A(un)) [P = [V Aun) P A, <k
— aP(%)/(p*—l)(un)XlA(un)‘nguﬂp(r)’
x +_ x x - x
aP@)/ (@ 1)(Un)X|un|§g|VUn\p( ) — @)/ (P 1)(T’k\(un))|VTE(un)|p( ),

VT (A(un)) P
@/ =) (T (u,,))’

VT (ua) ) =

and, by (3.8), we have

VT (A(n) P = [V A(un) X 4w, 2
= o‘p(z)/uf71)(un)X|A(un)\§k|vun|p(x)a
ap(w)/(p*—l)(un)xlunldwun‘p(w) = ap(’“')/(f_1)(Tg(un))|VTm(un)|p(I)7

VT3 (A(un)) P
ap(@)/(p~—1) (T’E(un)) ’

VT ()P =

Since a is continuous we have a(7T3(uy,)) > min(a(s)) = az. Finally, we have

(0,%]
(5.12) [V T () [P < €| VT3 (Aun)) [P

The equi-integrability of H(x,u,, Vuy). In order to pass to the limit in the
approximate problem, we shall show that

H(2,un, V) — H(2,upn, Vu,) in L1(9Q).
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Let E be a set of  such that mes(E) =0 and [ > 0. We have
1, Tuldo < [ ) Fu,p do
E E
:/ B(un)|Vun|p(z) d:c+/ ﬂ(un)|Vun|p(””) da
EN|un,|>1 EN|un|<l

= / Bun) |V, [P dz + / BT (un)) | VT (un) |P®) da
EN|u,|>1

EN|un|<I

< / B ()| Vi, [P dz + max(B(s)) / IV T} () [P da.
EN|un|>1 [0,1]

EN|un|<I

From (5.12), we deduce that the second term in the right-hand side of the last
inequality equals to 0 as mes(F) = 0. We prove that

/ B(un) VT (1) [P daz — 0.
EN|un|>1
Let (Th (un — Ty (un)) ™ exp(27(uy)) be a test function in problem (5.2). We have

/ a(x, U, Vg ) VT (un — Ty (uy)) exp(2y(uy,)) dz
1<ty <I+1

a(un)

+/z< H(z,up, Vu,) Ty (un — Ty (un)) " exp(2y(uy)) do

+ / 2a(x, Uy, Vg)Vuy, (T (un, — Ti(un)) " exp(2y(uy,)) dx
I<un

- / Fu (T (tn = Ty(uun))* exp(27(un)) dz.

By assumption (3.2) we have

(5.13) /l< |Vun|p(m)ﬁ(un)(T1 (un — Ty (un)) T exp(2y(uy,)) do

< 015/ |f| dx.
I<un

Let —(T1(un — Ti(uy))~ exp(—2v(uy)) be a test function as in problem (5.2).
Reasoning as above, we get

614 [ VB T3 (0~ Tiu)* exp(2y(ua) da
Up < —1
< Cw/ |f| d.
Up <—1
From (5.13) and (5.14) we conclude that

(5.15) / IVt [P B(un) dz < Ciy / £l da.
1<|twn|

I<|un|
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Let [ tend to infinity. We get
/ IV, |P@ B(uy) dz — 0.
1<|un|

Finally, we get the equi-integrability of H.

Passage to the limit. Let ¢ € Wol’p(')(ﬂ) N L>(Q). Taking Ty (un — ¢) as a
test function in the approximate problem, we get

[ 4l V) VT~ )
Q
+ / H(x,tun, V) Ty (un — @) dz + / Tk (up — @) da.
Q Q
Choosing M = k+|¢||oc, if |un| > M then |u, —@| > |uy —||¢]|co] > k. Therefore

{Jun — ¢|} C {|lun| < un}. Now, we can write the first term in the right-hand
side of the above relation as

/Qa(z,un, Vun)VTi(u, — @) dx
= | . Tar (). Vs ) (Vs (1) = V)0, izt

- /Q (0, Tar (un), VTt (n) — a(, Tag (un), V)
X (VT (un) = VO) X, —p|<k dT

+/Qa(a:,TM(un),V¢)(VTM(un)—ng)x‘un_mgk dz.
According to Fatou’s lemma we obtain
(5.16) liminf/ﬂa(a:,un,Vun)VTk(u"fgb) d
:liminf/ﬂa(x,TM(un),VTM(un))(VTM(un)7V¢)X|un_¢‘§kdx
> [ @l Tar(w), 9Ths () = ata, Tar (), V) (VT () = V)qamat

+ lim a(z, Tar(un), VO)(VTar (un) — VO)Xju, —g|<k dT.

n— 00 Q

The second term in the right-hand side of (5.16) is equal to

/Qa(x, Tr(u), Vo) (VT (u) = V)X |u—o|<k d.
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Therefore, we get

liminf/ a(x, Uy, Vg ) VT (uy — ¢) dz
Q
> /Q a2, Tog(u), VTar () (VT (0) — V)X <i o

= / a(z,u, Vu)V (T (u) — ¢) dz.
Q

On the other hand, as Tj(u, — ¢) = Ti(u — ¢) weakly™ in L>°(Q2) and f,, — f
in L'(Q), we deduce that

fnTk(un - QZ)) dr — / ka(u — (Z)) dz.
Q Q

Hence, putting all the terms together, we complete the proof of Theorem 5.2.]
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