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GENERAL AND OPTIMAL DECAY

FOR A VISCOELASTIC EQUATION

WITH BOUNDARY FEEDBACK

Salim A. Messaoudi — Waled Al-Khulaifi

Abstract. We establish a general decay rate for a viscoelastic problem

with a nonlinear boundary feedback and a relaxation function satisfying

g′(t) ≤ −ξ(t)gp(t), t ≥ 0, 1 ≤ p < 3/2. This work generalizes and improves
earlier results in the literature. In particular those of [5], [11] and [17].

1. Introduction

In this work, we investigate the following viscoelastic wave equation with

boundary feedback:

(1.1)



utt −∆u+

∫ t

0

g(t− s)∆u(x, s) ds = 0 in Ω× (0,+∞),

u = 0 on Γ0 × (0,+∞),

∂u

∂ν
−
∫ t

0

g(t− s) ∂u
∂ν

(s) ds+ h(ut) = 0 on Γ1 × (0,+∞),

u(x, 0) = u0(x), ut(x, 0) = u1(x) for x ∈ Ω,
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where Ω is a bounded domain of Rn with a smooth boundary ∂Ω = Γ0 ∪ Γ1.

Here, Γ0 and Γ1 are closed and disjoint, with meas(Γ0) > 0, ν is the unit outward

normal to ∂Ω, and g, h are specific functions.

In the absence of the viscoelastic term (g = 0), problem (1.1) has been

investigated by many authors and several stability results were established. We

refer the reader to the work of Lasiecka and Tataru [8], Alabau-Boussouira [1],

Cavalcanti et al. [3] and the references therein.

In the presence of viscoelastic term (g 6= 0), Cavalcanti et al. [2] treated, in

a bounded domain, a quasilinear equation of the form

(1.2)



|ut|ρutt −∆u−∆utt

+

∫ t

0

g(t− s)∆u(s) ds− γ∆ut = 0 in Ω× (0,+∞),

u(x, t) = 0 for x ∈ ∂Ω, t ≥ 0,

u(x, 0) = u0(x), ut(x, 0) = u1(x) for x ∈ Ω,

with ρ > 0, and established a global existence result for γ ≥ 0 and an expo-

nential decay for γ > 0. This latter result was extended to a situation, where

a nonlinear source term is competing with the strong mechanism damping and

the one induced by the viscosity, by Messaoudi and Tatar [18]. Furthermore,

Messaoudi and Tatar [19], [20] established, for γ = 0, exponential and polyno-

mial decay results in the absence, as well as in the presence, of a source term.

Also, Messaoudi [11] studied the following problem:
utt −∆u+

∫ t

0

g(t− s)∆u(x, s) ds+ |u|γu = 0 in Ω× (0,+∞),

u = 0 on ∂Ω× (0,+∞),

u(x, 0) = u0(x), ut(x, 0) = u1(x) in Ω,

for relaxation functions satisfying, for a positive constant ξ,

(1.3) g′(t) ≤ −ξgp(t), t ≥ 0, 1 ≤ p < 3

2
.

He showed that the energy decays exponentially for p = 1 and polynomially for

p > 1. In 2008, Messaoudi [12], [13] generalized the decay rates allowing an

extended class of relaxation functions and gave general decay rates from which

the exponential and the polynomial decay rates are only special cases however,

the optimality in the polynomial decay case was not obtained. Precisely, he

considered relaxation functions that satisfy

(1.4) g′(t) ≤ −ξ(t)g(t), t ≥ 0,

where ξ : R+ → R+ is a nonincreasing differentiable function and showed that the

rate of the decay of the energy is the same as the rate of decay of g, which is not
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necessarily of exponential or polynomial decay type. Mustafa and Messaoudi [22]

established an explicit and general decay rate for relaxation function satisfying

(1.5) g′(t) ≤ −H(g(t)),

where H ∈ C1(R+), with H(0) = 0, and H is linear or strictly increasing and

strictly convex C2 function near the origin. Lasiecka and Wang [9] improved the

results of [22] by extending the range of optimality in the case of polynomial

decay rate. Moreover, the authors obtained this result in a more general semi-

linear abstract viscoelastic problem. In [4], Cavalcanti et al. considered (1.2),

with γ = 0, and a relaxation function satisfying (1.5) and in addition, they re-

quired lim inf
x→0+

{x2H ′′(x)−xH ′(x)+H(x)} ≥ 0 and y1−α0 ∈ L1(1,+∞), for some

α0 ∈ [0, 1), where y(t) is the solution of the problem

y′(t) +H(y(t)) = 0, y(0) = g(0) > 0.

They characterized the decay of the energy by the solution of a corresponding

ODE as in [8]. Recently, Messaoudi and Al-Khulaifi [15] treated (1.2) with γ = 0

and a relaxation function satisfying

g′(t) ≤ −ξ(t)gp(t), for all t ≥ 0, 1 ≤ p < 3

2
.

They obtained a more general stability result from which the results of [12], [13]

are only special cases. Moreover, the optimal decay rate for the polynomial case is

achieved without any extra work and conditions as in [7] and [8]. Messaoudi [14]

investigated the problem

(1.6)


utt −∆u+

∫ t

0

g(t− s)∆u(s) ds+ a|ut|m−2ut = 0 in Ω× (0,+∞),

u(x, t) = 0 for x ∈ ∂Ω, t ≥ 0,

u(x, 0) = u0(x), ut(x, 0) = u1(x) for x ∈ Ω,

where m > 1 and a > 0 are constants, with relaxation functions satisfying (1.4).

He established general decay rates for 1 < m < 2 and m ≥ 2, but still, these

results are laking optimality for relaxation functions decaying polynomially. For

stabilization by means of boundary feedback, Cavalcanti et al. [6] studied (1.1)

and proved a global existence result for weak and strong solutions. Moreover,

they gave some uniform decay rate results under some restrictive assumptions

on both the kernel g and the damping function h. These restrictions had been

relaxed by Cavalcanti et al. [5] and further they established a uniform stability

depending on the behavior of h near the origin and on the behavior of g at infinity.

Messaoudi and Mustafa [17] exploited some properties of convex functions [1]

and the multiplier method to extend and improve these results, by considering

relaxation functions g satisfying (1.4). In addition they gave an explicit and

general decay rate result from which the polynomial and the exponential decay
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rates are only special cases. In [23], Wu proved an existence result for the

following problem:

utt −∆u+

∫ t

0

g(t− s)∆u(x, s) ds = a|u|p−1u in Ω× (0,+∞),

u = 0 on Γ0 × (0,+∞),

∂u

∂ν
−
∫ t

0

g(t− s) ∂u
∂ν

(s) ds+ h(ut) = b|u|k−1u on Γ1 × (0,+∞),

u(x, 0) = u0(x), ut(x, 0) = u1(x) for x ∈ Ω,

where a > 0, b > 0, p > 1, k > 1 and improved the result of [17] by establishing

an explicit and general decay rate and further he proved some blow-up results.

Recenlty, Wu [24] obtained the same stability result for the problem

utt −M(t)∆u+

∫ t

0

g(t− s)∆u(x, s) ds = |u|p−1u in Ω× (0,+∞),

u = 0 on Γ0 × (0,+∞),

M(t)
∂u

∂ν
−
∫ t

0

g(t− s) ∂u
∂ν

(s) ds+ h(ut) = |u|k−1u on Γ1 × (0,+∞),

u(x, 0) = u0(x), ut(x, 0) = u1(x) for x ∈ Ω,

where

M(t) = a+ b‖∇u‖22 + σ

∫
Ω

∇u · ∇ut dx, a > 0, b > 0 and σ > 0.

Our goal is to establish a more general decay rate from which the exponential

decay and the polynomial decay are only special cases. Moreover, the optimal

polynomial decay is easily and directly obtained without restrictive conditions

(see Example 4.1). In fact, our decay formulae extend and improve the results

in [5], [11]–[13] and [17]. We also simplify significantly the conditions of [10] and

obtain a sharper general decay result.

2. Preliminaries

In this section we present some material needed in the proof of our result and

state, without proof, the global existence result of [6]. Throughout this paper,

C denotes a generic positive constant. We impose the following assumptions on

g and h.

(H1) g : R+ → R+ is a nonincreasing differentiable function such that

g(0) > 0, 1−
∫ +∞

0

g(s) ds = l > 0.
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(H2) There exists a nonincreasing differentiable function ξ : R+ → R+, with

ξ(0) > 0, and satisfying

g′(t) ≤ −ξ(t)gp(t), for all t ≥ 0, 1 ≤ p < 3

2
.

(H3) h : R −→ R is a nondecreasing continuous function such that there ex-

ist positive constants c1, c2, ε and a strictly increasing function H ∈
C1([0,+∞)), with H(0) = 0, and H is linear or strictly convex C2 func-

tion on (0, ε] such that

c1|s| ≤ |h(s)| ≤ c2|s|, for all |s| ≥ ε,

s2 + h2(s) ≤ H−1(sh(s)), for all |s| ≤ ε.

Remark 2.1. Hypothesis (H3) implies that sh(s) > 0, for all s 6= 0.

Remark 2.2. It is worth to mention that condition (H3), with ε = 1, was

introduced for the first time by Lasiecka and Tataru [8]. They also showed that

the monotonicity and continuity of the function h guarantee the existence of the

function H with the properties stated in (H3).

Remark 2.3. In condition (H2), we restrict the interval of p to be (0, 3/2]

where we obtained the optimal decay for the polynomial case. We point out that

Lasiecka et al. [7] and Cavalcanti et al. [4] used iteration calculation to extend

this interval to (0, 2] in order to attain the optimal polynomial decay. However,

our objective is to derive decay formulas so one can easily obtain the exponential

and polynomial decays as special cases. See Example 4.2.

We start with the following crucial lemma which will be used in the proof of

our result.

Lemma 2.4. Assume that g satisfies (H1) and (H2). Then∫ +∞

0

ξ(t)g1−σ(t) dt < +∞, for all σ < 2− p.

Proof. Recalling (H2), we easily see that

ξ(t)g1−σ(t) = ξ(t)g1−σ(t)gp(t)g−p(t) ≤ −g′(t)g1−σ−p(t).

Integration then gives∫ +∞

0

ξ(t)g1−σ(t) dt ≤ −
∫ +∞

0

g′(t)g1−σ−p(t) dt = − g2−p−σ(t)

2− p− σ

]+∞

0

< +∞,

since σ < 2− p. �

Let V = {v ∈ H1(Ω) : v = 0 on Γ0}. For completeness, we state the global

existence result of [6].



418 S.A. Messaoudi — W. Al-Khulaifi

Theorem 2.5. Let (u0, u1) ∈ V × L2(Ω) be given. Assume that (H1)–(H3)

are satisfied. Then problem (1.1) has a unique global (weak) solution

u ∈ C(R+;V ) ∩ C1(R+;L2(Ω)).

Moreover, if (u0, u1) ∈ (H2(Ω)∩V )×V and satisfies the compatibility condition

∂u0

∂ν
+ h(u1) = 0 on Γ1

then the solution satisfies

u ∈ L∞(R+;H2(Ω) ∩ V ) ∩W 1,∞(R+;V ) ∩W 2,∞(R+;L2(Ω)).

We introduce the “modified” energy functional

E(t) :=
1

2

(
1−

∫ t

0

g(s) ds

)
‖∇u(t)‖22 +

1

2
‖ut‖22 +

1

2
(g ◦ ∇u)(t),

where, for any v ∈ L2
loc(R+;L2(Ω)), we set

(g ◦ v)(t) =

∫ t

0

g(t− s)‖v(t)− v(s)‖22 ds.

A direct differentiation, using (1.1), and some manipulation as in [5] leads to

(2.1) E′(t) =
1

2
(g′ ◦ ∇u)(t)− 1

2
g(t)‖∇u(t)‖22 −

∫
Γ1

uth(ut) dΓ ≤ 0.

The next lemma and corollary are essential for the proof of our main result.

Lemma 2.6 ([11]). Assume that g satisfies (H1) and (H2) and let u be the

solution of (1.1). Then, for 0 < σ < 1, we have

(g ◦ ∇u)(t) ≤ C
[(∫ t

0

g1−σ(t) dt

)
E(0)

](p−1)/(p−1+σ)

(gp ◦ ∇u)σ/(p−1+σ)(t).

By taking σ = 1/2, we get

(2.2) (g ◦ ∇u)(t) ≤ C
[ ∫ t

0

g1/2(s) ds

](2p−2)/(2p−1)

(gp ◦ ∇u)1/(2p−1)(t).

Corollary 2.7. Assume that g satisfies (H1) and (H2) and u is the solution

of (1.1). Then

ξ(t)(g ◦ ∇u)(t) ≤ C[−E′(t)]1/(2p−1).
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Proof. Multiply both sides of (2.2) by ξ(t) and recall Lemma 2.4 and (2.1)

to get

ξ(t)(g ◦ ∇u)(t) ≤ Cξ(2p−2)/(2p−1)(t)

·
[ ∫ t

0

g1/2(s) ds

](2p−2)/(2p−1)

ξ1/(2p−1)(t)(gp ◦ ∇u)1/(2p−1)(t)

≤C
[ ∫ t

0

ξ(s)g1/2(s) ds

](2p−2)/(2p−1)

(ξgp ◦ ∇u)1/(2p−1)(t)

≤C
[ ∫ +∞

0

ξ(s)g1/2(s) ds

](2p−2)/(2p−1)

(−g′ ◦ ∇u)1/(2p−1)(t)

≤C[−E′(t)]1/(2p−1). �

We also recall the well-known Jensen inequality which will be of essential

use in obtaining our result. If G is a concave function on [a, b] (−G is con-

vex), f : Ω → [a, b] and K are integrable functions on Ω, with K(x) ≥ 0, and∫
Ω
K(x) dx = k > 0, then Jensen’s inequality states that

1

k

∫
Ω

G[f(x)]K(x) dx ≤ G
[

1

k

∫
Ω

f(x)K(x) dx

]
.

For the special case G(y) = y1/p, y ≥ 0, p > 1, we have

(2.3)
1

k

∫
Ω

[f(x)]1/pK(x) dx ≤
[

1

k

∫
Ω

f(x)K(x) dx

]1/p

.

3. Decay of solutions

In this section we state and prove the main result of our work. For this

purpose, we adopt, without proofs, the following two results from [17] and [21].

Lemma 3.1. [17, (3.7)] There exist positive constants N1, N2,m, t0 such that

the functional

F (t) := N1E(t) + Ψ(t) +N2χ(t)

is equivalent to E and satisfies

(3.1) F ′(t) ≤ −mE(t) + C(g ◦ ∇u)(t) + C

∫
Γ1

h2(ut) dΓ, for all t ≥ t0,

where

Ψ(t) :=

∫
Ω

uut dx and χ(t) := −
∫
Ω

ut

∫ t

0

g(t− s)(u(t)− u(s)) ds dx.

Lemma 3.2. [21, (3.8)–(3.10)] Under assumptions (H1)–(H3), the solution

satisfies the estimate

(3.2)

∫
Γ1

(u2
t + h2(ut)) dΓ ≤ −CE′(t), for all t ≥ t0,
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if H is linear; and

(3.3)

∫
Γ1

(u2
t + h2(ut)) dΓ ≤ CH−1(λ(t))− CE′(t), for all t ≥ t0,

if H is nonlinear, where

λ(t) :=
1

|Γ12|

∫
Γ12

uth(ut) dΓ and Γ12 = {x ∈ Γ1 : |ut| ≤ ε1}.

Theorem 3.3. Let (u0, u1) ∈ V × L2(Ω) be given. Assume that (H1)–(H3)

are satisfied. Then there exist strictly positive constants k1, . . . , k4 such that the

solution of (1.1) satisfies, for all t ≥ t0,

E(t) ≤ k1H
−1
1

(
k2

∫ t

t0

ξ(s) ds

)
, p = 1,(3.4)

E(t) ≤ k3H
−1
1

(
k4

∫ t

t0

ξ2p−1(s) ds

)
, 1 < p <

3

2
.(3.5)

Moreover, if

(3.6)

∫ +∞

0

H−1
1

(
k4

∫ t

t0

ξ2p−1(s) ds

)
dt < +∞, 1 < p <

3

2
,

then

(3.7) E(t) ≤ k3(Ĥ1)−1

(
k4

∫ t

t0

ξp(s) ds

)
, for all t ≥ t0, p > 1.

where

H1(t) =

∫ 1

t

1

s2p−1H ′(ε0s)
ds and Ĥ1(t) =

∫ 1

t

1

spH ′(ε0s)
ds.

Remark 3.4. It is clear that (3.5) and (3.6) yield∫ +∞

t0

E(t) dt < +∞.

Proof. First, we add the positive term
∫

Γ1
u2
t dΓ to the right hand side

of (3.1) to get

(3.8) F ′(t) ≤ −mE(t) + C(g ◦ ∇u)(t) + C

∫
Γ1

(u2
t + h2(ut)) dΓ, for all t ≥ t0.

Multiplying (3.8) by ξ(t) gives

(3.9) ξ(t)F ′(t) ≤ −mξ(t)E(t) + Cξ(t)(g ◦ ∇u)(t) + Cξ(t)

∫
Γ1

(u2
t + h2(ut)) dΓ,

for all t ≥ t0.

When p = 1, we refer the reader to Messaoudi and Mustafa [17]. So we only

consider the case p > 1.
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Case of H is linear . To establish (3.5), we consider (3.9) and use (3.2) and

the fact that ξ is bounded to get

ξ(t)F ′(t) ≤ −mξ(t)E(t) + Cξ(t)(g ◦ ∇u)(t)− CE′(t), for all t ≥ t0.

Let L(t) := ξ(t)F (t) + CE(t) then clearly L ∼ E and, we have

(3.10) L′(t) ≤ −mξ(t)E(t) + Cξ(t)(g ◦ ∇u)(t), for all t ≥ t0.

Use of Corollary 2.7 in (3.10) gives

L′(t) ≤ −mξ(t)E(t) + C[−E′(t)]1/(2p−1), for all t ≥ t0.

Multiplication of the last inequality by ξαEα(t), where α = 2p− 2, leads to

ξαEα(t)L′(t) ≤ −mξα+1(t)Eα+1(t) +C(ξE)α(t)[−E′(t)]1/(α+1), for all t ≥ t0.

Use of Young’s inequality, with q = α+ 1 and q′ = (α+ 1)/α, yields

ξαEα(t)L′(t) ≤ −mξα+1(t)Eα+1(t) + C[εξα+1(t)Eα+1(t)− CεE′(t)](3.11)

= −(m− εC)ξα+1(t)Eα+1(t)− CE′(t),

for all ε > 0 and all t ≥ t0. We then choose ε < m/C, and recall that ξ′ ≤ 0 and

E′ ≤ 0, to get

(ξαEαL)′(t) ≤ ξα(t)Eα(t)L′(t) ≤ −c1ξα+1(t)Eα+1(t)− CE′(t),

for all t ≥ t0, which implies

(ξαEαL+ CE)′(t) ≤ −c1ξα+1(t)Eα+1(t).

Let W = ξαEαL+ CE ∼ E. Then

(3.12) W ′(t) ≤ −Cξα+1(t)Wα+1(t) = −Cξ2p−1(t)W 2p−1(t), for all t ≥ t0.

Integrating over (t0, t) and using the fact that W ∼ E, we obtain

(3.13) E(t) ≤ C
[

1∫ t
t0
ξ2p−1(s) ds+ 1

]1/(2p−2)

for all t ≥ t0. Since, in this case, H(s) = cs we have H1(t) = C(t2−2p−1)/(2p−2)

and

E(t) ≤ C
[

1∫ t
t0
ξ2p−1(s) ds+ 1

]1/(2p−2)

= C1H
−1
1

(
C2

∫ t

t0

ξ2p−1(s) ds

)
for all t ≥ t0. To establish (3.7), we consider (3.10) and recall Remark 3.4. So,

we have

(3.14) L′(t) ≤ −mξ(t)E(t) + Cξ(t)(g ◦ ∇u)(t)

= −mξ(t)E(t) + C
η(t)

η(t)

∫ t

0

[ξp(s)gp(s)]1/p‖∇u(t)−∇u(t− s)‖22 ds,
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where

η(t) =

∫ t

0

‖∇u(t)−∇u(t− s)‖22 ds ≤ C
∫ t

0

‖∇u(t)‖22 + ‖∇u(t− s)‖22 ds(3.15)

≤ C
∫ t

0

[E(t) + E(t− s)] ds ≤ 2C

∫ t

0

E(t− s) ds

= 2C

∫ t

0

E(s) ds < 2C

∫ +∞

0

E(s) ds < +∞.

Applying Jensen’s inequality (2.3) for the second term of the right hand side of

(3.14), with G(y) = y1/p, y > 0, f(s) = ξp(s)gp(s), K(s) = ‖∇u(t)−∇u(t−s)‖22,

we get

(3.16) L′(t) ≤ −mξ(t)E(t)

+ Cη(t)

[
1

η(t)

∫ t

0

ξp(s)gp(s)‖∇u(t)−∇u(t− s)‖22 ds
]1/p

where we assume that η(t) > 0, otherwise we get ‖∇u(t) −∇u(t − s)‖ = 0 and

hence from (3.8) and (3.2) we have E(t) ≤ Ce−mt. Therefore, we obtain

L′(t) ≤ −mξ(t)E(t)(3.17)

+ Cη(p−1)/p(t)

[
ξp−1(0)

∫ t

0

ξ(s)gp(s)‖∇u(t)−∇u(t− s)‖22 ds
]1/p

≤−mξ(t)E(t) + C(−g′ ◦ ∇u)1/p(t) ≤−mξ(t)E(t) + C(−E′(t))1/p.

Multiplying by ξα(t)Eα(t), for α = p− 1, and repeating the same computations

as in above, we arrive at

(3.18) E(t) ≤ C
[

1∫ t
t0
ξp(s) ds+ 1

]1/(p−1)

, for all t ≥ t0.

Since, in this case, H(s) =
√
sh0(s) = cs we have Ĥ1(t) = C(tp−1 − 1)/(p − 1)

and

E(t) ≤ C
[

1∫ t
t0
ξp(s) ds+ 1

]1/(p−1)

= C1Ĥ
−1
1

(
C2

∫ t

t0

ξp(s) ds

)
, for all t ≥ t0.

Case of H is nonlinear . Again we consider (3.9) and use (3.3) to get

(3.19) L′2(t) ≤ −mξ(t)E(t) + Cξ(t)(g ◦ ∇u)(t) + Cξ(t)H−1(λ(t)),

for all t ≥ t0, where L2 = ξF + CE which is clearly equivalent to E.

From Corollary 2.7, we obtain

(3.20) L′2(t) ≤ −mξ(t)E(t) + C[−E′(t)]1/(2p−1) + Cξ(t)H−1(λ(t)),
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for all t ≥ t0. Multiplying (3.20) by ξα(t)Eα(t), where α = 2p− 2 and repeating

the calculations as in (3.11)–(3.12), we arrive at

(3.21) W ′1 ≤ −mξα+1(t)Eα+1(t) + Cξα+1(t)Eα(t)H−1(λ(t)), for all t ≥ t0,

where W1 = ξαEαL2 +CE and is also equivalent to E. For ε0 < r2 and c0 > 0,

let

F1(t) := H ′
(
ε0
E(t)

E(0)

)
W1(t) + c0E(t).

Clearly F1 satisfies, for some positive constants α1, α2,

(3.22) α1F1 ≤ E(t) ≤ α2F1

and

F ′1(t) = ε0
E′(t)

E(0)
H ′′
(
ε0
E(t)

E(0)

)
W1(t) +H ′

(
ε0
E(t)

E(0)

)
W ′1(t) + c0E

′(t)(3.23)

≤ −mξα+1(t)Eα+1(t)H ′
(
ε0
E(t)

E(0)

)
+ Cξα+1(t)Eα(t)H ′

(
ε0
E(t)

E(0)

)
H−1(λ(t)) + c0E

′(t),

for all t ≥ t0. Let H∗(s) := sup
τ∈(0,r2]

{sτ − H(τ)} for s ∈ (0, H ′(r2)] denote the

dual function of H. From (H3) we conclude that H ′ is increasing and defines

a bijection from (0, r2] to (0, H ′(r2)] and then for any s ∈ (0, H ′(r2)], the function

τ 7→ sτ − H(τ) reaches its maximum on (0, r2] at the unique point (H ′(s))−1.

Hence

H∗(s) = s(H ′)−1(s)−H((H ′)−1(s)), for all s ∈ (0, H ′(r2)]

and H∗(s) satisfies the general Young inequality:

(3.24) AB ≤ H∗(A) +H(B), for all A ∈ (0, H ′(r2)], B ∈ (0, r2].

We apply (3.24) on the second term on the right hand side of (3.23) with A =

H ′(ε0E(t)/E(0)) and B = H−1(λ(t)) and use (2.1) and the fact that H∗(s) ≤
s(H ′)−1(s) to arrive at

F ′1(t) ≤−mξα+1(t)Eα+1(t)H ′
(
ε0
E(t)

E(0)

)
+ ε0Cξ

α+1(t)
Eα+1(t)

E(0)
H ′
(
ε0
E(t)

E(0)

)
+ Cξα+1(t)Eα(t)λ(t) + c0E

′(t)

≤ − (mEα+1(0)− ε0C)ξα+1(t)

(
E(t)

E(0)

)α+1

H ′
(
ε0
E(t)

E(0)

)
+ (c0 − Cξα+1(0)Eα(0))E′(t),
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for all t ≥ t0. With a suitable choice of ε0 and c0, we obtain

F ′1(t) ≤ −Cξα+1(t)

(
E(t)

E(0)

)α+1

H ′
(
ε0
E(t)

E(0)

)
(3.25)

= −Cξ2p−1(t)H2

(
E(t)

E(0)

)
,

for all t ≥ t0, where H2(τ) := τα+1H ′(ε0τ) = τ2p−1H ′(ε0τ).

From the properties of H and keeping in mind that p > 1, we find that

H ′2(τ) = (2p− 1)τ2p−2H ′(ε0τ) + ε0τ
2p−1H ′′(ε0τ) > 0,

for all τ ∈ (0, 1]. Therefore the functional R defined by

R(t) :=
α1F1(t)

E(0)

is equivalent to E and, in addition, taking in account (3.22) and (3.25), we obtain

R′(t) ≤ −Cξ2p−1(t)H2(R(t)), for all t ≥ t0.

Thus

−
∫ t

t0

R′(s)

H2(R(s))
ds ≥ C

∫ t

t0

ξ2p−1(s) ds, for all t ≥ t0,

and with substitution y = R(t) on the left hand side, we get

(3.26)

∫ 1

R(t)

1

H2(y)
dy ≥

∫ R(t0)

R(t)

1

H2(y)
dy ≥ C

∫ t

t0

ξ2p−1(s) ds, for all t ≥ t0.

Since H2(τ) > 0 for all τ ∈ (0, 1], the function H1 defined as

H1(τ) :=

∫ 1

τ

1

H2(s)
ds

is strictly decreasing on (0, 1], thus, using R ∼ E, (3.26) becomes

(3.27) E(t) ≤ C1H
−1
1

(
C2

∫ t

t0

ξ2p−1(s) ds

)
, for all t ≥ t0.

To establish (3.7) we consider (3.19) and repeat all the steps of (3.14)–(3.17) to

reach

L′2(t) ≤ −mξ(t)E(t) + C(−E′(t))1/p + Cξ(t)H−1(λ(t)), for all t ≥ t0.

Multiplication of the last inequality by ξα(t)Eα(t) where α = p−1 and repeating,

again, the same procedure as in (3.21)–(3.26) we arrive at

E(t) ≤ C3Ĥ
−1
1

(
C4

∫ t

t0

ξp(s) ds

)
, for all t ≥ t0.

where

Ĥ1(τ) :=

∫ 1

τ

1

Ĥ2(s)
ds and Ĥ2(s) = spH ′(ε0s).

This completes the proof of our main result. �
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4. Examples

The following examples illustrate our result and show the optimal decay rate

in the polynomial case.

Example 4.1. Let g(t) = a/(1 + t)ν , ν > 2, where a > 0 is a constant so

that
∫ +∞

0
g(t) dt < 1 and assume that H is linear. We have

g′(t) = − aν

(1 + t)ν+1
= −b

(
a

(1 + t)ν

)(ν+1)/ν

= −bgp(t),

where p = (ν + 1)/ν < 3/2, b > 0. Therefore (3.6), with ξ(t) = b and H−1
1 (t) =

(1/(Ct+ 1))1/(2p−2), yields∫ +∞

0

(
1

Cb2p−1t+ 1

)1/(2p−2)

dt < +∞

and hence by (3.7) we get

E(t) ≤ C

(1 + t)1/(p−1)
=

C

(1 + t)ν
,

which is the optimal decay rate.

Example 4.2. Let g(t) = ae−(1+t)ν , 0 < ν ≤ 1, where 0 < a < 1 is chosen

so that
∫ +∞

0
g(t) dt < 1 and assume that H is linear. Then

g′(t) = −aν(1 + t)ν−1e−(1+t)ν = −ξ(t)g(t)

where ξ(t) = ν(1 + t)ν−1 which is a decreasing function and ξ(0) > 0. Therefore

we can use (3.4) to deduce

E(t) ≤ Ce−λ(1+t)ν .

Remark 4.3. Note that our result and that of [4] agree in giving the optimal

decay for the polynomial case in a certain range (1 < p < 3/2). However, we

obtain our result directly, without solving any extra ODE. In addition, we do

not see how their result can be applied in a direct way to Example 4.2.

Example 4.4. If h0(s) = sq where q > 1 then H(s) = s(q+1)/2 is a strictly

convex C2 function on (0,∞). Therefore Therorem 3.3 is applicable and, with

H−1
1 (t) = (Ct+ 1)−2/(q+4p−5), we obtain

E(t) ≤ k1

(
k2

∫ t

t0

ξ(s) ds

)−2/(q−1)

if p = 1,

E(t) ≤ k3

(
k4

∫ t

t0

ξ2p−1(s) ds

)−2/(q+4p−5)

if 1 < p <
3

2
.

If (3.6) is satisfied, i.e.∫ +∞

0

(Ctξ2p−1(t) + 1)−2/(q+4p−5) dt < +∞,
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then we have the improved decay rate

E(t) ≤ k3

(
k4

∫ t

t0

ξp(s) ds

)−2/(q+4p−5)

if 1 < p <
3

2
.
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