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EXISTENCE AND CONCENTRATION

OF GROUND STATE SIGN-CHANGING SOLUTIONS

FOR KIRCHHOFF TYPE EQUATIONS

WITH STEEP POTENTIAL WELL AND NONLINEARITY

Jianhua Chen — Xianhua Tang — Bitao Cheng

Abstract. We study the following class of elliptic equations:

−
(
a+ b

∫
R3
|∇u|2 dx

)
∆u+ λV (x)u = f(u), x ∈ R3,

where λ, a, b > 0, V ∈ C(R3,R) and V −1(0) has nonempty interior. First,

we obtain one ground state sign-changing solution ub,λ applying the non-
Nehari manifold method. We show that the energy of ub,λ is strictly larger

than twice that of the ground state solutions of Nehari-type. Next we estab-

lish the convergence property of ub,λ as b ↘ 0. Finally, the concentration

of ub,λ is explored on the set V −1(0) as λ→∞.

1. Introduction and preliminaries

In this paper, we are concerned with the following elliptic equations:

(1.1) −
(
a+ b

∫
R3

|∇u|2 dx
)

∆u+ λV (x)u = f(u), x ∈ R3,
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where λ > 0, V ∈ C(R3,R) and V −1(0) has nonempty interior, f is a continuous

function, a, b > 0.

If λ ≡ 0, f(u) is replaced by f(x, u) and R3 is replaced by a bounded domain

Ω ⊂ R3 in (1.1), problem (1.1) reduces to the following nonlocal Kirchhoff type

problem:

−
(
a+ b

∫
Ω

|∇u|2 dx
)

∆u = f(x, u), x ∈ Ω.

This problem is related to the stationary analogue of the Kirchhoff equation

utt −
(
a+ b

∫
Ω

|∇u|2 dx
)

∆u = f(x, u),

which was proposed by Kirchhoff in [17] as a model for the equation of elastic

strings

(1.2) ρ
∂2u

∂t2
−
(
P0

h
+

E

2L

∫ L

0

∣∣∣∣∂u∂x
∣∣∣∣2dx) ∂2u

∂x2
= f(x, u).

The Kirchhoff’s model (1.2), which is an extension of the classical D’Alembert’s

wave equation, takes into account the changes in length of the string produced by

transverse vibrations. Note that L, h,E, ρ, P0 denote the length of the string, the

area of the cross section, the Young modulus of the material, the mass density

and the initial tension, respectively.

If λ = 1, then (1.1) reduces to the following Kirchhoff problem:

(1.3) −
(
a+ b

∫
R3

|∇u|2dx
)

∆u+ V (x)u = f(x, u), x ∈ R3.

For study of (1.3) with variational methods we refer to [4], [6]–[8], [10], [12]–

[14], [16], [19]–[22], [24]–[26], [28], [33], [34], [38], [39], [41], [42], [46], [47], [49].

Especially, Nie [25] proved the existence and multiplicity of nontrivial solutions

when N = 1, 2, 3 under the following potential conditions:

(V1) V (x) ∈ C(R3,R), V (x) ≥ 0 on R3. Moreover, there exists a constant

L > 0 such that the set VL := {x ∈ R3 : V (x) ≤ L} is nonempty and

meas {x ∈ R3 : V (x) ≤ L} < +∞, where meas denotes the Lebesgue

measure in R3.

In order to obtain the concentration of solutions, the following additional

assumption was posed on V in some papers (see [32], [43], [9]):

(V2) Ω = intV −1(0) is nonempty and has smooth boundary with Ω = V −1(0).

It is worth mentioning that the above listed papers always assumed the po-

tential V is positive so that we can get compact embedding. In order to solve

this problem, in [42], [18], the author used the following condition to overcome

the compactness of Sobolev embedding.
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(V′1) V (x) ∈ C(R3,R), V (x) ≥ 0 on R3. Moreover, for any M > 0, the set

VM := {x ∈ R3 : V (x) ≤ M} is nonempty and meas {x ∈ R3 : V (x) ≤
M} < +∞, where meas denotes the Lebesgue measure in R3.

Obviously, condition (V1) is much weaker than condition (V′1). But in this

paper, we use (V′1) to prove the existence and concentration of ground state

sign-changing solutions. In order to study the concentration phenomenon of so-

lutions, we need to add condition (V2), which plays an important role in proving

the concentration phenomenon. Besides, we are also interested in the case that

the nonlinearity is a more general mixed nonlinearity involving a combination of

superlinear and sublinear terms. Note that V satisfying conditions (V1)–(V2) is

called steep potential well. Various elliptic equations with steep potential well

are studied in [15], [32], [51], [44]. Especially, very recently, Zhang et al. [50]

proved the existence of nontrivial solutions and the concentration phenomenon

of solutions for Schrödinger–Poisson systems. Afterwards, Gao et al. [11] estab-

lished the existence of nontrivial solutions and the concentration phenomenon of

solutions for the fractional Schrödinger equation. To the best of our knowledge

only [32], [43], [9] investigated the Kirchhoff-type problem. In particular, in [43],

the authors considered problem (1.1) with steep well potential, and studied the

existence of nontrivial solutions and the concentration phenomenon of solutions

on the set V −1(0) as λ→∞ with the following assumptions on f :

(f1) f ∈ C(R3 × R,R) and |f(x, u)| ≤ c(1 + |u|q−1) for some 4 < q < 6;

(f2) f(x, u) = o(|u|) as |u| → 0 uniformly for x ∈ R3;

(f3) there exists θ > 4 such that 0 < θF (x, u) ≤ uf(x, u) for every x ∈ R3

and u 6= 0, where F (x, u) =
∫ u

0
f(x, t) dt;

(f4) f(x, u)/|u|3 is strictly increasing for u > 0;

(f5) f(x, u) ≡ 0 for all u ≤ 0.

In [43], the authors established the following theorem.

Theorem 1.1 ([43]). Assume conditions (V1)–(V2) and (f1)–(f5) hold, then

there exist two positive constants Λ0 such that for every λ > Λ0, problem (1.1)

has at least one positive solution uλ. Furthermore, uλ → u in H1(R3) as λ→∞,

where u ∈ H1
0 (Ω) is a positive solution of−

(
a+ b

∫
R3

|∇u|2 dx
)

∆u = f(x, u) in Ω,

u = 0 on ∂Ω.

Motivated by this result, in the present paper, we study the existence of

ground sign-changing solutions and investigate the concentration phenomenon

of steep well potential solutions on the set V −1(0) as λ→∞ under the following

assumptions on f :

(F1) f ∈ C(R,R) and f(t) = o(t) as t→ 0;
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(F2) there exist constants c0 > 0 and p ∈ (4, 6) such that

|f(t)| ≤ c0(1 + |t|p−1), for all t ∈ R;

(F3) lim
|t|→∞

F (t)/t4 =∞;

(F4) there exists θ0 ∈ (0, 1) such that for any t > 0 and τ 6= 0[
f(τ)

τ3
− f(tτ)

(tτ)3

]
sgn(1− t) + θ0V (x)

|1− t2|
(tτ)2

≥ 0.

Remark 1.2. (F4) is much weaker than the following condition:

(Ne) f(t)/|t|3 is increasing on R \ {0}.
In [45], (Ne) was used to prove the existence of least energy nodal solutions for

(1.3) and show that the sign-changing solution has an energy strictly larger than

the least energy and less than twice the least energy. Moreover, (Ne) is much

weaker than (f4). Hence, our results are stronger and supplement the results

obtained in [48], [43], [45].

Now, the working space E is given by

E =

{
u ∈ D1,2(R3) :

∫
R3

V (x)u2 dx <∞
}

with the norm equipped with the inner product and the norm

(u, v) =

∫
R3

(
∇u · ∇v + V (x)uv

)
dx

and

‖u‖ =

(∫
R3

(|∇u|2 + V (x)u2) dx

)1/2

, for all u, v ∈ E.

Here, D1,2(R3) = {u ∈ L6(R3) : ∇u ∈ L2(R3)} for simplicity is a Hilbert space

with the inner product

(u, v)D1,2 =

∫
R3

∇u · ∇v dx

and the corresponding norm

‖u‖D1,2 =

(∫
R3

|∇u|2 dx
)1/2

,

see [40, p. 8]. It can be proved that E is a Hilbert space under condition (V′1) and

there is a continuous embedding E ↪→ H1(R3). As the embedding H1(R3) ↪→
Lr(R3) is continuous for each r ∈ [2, 6], for these r there exists γr > 0 such that

(1.4) ‖u‖r ≤ γr‖u‖, u ∈ E,

where ‖ · ‖r denotes the usual Lr(R3) norm. Moreover, under condition (V′1),

according to [2, Remark 3.5], the embedding E ↪→ Lr(R3) is compact for each

r ∈ [2, 6).
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For convenience, for each λ > 0, we also define an equivalent norm on E

‖u‖λ =

(∫
R3

[a|∇u|2 + λV (x)u2] dx

)1/2

, u ∈ E,

and the corresponding inner product

(u, v)λ =

∫
R3

(a∇u · ∇v + λV (x)uv) dx, u, v ∈ E.

It is clear that

(1.5) ‖u‖ ≤ 1

min {a1/2, λ1/2}
‖u‖λ =

1

a
1/2
λ

‖u‖λ, u ∈ E,

where 1/a
1/2
λ = 1/min {a1/2, λ1/2}, specially, a

1/2
λ = a1/2 is independent of λ ∈

[a,∞), where a > 0. Thus, it follows from (1.4) that for each λ > 0,

(1.6) ‖u‖r ≤
γr

a
1/2
λ

‖u‖λ, u ∈ E.

Define the energy functional

(1.7) Jb,λ(u) =
1

2

∫
R3

(a|∇u|2+λV (x)u2) dx+
b

4

(∫
R3

|∇u|2 dx
)2

−
∫
R3

F (u) dx,

where F (u) =
∫ u

0
f(s) ds. The functional Jb,λ is well defined for every u ∈ E

and Jb,λ ∈ C1(E,R). Moreover, for any u, ϕ ∈ E, we have

〈J ′b,λ(u), ϕ〉 =

∫
R3

(a∇u · ∇ϕ+ λV (x)uϕ) dx(1.8)

+ b

∫
R3

|∇u|2 dx
∫
R3

∇u · ∇ϕdx−
∫
R3

f(u)ϕdx.

Clearly, the critical points of Jb,λ(u) are weak solutions of (1.1). Furthermore,

if u ∈ E is a solution of (1.1) and u± 6= 0, then u is a sign-changing solution of

(1.1), where

u+(x) := max {u(x), 0} and u−(x) := min {u(x), 0}.

If b = 0, then (1.1) is reduced to the following equation:

(1.9) −a∆u+ λV (x)u = f(u)

where u ∈ H1(R3). Problem (1.9) possesses a least energy sign-changing solution

when R3 is replaced by Ω if

(BWW) f(t)/|t| is increasing on R3 \ {0},

this was proved by Bartsch, Weth and Willem.

A variety of ways are used to get the sign-changing solutions, e.g., by con-

structing invariant sets and descending flow (see [1]), adopting the Ekeland’s

variational principle and the implicit function theorem (see [27]), applying vari-

ational methods together with the Brouwer degree theory (see [3]), and using
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diagonal principle with the non-Nehari manifold method (see [5], [35]–[37], [48]).

The following decomposition plays an important role in seeking for sign-changing

solutions to (1.9), for any u ∈ E,

J ′0,λ(u) = J ′0,λ(u+) + J ′0,λ(u−),

〈J ′0,λ(u), u+〉 = 〈J ′0,λ(u+), u+〉, 〈J ′0,λ(u), u−〉 = 〈J ′0,λ(u−), u−〉,

where J0,λ : E → R is the energy functional of (1.9) given by

J0,λ(u) =
1

2

∫
R3

(a|∇u|2 + λV (x)|u|2) dx−
∫
R3

F (u) dx

and

〈J ′0,λ(u), ϕ〉 =

∫
R3

(a∇u · ∇ϕ+ λV (x)uϕ) dx−
∫
R3

f(u)ϕdx.

Moreover, for the functional Jb,λ, we have

Jb,λ(u) = Jb,λ(u+) + Jb,λ(u−) +
b

2
‖∇u+‖22‖∇u−‖22,(1.10)

〈J ′b,λ(u), u+〉 = 〈J ′b,λ(u+), u+〉+ b‖∇u+‖22‖∇u−‖22,(1.11)

〈J ′b,λ(u), u−〉 = 〈J ′b,λ(u−), u−〉+ b‖∇u+‖22‖∇u−‖22.(1.12)

We will consider the following minimization problems:

mb,λ := inf
u∈Mb,λ

Jb,λ(u) and m0,λ := inf
u∈M0,λ

J0,λ(u),

where

Mb,λ := {u ∈ E : u± 6= 0, 〈J ′b,λ(u), u+〉 = 〈J ′b,λ(u), u−〉 = 0},

M0,λ := {u ∈ E : u± 6= 0, 〈J ′0,λ(u), u+〉 = 〈J ′0,λ(u), u−〉 = 0},

whose minimizers correspond to the sign-changing solutions for problems (1.1)

and (1.9), respectively.

The following Nehari manifolds will be used to seek for the ground state

solutions of Nehari type for (1.1) and (1.9) as minimizers of the corresponding

energy functionals Jb,λ and J0,λ:

Nb,λ := {u ∈ E : u 6= 0, 〈J ′b,λ(u), u〉 = 0〉},

N0,λ := {u ∈ E : u 6= 0, 〈J ′0,λ(u), u〉 = 0〉}

with

cb,λ := inf
u∈Nb,λ

Jb,λ(u) and c0,λ := inf
u∈N0,λ

J0,λ(u).

Now, we state our main results on the existence and concentration of ground

state sign-changing solutions.

Theorem 1.3. Suppose (V′1), (V2) and (F1)–(F4) are satisfied and λ >

max {a, θ0}. Then problem (1.1) has a sign-changing solution ub,λ ∈ Mb,λ such

that Jb,λ(ub,λ) = inf
Mb,λ

Jb,λ > 0, which has precisely two nodal domains.
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Theorem 1.4. Suppose (V′1), (V2) and (F1)–(F4) are satisfied and λ >

max {a, θ0}. Then problem (1.1) has a solution uλ ∈ Nb,λ such that Jb,λ(uλ) =

inf
Nb,λ
Jb,λ, moreover, mb,λ > 2cb,λ.

Theorem 1.5. Suppose (V′1), (V2) and (F1)–(F4) are satisfied and λ >

max {a, θ0}. Then problem (1.9) has a sign-changing solution v0,λ ∈ M0,λ such

that J0,λ(v0,λ) = inf
M0,λ

J0,λ > 0, which has precisely two nodal domains. Further-

more, for any sequence {bn} with bn ↘ 0 as n→∞, there exists a subsequence

which we label in the same way, such that ubn,λ → u0,λ in E where u0,λ ∈M0,λ

is a sign-changing solution of (1.9) with J0,λ(u0,λ) = inf
M0,λ

J0,λ > 0.

Theorem 1.6. Suppose (V′1), (V2) and (F1)–(F4) are satisfied and λ >

max {a, θ0}. For any sequence {λn} ⊂ (max {a, θ0},∞) with λn → ∞, there

exists a subsequence, still denoted by {λn}, such that un := ub,λn → u0 := ub,0
in E, where u0 ∈ H1

0 (Ω) and u0 is a ground state sign-changing solution of the

limit system −
(
a+ b

∫
R3

|∇u|2 dx
)

∆u = f(u) in Ω,

u = 0 on ∂Ω.

Remark 1.7. In this paper, our results on the existence and concentration

of ground state sign-changing solutions for Kirchhoff type equation are new,

especially on the concentration. Compared with [38], our results are supplement.

Remark 1.8. When l = 0 (see Remark 1.3 in [18]), our method on proving

the existence of sign-changing solutions are different from [18]. Moreover, we

discuss the ground state of sign-changing solutions. But in [18], the authors only

studied the existence of sign-changing solutions.

This paper is organized as follows. In Section 2, we present some lemmas,

which are crucial in establishing our results. Section 3 is devoted to the proof

of Theorem 1.3. Furthermore, we complete the proofs of Theorems 1.4–1.6 in

Sections 4–6, respectively.

Throughout this paper, positive constants possibly different in different pla-

ces, are denoted by C.

2. Some lemmas

In this section, we present some useful lemmas and corollaries.
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Lemma 2.1. Suppose that (F1)–(F4) are satisfied and λ > max {a, θ0}. Then

Jb,λ(u) ≥Jb,λ(su+ + tu−) +
1− s4

4
〈J ′b,λ(u), u+〉(2.1)

+
1− t4

4
〈J ′b,λ(u), u−〉+

(1− θ0/λ)(1− s2)2

4
‖u+‖2λ

+
(1− θ0/λ)(1− t2)2

4
‖u−‖2λ +

b(s2 − t2)2

4
‖∇u+‖22‖∇u−‖22,

for all u ∈ E and s, t ≥ 0.

Proof. By (F4), for any x ∈ R3, s, t ≥ 0, τ ∈ R \ {0}, one has

(2.2)

[
1− t4

4
τf(τ) + F (tτ)− F (τ)

]
+
θ0V (x)

4
(1− t2)2τ2

=

∫ 1

t

{[
f(τ)

τ3
− f(sτ)

(sτ)3

]
+ θ0V (x)

(1− s2)

(sτ)2

}
s3τ4 ds ≥ 0.

Hence, from (1.7), (1.8), (1.11), (1.12) and (2.2), for any s, t ≥ 0, we have

Jb,λ(u)− Jb,λ(su+ + tu−)

=
1

2
(‖u‖2λ − ‖su+ + tu−‖2λ) +

b

4
(‖∇u‖42 − ‖s∇u+ + t∇u−‖42)

+

∫
R3

[F (su+ + tu−)− F (u)] dx

=
1− s4

4
(‖u+‖2λ + b‖∇u+‖42) +

1− t4

4
(‖u−‖2λ + b‖∇u−‖42)

+
(1− s2)2

4
‖u+‖2λ +

(1− t2)2

4
‖u−‖2λ +

b(1− s2t2)

4
‖∇u+‖22‖∇u−‖22

+

∫
R3

[F (su+) + F (tu−)− F (u+)− F (u−)] dx

=
1− s4

4
〈J ′b,λ(u), u+〉+

1− t4

4
〈J ′b,λ(u), u−〉+

(1− s2)2

4
‖u+‖2λ

+
(1− t2)2

4
‖u−‖2λ +

b(s2 − t2)2

4
‖∇u+‖22‖∇u−‖22

+

∫
R3

[
1− s4

4
f(u+)u+ + F (su+)− F (u+)

]
dx

+

∫
R3

[
1− t4

4
f(u−)u− + F (tu−)− F (u−)

]
dx

≥ 1− s4

4
〈J ′b,λ(u), u+〉+

1− t4

4
〈J ′b,λ(u), u−〉+

(1− θ0/λ)(1− s2)2

4
‖u+‖2λ

+
(1− θ0/λ)(1− t2)2

4
‖u−‖2λ +

b(s2 − t2)2

4
‖∇u+‖22‖∇u−‖22

+

∫
R3

{[
1− s4

4
f(u+)u+ + F (su+)− F (u+)

]
+
θ0V (x)

4
(1− s2)2|u+|2

}
dx
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+

∫
R3

{[
1− t4

4
f(u−)u− + F (tu−)− F (u−)

]
+
θ0V (x)

4
(1− t2)2|u−|2

}
dx

≥ 1− s4

4
〈J ′b,λ(u), u+〉+

1− t4

4
〈J ′b,λ(u), u−〉+

(1− θ0/λ)(1− s2)2

4
‖u+‖2λ

+
(1− θ0/λ)(1− t2)2

4
‖u−‖2λ +

b(s2 − t2)2

4
‖∇u+‖22‖∇u−‖22,

which implies that (2.1) holds. �

Corollary 2.2. Suppose (F1)–(F4) are satisfied and λ > max {a, θ0}. If

u = u+ + u− ∈Mb,λ, then

Jb,λ(u) ≥ Jb,λ(su+ + tu−) +
(1− θ0/λ)(1− s2)2

4
‖u+‖2λ

+
(1− θ0/λ)(1− t2)2

4
‖u−‖2λ +

b(s2 − t2)2

4
‖∇u+‖22‖∇u−‖22,

for all s, t ≥ 0.

Corollary 2.3. Suppose (F1)–(F4) are satisfied and λ > max {a, θ0}. If

u = u+ + u− ∈Mb,λ, then

Jb,λ(u+ + u−) = max
s,t≥0

Jb,λ(su+ + tu−).

Lemma 2.4. Suppose (V′1) and (F1)–(F4) are satisfied and λ>max {a,θ0}.
If u ∈ E with u± 6= 0, then there exists a unique pair (su, tu) of positive numbers

such that suu
+ + tuu

− ∈Mb,λ.

Proof. We will first prove the existence of (su, tu). Set

(2.3) g1(s, t) = s2‖u+‖2λ + bs4‖∇u+‖42

+ bs2t2‖∇u+‖22‖∇u−‖22 −
∫
R3

f(su+)su+ dx,

(2.4) g2(s, t) = t2‖u−‖2λ + bt4‖∇u−‖42

+ bs2t2‖∇u+‖22‖∇u−‖22 −
∫
R3

f(tu−)tu− dx.

It follows from (F1) and (F3) that g1(s, s) > 0, g2(s, s) > 0 for s > 0 small and

g1(t, t) < 0 and g2(t, t) < 0 for t large. Thus, there exist 0 < a1 < a2 such that

(2.5) g1(a1, a1) > 0, g2(a1, a1) > 0, g1(a2, a2) < 0, g2(a2, a2) < 0.

By (2.3)–(2.5), we have

g1(a1, t) > 0, g1(a2, t) < 0 for all t ∈ [a1, a2],

and

g2(s, a1) > 0, g2(s, a2) < 0 for all s ∈ [a1, a2].
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By Miranda’s Theorem [23], there exists a pair (su, tu) with a1 < su, tu < a2

such that g1(su, tu) = g2(su, tu) = 0. Hence suu
+ + tuu

− ∈Mb,λ.

Next, we prove the uniqueness. Let (s1, t1) and (s2, t2) be such that siu
+ +

tiu
− ∈Mb,λ, where i = 1, 2. In view of Corollary 2.2, we have

Jb,λ(s1u
+ + t1u

−) ≥ Jb,λ(s2u
+ + t2u

−)

+
(1− θ0/λ)(s2

1 − s2
2)2

4s2
1

‖u+‖2λ +
(1− θ0/λ)(t21 − t22)2

4t21
‖u−‖2λ

and

Jb,λ(s2u
+ + t2u

−) ≥ Jb,λ(s1u
+ + t1u

−)

+
(1− θ0/λ)(s2

1 − s2
2)2

4s2
2

‖u+‖2λ +
(1− θ0/λ)(t21 − t22)2

4t22
‖u−‖2λ,

which implies that (s1, t1) = (s2, t2). �

Lemma 2.5. Suppose (V′1) and (F1)–(F4) are satisfied and λ>max {a,θ0}.
Then

inf
u∈Mb,λ

Jb,λ(u) = mb,λ = inf
u∈E,u± 6=0

max
s,t≥0

Jb,λ(su+ + tu−).

Proof. By Corollary 2.3, we obtain

inf
u∈E,u± 6=0

max
s,t≥0

Jb,λ(su+ + tu−) ≤ inf
u∈Mb,λ

max
s,t≥0

Jb,λ(su+ + tu−)(2.6)

= inf
u∈Mb,λ

Jb,λ(u) = mb,λ.

Moreover, for any u ∈ E with u± 6= 0, it follows from Lemma 2.4 that

max
s,t≥0

Jb,λ(su+ + tu−) ≥ Jb,λ(su+ + tu−) ≥ inf
u∈Mb,λ

Jb,λ(u) = mb,λ,

which implies that

(2.7) inf
u∈E,u± 6=0

max
s,t≥0

Jb,λ(su+ + tu−) ≥ inf
u∈Mb,λ

Jb,λ(u) = mb,λ.

Hence, it follows from (2.6) and (2.7) that conclusion holds. �

Lemma 2.6. Suppose (F4) is satisfied. Then, for any τ ∈ R,

(2.8)
1

4
τf(τ)− F (τ) +

θ0V (x)

4
τ2 ≥ 0.

Proof. Taking t = 0 in (2.2), we can get the conclusion. This completes

the proof. �

Lemma 2.7. Suppose (V′1) and (F1)–(F4) are satisfied and λ>max {a,θ0}.
Then mb,λ > 0 can be achieved.
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Proof. Let {un} ⊂ Mb,λ be such that Jb,λ(un) → mb,λ. According to

(1.7), (1.8) and (2.8), for large n ∈ N, one has

1 +mb,λ ≥ Jb,λ(un)− 1

4
〈J ′b,λ(un), un〉(2.9)

=
1− θ0/λ

4
‖un‖2λ +

∫
R3

{[
1

4
f(un)un − F (un)

]
+
θ0V (x)

4
u2
n

}
dx

≥ 1− θ0/λ

4
‖un‖2λ.

This shows that {un} is bounded in E due to 0 < θ0 < 1 and λ > θ0, and then,

there exists a ub,λ ∈ E such that u±n ⇀ u±b,λ in E. Since 〈J ′b,λ(u), u〉 = 0, for

all u ∈ Mb,λ, then by (F1)–(F3) and the Sobolev embedding theorem, for any

ε > 0, we have

‖u‖2λ ≤
∫
R3

(a|∇u|2 + λV (x)u2) dx+ b

(∫
R3

|∇u|2 dx
)2

=

∫
R3

f(u)u dx

≤ ε
∫
R3

|u|2dx+ Cε

∫
R3

|u|p dx ≤ ε‖u‖2 + Cε‖u‖p ≤ εC‖u‖2λ + C‖u‖pλ,

where Cε is a positive constant. We can choose ε = 1/(2C), so there exists a

constant α > 0 such that ‖u‖2λ ≥ α. Moreover, by (V ′1), (F1)–(F3), (1.8) and

[40, A.2], one can conclude that

0 < α ≤ ‖u±n ‖2λ + b

∫
R3

|∇un|2 dx
∫
R3

|∇u±n |2 dx(2.10)

=

∫
R3

f(u±n )u±n dx =

∫
R3

f(u±b,λ)u±b,λ dx+ o(1),

which yields that u±b,λ 6= 0. Furthermore, by (2.10), the weak semicontinuity of

norm and Fatou’s Lemma, we get

(2.11) ‖u±b,λ‖
2
λ + b

∫
R3

|∇u±b,λ|
2 dx

∫
R3

|∇u±b,λ|
2 dx

≤ lim inf
n→∞

[
‖u±n ‖2λ + b

∫
R3

|∇un|2 dx
∫
R3

|∇u±n |2 dx
]

=

∫
R3

f(u±b,λ)u±b,λ dx.

This shows that

(2.12) 〈J ′b,λ(ub,λ), u±b,λ〉 ≤ 0.

Thus, by (1.7), (1.8), (2.1), (2.8), (2.12), the weak semicontinuity of norm, Fa-

tou’s Lemma and Lemma 2.5, we obtain

mb,λ = lim
n→∞

[
Jb,λ(un)− 1

4
〈J ′b,λ(un), un〉

]
= lim

n→∞

{
1

4
‖un‖2λ +

∫
R3

[
1

4
f(un)un − F (un)

]
dx

}
≥ 1

4
lim inf
n→∞

[ ∫
R3

a|∇un|2 dx+

(
1− θ0

λ

)∫
R3

λV (x)u2
n dx

]
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+ lim inf
n→∞

∫
R3

{[
1

4
f(un)un − F (un)

]
+
θ0

4
V (x)u2

n

}
dx

≥ 1

4

[ ∫
R3

|∇ub,λ|2 dx+

(
1− θ0

λ

)∫
R3

λV (x)u2
b,λ dx

]
+

∫
R3

{[
1

4
f(ub,λ)ub,λ − F (ub,λ)

]
+
θ0

4
V (x)|ub,λ|2

}
dx

=
1

4
‖ub,λ‖2λ +

∫
R3

[
1

4
f(ub,λ)ub,λ − F (ub,λ)

]
dx

=Jb,λ(ub,λ)− 1

4
〈J ′b,λ(ub,λ), ub,λ〉

≥ sup
s,t≥0

[
Jb,λ(su+

b,λ + tu−b,λ) +
1− s4

4
〈J ′b,λ(ub,λ), u+

b,λ〉

+
1− t4

4
〈J ′b,λ(ub,λ), u−b,λ〉

]
− 1

4
〈J ′b,λ(ub,λ), ub,λ〉

≥ sup
s,t≥0

Jb,λ(su+
b,λ + tu−b,λ) ≥ mb,λ,

which implies that

lim
n→∞

∫
R3

|∇un|2 dx =

∫
R3

|∇ub,λ|2 dx

and

lim
n→∞

∫
R3

V (x)|un|2 dx =

∫
R3

V (x)|ub,λ|2 dx.

Hence, un → ub,λ in E, then Jb,λ(ub,λ) = mb,λ and ub,λ ∈Mb,λ. �

Lemma 2.8. Let (V′1) and (F1)–(F4) be satisfied and λ > max {a, θ0}. If

u0 ∈Mb,λ and Jb,λ(u0) = mb,λ, then u0 is a critical point of Jb,λ.

Proof. Let u0 = u+
0 + u−0 ∈ Mb,λ, Jb,λ(u0) = mb,λ and J ′b,λ(u0) 6= 0.

Then there exist δ > 0 and σ > 0 such that

u ∈ E, ‖u− u0‖λ ≤ 3δ ⇒ ‖Jb,λ(u)‖ ≥ σ.

By Corollary 2.2, one has

Jb,λ(su+
0 + tu−0 ) ≤ Jb,λ(u0)(2.13)

− (1− θ0/λ)(1− s2)2

4
‖u+

0 ‖2λ −
(1− θ0/λ)(1− t2)2

4
‖u−0 ‖2λ

=mb,λ −
(1− θ0/λ)(1− s2)2

4
‖u+

0 ‖2λ −
(1− θ0/λ)(1− t2)2

4
‖u−0 ‖2λ.

Let D = (0.5, 1.5)× (0.5, 1.5). It follows from (2.13) that

κ := max
(s,t)∈∂D

Jb,λ(su+
0 + tu−0 ) < mb,λ.

For ε := min {(mb,λ − κ)/3, 1, σδ/8}, S := B(u0, δ), [40, Lemma 2.3] yields

a deformation η ∈ C([0, 1]× E,E) such that
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(i) η(1, u) = u if u /∈ J−1
b,λ ([mb,λ − 2ε,mb,λ + 2ε]) ∩ S2δ;

(ii) η(1,Jmb,λ+ε
b,λ ∩B(u0, δ)) ⊂ J

mb,λ−ε
b,λ ;

(iii) Jb,λ(η(1, u)) ≤ Jb,λ(u), for all u ∈ E.

By Corollary 2.3, Jb,λ(su+
0 + tu−0 ) ≤ Jb,λ(u0) = mb,λ for s, t ≥ 0, then it follows

from (ii) that

(2.14)
Jb,λ(η(1, su+

0 + tu−0 )) ≤ mb,λ − ε, for all s, t ≥ 0,

|s− 1|2 + |t− 1|2 < δ2/‖u0‖2λ.

On the other hand, by (iii) and (2.13), for any s, t ≥ 0, |s − 1|2 + |t − 1|2 ≥
δ2/‖u0‖2λ, one has

Jb,λ(η(1, su+
0 + tu−0 )) ≤ Jb,λ(su+

0 + tu−0 )(2.15)

≤mb,λ −
(1− θ0/λ)(1− s2)2

4
‖u+

0 ‖2λ −
(1− θ0/λ)(1− t2)2

4
‖u−0 ‖2λ

≤mb,λ −
(1− θ0/λ)δ2

8‖u0‖2λ
min {‖u+

0 ‖2λ, ‖u
−
0 ‖2λ}.

Combining (2.14) with (2.15), we get max
(s,t)∈D

Jb,λ(η(1, su+
0 + tu−0 )) < mb,λ. More-

over, g(s, t) := su+
0 + tu−0 . By an argument similar as [30, 31], we can get

η(1, g(D)) ∩Mb,λ 6= ∅. Since mb,λ := inf
u∈Mb,λ

Jb,λ(u), this is a contradiction. �

3. Sign-changing solutions

Proof of Theorem 1.3. In view of Lemmas 2.7 and 2.8, there exists

ub,λ ∈ Mb,λ such that Jb,λ(ub,λ) = mb,λ and J ′b,λ(ub,λ) = 0. Thus ub,λ is

a sign-changing solution of (1.1). Next, we prove that ub,λ has exactly two nodal

domains. Let ub,λ = u1,λ + u2,λ + u3,λ, where

u1,λ ≥ 0, u2,λ ≤ 0, Ω1 ∩ Ω2 = ∅,

u1,λ|Ω2∪Ω3
= u2,λ|Ω1∩Ω3

= u3,λ|Ω1∩Ω2
= 0,

Ω1 := {x ∈ R3 : u1,λ(x) > 0}, Ω2 := {x ∈ R3 : u2,λ(x) < 0},

Ω3 := R3\(Ω1 ∪ Ω2),

and Ω1, Ω2 are connected open subsets of R3.

Setting vλ = u1,λ + u2,λ, we see that v+
λ = u1,λ and v−λ = u2,λ, i.e. v±λ 6= 0.

By (1.7), (1.8), (2.1) and (2.8), we have

mb,λ =Jb,λ(ub,λ) = Jb,λ(ub,λ)− 1

4
〈J ′b,λ(ub,λ), ub,λ〉

=Jb,λ(vλ) + Jb,λ(u3,λ) +
b

2
‖∇vλ‖22‖∇u3,λ‖22

− 1

4

[
〈J ′b,λ(vλ), vλ〉+ 〈J ′b,λ(u3,λ), u3,λ〉+ 2b‖∇vλ‖22‖∇u3,λ‖22

]
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≥ sup
s,t≥0

[
Jb,λ(sv+

λ + tv−λ ) +
1− s4

4
〈J ′b,λ(vλ), v+

λ 〉+
1− t4

4
〈J ′b,λ(vλ), v−λ 〉

]
− 1

4
〈J ′b,λ(vλ), vλ〉+ Jb,λ(u3,λ)− 1

4
〈J ′b,λ(u3,λ), u3,λ〉

≥ sup
s,t≥0

[
Jb,λ(sv+

λ + tv−λ ) +
bs4

4
‖∇v+

λ ‖
2
2‖∇u3,λ‖22 +

bt4

4
‖∇v−λ ‖

2
2‖∇u3,λ‖22

]
+

1

4
‖u3,λ‖2λ +

∫
R3

[
1

4
f(u3,λ)u3,λ − F (u3,λ)

]
dx,

which implies that

mb,λ ≥ sup
s,t≥0

Jb,λ(sv+
λ + tv−λ ) +

(1− θ0/λ)

4
‖u3,λ‖2λ ≥ mb,λ +

(1− θ0/λ)

4
‖u3,λ‖2λ.

Thus u3,λ = 0 due to θ0 ∈ (0, 1) and λ > θ0. Therefore, ub,λ has exactly two

nodal domains. �

4. Nehari type of ground state solutions

In this section, we will use non-Nehari manifold method to seek ground state

solutions of Nehari type for (1.1). Before stating our results, we want to give the

following lemmas and corollaries, which can be proved in the same as Section 2.

Lemma 4.1. Suppose (F1)–(F4) are satisfied. Then

Jb,λ(u) ≥ Jb,λ(tu) +
1− t4

4
〈J ′b,λ(u), u〉+

(1− θ0/λ)(1− t2)2

4
‖u‖2λ,

for all u ∈ E, t ≥ 0.

Corollary 4.2. Suppose (F1)–(F4) are satisfied. Then

Jb,λ(u) ≥ Jb,λ(tu) +
(1− θ0/λ)(1− t2)2

4
‖u‖2λ, for all t ≥ 0,

for any u ∈ Nb,λ.

Corollary 4.3. Suppose (F1)–(F4) are satisfied and λ > max {a, θ0}. Then,

for any u ∈ Nb,λ,

Jb,λ(u) = max
t≥0
Jb,λ(tu).

Lemma 4.4. Suppose (V′1) and (F1)–(F4) are satisfied and λ>max {a,θ0}.
Then, for any u ∈ E \ {0}, there exists a unique tu > 0 such that tuu ∈ Nb,λ.

Lemma 4.5. Suppose (V′1) and (F1)–(F4) are satisfied and λ>max {a,θ0}.
Then

inf
u∈Nb,λ

Jb,λ(u) = cb,λ = inf
u∈E, u 6=0

max
t≥0
Jb,λ(tu).

Similarly to mb,λ > 0, we can also prove cb,λ > 0. Then we can get the

following lemma.
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Lemma 4.6. Suppose (V′1) and (F1)–(F4) are satisfied and λ>max {a,θ0}.
Then there exist a constant c∗λ ∈ (0, cb,λ] and a sequence {un} ⊂ E satisfying

(4.1) Jb,λ(un)→ c∗λ, ‖J ′b,λ(un)‖λ(1 + ‖un‖λ)→ 0.

Proof. Since (F1), (F2) and (1.8) hold, there exist δ0 > 0 and ρ0 > 0 such

that

u ∈ E, ‖u‖λ = δ0 ⇒ Jb,λ(u) ≥ ρ0.

Choose vk ∈ Nb,λ such that

(4.2) mb,λ ≤ Jb,λ(vk) < mb,λ +
1

k
, k ∈ N.

Since Jb,λ(tvk) < 0 for large t > 0, then according to [22] and the Mountain Pass

Lemma, we can derive that there exists a sequence {uk,n}n∈N ⊂ E satisfying

(4.3) Jb,λ(uk,n)→ ck, ‖J ′b,λ(uk,n)‖λ(1 + ‖uk,n‖λ)→ 0, k ∈ N,

where ck ∈
[
ρ0, sup

t≥0
Jb,λ(tvk)

]
. By virtue of Corollary 4.2, one has

Jb,λ(vk) ≥ Jb,λ(tvk), for all t ≥ 0,

which implies Jb,λ(vk) = sup
t≥0
Jb,λ(tvk). Hence, by (4.2) and (4.3), we have

Jb,λ(uk,n) < cb,λ +
1

k
, ‖J ′b,λ(uk,n)‖λ(1 + ‖uk,n‖λ)→ 0, k ∈ N.

Now, we can choose a sequence {nk} ⊂ N such that

Jb,λ(uk,nk) < cb,λ +
1

k
, ‖J ′b,λ(uk,nk)‖λ(1 + ‖uk,nk‖λ) <

1

k
, k ∈ N.

Let uk = uk,nk , where k ∈ N. Then, going if necessary to a subsequence, we

have

Jb,λ(un)→ c∗λ ∈ [ρ0, cb,λ], ‖J ′b,λ(un)‖λ(1 + ‖un‖λ)→ 0. �

Proof of Theorem 1.4. By Lemma 4.6, we can deduce that there exists

a sequence {un} ⊂ E satisfying (4.1) such that

(4.4) Jb,λ(un)→ c∗λ, 〈J ′b,λ(un), un〉 → 0.

From (1.7), (1.8), (2.8) and (4.4), one has for large n ∈ N

1 + c∗λ ≥ Jb,λ(un)− 1

4
〈J ′b,λ(un), un〉 ≥

1− θ0/λ

4
‖un‖2λ.

This implies that {un} is bounded in E. By a standard argument, we can prove

that there exists u0,λ ∈ E \ {0} such that J ′b,λ(u0,λ) = 0. This shows that

u0,λ ∈ Nb,λ is a nontrivial solution of (1.1) and Jb,λ(u0,λ) ≥ cb,λ. On the other
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hand, by using (1.7), (1.8), (2.8), the weak semicontinuity of norm and Fatou’s

Lemma, we have

cb,λ ≥ c∗λ = lim
n→∞

(
Jb,λ(un)− 1

4
〈J ′b,λ(un), un〉

)
= lim

n→∞

[
1

4
‖un‖2λ +

∫
R3

(
1

4
f(un)un − F (un)

)]
≥ 1

4
lim inf
n→∞

(∫
R3

a|∇un|2 dx+ (1− θ0/λ)

∫
R3

λV (x)u2
n dx

)
+ lim inf

n→∞

∫
R3

{(
1

4
f(un)un − F (un)

)
+
θ0V (x)

4
u2
n

}
dx

≥ 1

4

(∫
R3

a|∇u0,λ|2 dx+ (1− θ0/λ)

∫
R3

λV (x)u2
0,λ dx

)
+

∫
R3

{(
1

4
f(u0,λ)u0,λ − F (u0,λ)

)
+
θ0V (x)

4
u2

0,λ

}
dx

=
1

4
‖u0,λ‖2λ +

∫
R3

(
1

4
f(u0,λ)u0,λ − F (u0,λ)

)
dx

=Jb,λ(u0,λ)− 1

4
〈J ′b,λ(u0,λ), u0,λ〉 = Jb,λ(u0,λ).

Hence, we have Jb,λ(u0,λ) ≤ c∗λ and so Jb,λ(u0,λ) = cb,λ = inf
Nb,λ
Jb,λ > 0.

By virtues of Theorem 1.1, there exists ub,λ ∈ Mb,λ such that Jb,λ(ub,λ) =

mb,λ. Thus, by (1.7), Corollary 2.3 and Lemma 4.5, one has

mb,λ = Jb,λ(ub,λ) = sup
s,t≥0

Jb,λ(su+
b,λ + tu−b,λ)

= sup
s,t≥0

[
J (su+

b,λ) + J (tu−b,λ) +
bs2t2

2
‖∇u+

b,λ‖
2
2‖∇u−b,λ‖

2
2

]
> sup

s≥0
J (su+

b,λ) + sup
t≥0
J (tu−b,λ) ≥ 2cb,λ.

This completes the proof. �

5. The convergence property

In this section, we will give the proof of Theorem 1.5.

Proof of Theorem 1.5. In Section 2, b = 0 is allowed in the argument.

Therefore, under the assumptions of Theorem 1.3, there exists v0 ∈ M0,λ such

that

J ′0,λ(v0) = 0 and J0,λ(v0) = m0,λ = inf
u∈M0,λ

J0,λ(u),

that is, (1.4) has at least energy sign-changing solution, which changes sign only

once.

For any b > 0, let ub,λ ∈ Mb,λ be a sign-changing solution of (1.1) obtained

in Theorem 1.3, which changes sign only once and satisfies Jb,λ(ub,λ) = mb,λ.
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Choose ω0 ∈ C∞0 (R3) such that ω±0 6= 0. From (F1)–(F3), there exist β1 > 0

and β2 ≥ max {‖∇ω+
0 ‖42, ‖∇ω

−
0 ‖42} such that

∫
R3

F (sω+
0 ) dx ≥ β2|s|4 − β1,

∫
R3

F (tω−0 ) dx ≥ β2|t|4 − β1,

for all s, t ∈ R. For any b ∈ [0, 1], it follows from (1.7) and Lemma 2.5 that

Jb,λ(ub,λ) = mb ≤ max
s,t≥0

Jb,λ(sω+
0 + tω−0 )

= max
s,t≥0

{
s2

2
‖ω+

0 ‖2λ +
bs4

4
‖∇ω+

0 ‖42 −
∫
R3

F (sω+
0 ) dx

+
t2

2
‖ω−0 ‖2λ +

bt4

4
‖∇ω−0 ‖42 −

∫
R3

F (tω−0 ) dx+
bs2t2

2
‖∇ω+

0 ‖22‖∇ω
−
0 ‖22

}
≤ max

s,t≥0

{
s2

2
‖ω+

0 ‖2λ +
bs4

2
‖∇ω+

0 ‖42 + 2β1 − β2s
4 +

t2

2
‖ω−0 ‖2λ

+
bt4

4
‖∇ω−0 ‖42 − β2t

4 +
bs2t2

2
‖∇ω+

0 ‖22‖∇ω
−
0 ‖22

}
≤ max

s≥0

[
s2

2
‖ω+

0 ‖2λ −
s4

2
‖∇ω+

0 ‖42
]

+ max
t≥0

[
t2

2
‖ω−0 ‖2λ −

t4

2
‖∇ω−0 ‖42

]
+ 2β1 := Λ0 > 0.

By (1.7), (1.8) and (2.8), we get

Λ0 + 1 ≥ Jbn,λ(ubn,λ)− 1

4
〈J ′bn(ubn,λ), ubn,λ〉 ≥

(1− θ0/λ)

4
‖ubn,λ‖2λ,

which implies that {ubn,λ} is bounded in E due to 0 < θ0 < 1 and λ > θ0. Hence

there exists a subsequence of {bn}, still denoted by {bn} and u0,λ ∈ E such that

ubn,λ ⇀ u0,λ in E. Similarly to Lemma 2.6, we conclude that u±bn,λ → u±0,λ 6= 0

in E. Note that

〈J ′0,λ(u0,λ), ϕ〉 =

∫
R3

(∇u0,λ · ∇ϕ+ V (x)u0,λϕ) dx−
∫
R3

f(u0,λ)ϕdx

= lim
n→∞

[ ∫
R3

(∇ubn,λ · ∇ϕ+ V (x)ubn,λϕ) dx−
∫
R3

f(ubn,λ)ϕdx

]
= lim
n→∞

〈J ′bn,λ(ubn,λ), ϕ〉 = 0

for all ϕ ∈ C∞0 (R3). This shows that J ′0,λ(u0,λ) = 0, and then u0,λ ∈M0,λ and

J0,λ(u0,λ) ≥ m0,λ.
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Next, we prove that J0,λ(u0,λ) = m0,λ. Let bn ∈ [0, 1]. Then it follows from

(F3) that there exists K0 > 0 such that

Jbn,λ(sv+
0 + tv−0 )(5.1)

=
s2

2
‖v+

0 ‖2λ +
bns

4

4
‖∇v+

0 ‖42 −
∫
R3

F (x, sv+
0 ) dx+

t2

2
‖v−0 ‖2λ

+
bnt

4

4
‖∇v−0 ‖42 −

∫
R3

F (tv−0 ) dx+
bns

2t2

2
‖∇v+

0 ‖22‖∇v
−
0 ‖22

≤ s2

2
‖v+

0 ‖2λ +
bns

4

4
‖∇v+

0 ‖42 −
∫
R3

F (sv+
0 ) dx

+
t2

2
‖v−0 ‖2λ +

bnt
4

4
‖∇v−0 ‖42 −

∫
R3

F (tv−0 ) dx < 0,

for all s+ t ≥ K0. In view of Lemma 2.4, there exists (sn, tn) such that snv
+
0 +

tnv
−
0 ∈Mbn,λ, which, together with (5.1), implies 0 < sn, tn < K0. Hence, from

(1.7), (1.8) and (2.1), we have

m0,λ = J0,λ(v0) = Jbn,λ(v0)− bn
4
‖∇v0‖42

≥ Jbn,λ(snv
+
0 + tnv

−
0 ) +

1− s4
n

4
〈J ′bn,λ(v0), v+

0 〉

+
1− t4n

4
〈J ′bn,λ(v0), v−0 〉 −

bn
4
‖∇v0‖42

≥ mbn,λ −
1 +K4

0

4
|〈J ′bn,λ(v0), v+

0 〉| −
1 +K4

0

4
|〈J ′bn,λ(v0), v−0 〉| −

bn
4
‖∇v0‖42

= mbn,λ−
(1 +K4

0 )bn
4

‖∇v0‖22‖∇v+
0 ‖22−

(1 +K4
0 )bn

4
‖∇v0‖22‖∇v−0 ‖22−

bn
4
‖∇v0‖42,

which implies that

(5.2) lim sup
n→∞

mbn,λ ≤ m0,λ.

By (1.7) and (5.2), one has

m0,λ ≤ J0,λ(u0,λ) = lim sup
n→∞

Jbn,λ(ubn,λ) = lim sup
n→∞

mbn,λ ≤ m0,λ.

This shows that J0,λ(u0,λ) = m0,λ. �

6. Concentration of ground state sign-changing solutions

In this section, we will give the proof of Theorem 1.6. Now, let us define

a manifold

Mb,0 =
{
u ∈ H1

0 (Ω) : u± 6= 0, 〈J ′b,0(u), u+〉 = 〈J ′b,0(u), u−〉 = 0
}

and

mb,0 = inf
Mb,0

Jb,0.
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Lemma 6.1. Suppose (V′1), (F1)–(F4) are satisfied and λ > max {a, θ0}.
Then mb,λ ≤ mb,0.

Proof. Let any fixed η ∈Mb,0, then ζ := ηχΩ ∈ E, where

χΩ =

1 for x ∈ Ω,

0 for x ∈ R3 \ Ω.

It follows that ζ ∈Mb,λ for all λ > 0, and

Jb,λ(sζ+ + tζ−)

=
1

2
‖sζ+ + tζ−‖2λ +

b

4

(∫
R3

|∇(sζ+ + tζ−)|2 dx
)2

−
∫
R3

F (sζ+ + tζ−) dx

=
1

2
s2‖ζ+‖2λ +

b

4
s4

(∫
Ω

|∇ζ+|2 dx
)2

−
∫

Ω

F (sζ+) dx+
bs2t2

2

∫
Ω

|∇ζ+|2 dx
∫

Ω

|∇ζ−|2 dx

+
1

2
t2‖ζ−‖2λ +

b

4
t4
(∫

Ω

|∇ζ−|2 dx
)2

−
∫

Ω

F (tζ−) dx = Jb,0(sζ+ + tζ−)

for all s, t ≥ 0. Thus mb,λ ≤ Jb,λ(ζ) = Jb,0(ζ). According to the arbitrariness

of ζ ∈ Mb,0, we have that mb,λ ≤ mb,0, where mb,0 is independent of λ ∈
(θ0,∞). �

Proof of Theorem 1.6 (concentration). By the existence of ground state

sign-changing solutions to (1.1), for any sequence {λn} ⊂ (max {a, θ0},∞) with

λn → ∞, there exists a critical point sequence {ub,λn} denoted by un := ub,λn
of Jb,λn satisfying Jb,λn(un) = mb,λn and J ′b,λn(un) = 0 with u± 6= 0, where un
is the corresponding ground state sign-changing solution. We have that

mb,0 ≥ Jb,λn(un)− 1

4
〈J ′b,λ(un), un〉

=
1− θ0/λn

4
‖un‖2λn +

∫
R3

{[
1

4
f(un)un − F (un)

]
+
θ0V (x)

4
u2
n

}
dx

≥ 1− θ0/λn
4

‖un‖2λn ,

which implies that {un} is bounded uniformly, that is,

(6.1) sup
n≥1
‖un‖2λn ≤

4

1− θ0/λn
mb,0.

It follows that {un} is bounded in E due to 0 < θ0 < 1 and λn > θ0. Therefore,

up to a subsequence, there is u0 ∈ E such that un ⇀ u0 in E. By the compactness

of Sobolev embedding E ↪→ Lr(R3) for r ∈ [2, 6), we get that un → u0 in Lr(R3)

for all r ∈ [2, 6). Up to a subsequence, we may assume that un(x) → u0(x)
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almost everywhere on x ∈ R3. Since V (x) ≥ 0, it follows from Fatou’s Lemma

and (6.1) that∫
R3

V u2
0 dx ≤ lim inf

n→∞

∫
R3

V u2
n dx ≤ lim inf

n→∞

‖un‖2λn
λn

= 0.

By condition (V′1), we deduce that u0(x) = 0, almost everywhere in R3 \V −1(0)

and u0 ∈ H1
0 (Ω). It follows from J ′b,λn(un) = 0 that∫

Ω

a∇un · ∇ψ dx+ b

∫
R3

|∇un|2 dx
∫

Ω

∇un · ∇ψ dx−
∫
R3

f(x, un)ψ dx = 0,

for ψ ∈ H1
0 (Ω). In order to prove that u0 is a ground state sign-changing solution

of the limit system, it is sufficient to show u±0 6= 0 and

(6.2)

∫
Ω

a∇u0 · ∇ψ dx+ b

∫
R3

|∇u0|2 dx
∫

Ω

∇u0 · ∇ψ dx−
∫
R3

f(x, u0)ψ dx = 0,

for ψ ∈ H1
0 (Ω). First of all, we prove (6.2). Going if necessary to a subsequence,

we may assume that

lim
n→∞

∫
R3

|∇un|2 dx = A2

exists. It follows that ∫
R3

|∇u0|2 dx ≤ A2.

Applying Lemma A.2 in [40] and un ⇀ u0 in H1
0 (Ω), we can get

(6.3)

∫
Ω

a∇u0 · ∇ψ dx+ bA2

∫
Ω

∇u0 · ∇ψ dx−
∫
R3

f(x, u0)ψ dx = 0,

for ψ ∈ H1
0 (Ω). From (6.2) and (6.3), it is sufficient to prove that

A2 =

∫
R3

|∇u0|2 dx =

∫
Ω

|∇u0|2 dx.

Since 〈J ′b,λn(un), un〉 = 0, then

(6.4)

∫
R3

(a|∇un|2 + λnV (x)u2
n) dx

+ b

(∫
R3

|∇un|2 dx
)2

−
∫
R3

f(x, un)un dx = 0.

By (6.4) and letting n→∞, we know that

(6.5) aA2 + bA4 + lim
n→∞

∫
R3

λnV (x)u2
n dx−

∫
R3

f(x, u0)u0 dx = 0.

Take ψ = u0 in (6.3), we can get

(6.6) a

∫
R3

|∇u0|2 dx+ bA2

∫
R3

|∇u0|2 dx−
∫
R3

f(x, u0)u0 dx = 0.

It follows from (6.5) and (6.6) that∫
R3

|∇u0|2 dx = A2 and lim
n→∞

∫
R3

λnV (x)u2
n dx = 0,
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which implies that

lim
n→∞

∫
R3

V (x)u2
n dx = 0.

Thus we obtain that ‖un‖2 → ‖u0‖2 and un → u0 in E and also in H1(R3).

Finally, we prove that u±0 6= 0. Since un ∈ Mb,λn , it follows from the

proof of Lemma 2.7 that 0 < α ≤ ‖un‖2λn , where α is independent of n since

λn ∈ (max{a, θ0},∞) for n large enough. Moreover, by un → u0 in E, we have

that u±n ⇀ u±0 . Thus, this implies that

0 < α ≤
∫
R3

f(x, u±0 )u±0 dx

and thus u±0 6= 0. This completes the proof. �
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