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HARDY–SOBOLEV INEQUALITY

WITH SINGULARITY A CURVE

Mouhamed Moustapha Fall — El hadji Abdoulaye Thiam

Abstract. We consider a bounded domain Ω of RN , N ≥ 3, and h a con-

tinuous function on Ω. Let Γ be a closed curve contained in Ω. We study

existence of positive solutions u ∈ H1
0 (Ω) to the equation

−∆u+ hu = ρ−σΓ u2∗
σ−1 in Ω,

where 2∗σ := 2(N − σ)/(N − 2), σ ∈ (0, 2), and ρΓ is the distance function

to Γ. For N ≥ 4, we find a sufficient condition, given by the local geom-

etry of the curve, for the existence of a ground-state solution. In the case
N = 3, we obtain existence of ground-state solution provided the trace of

the regular part of the Green of −∆ + h is positive at a point of the curve.

1. Introduction

For N ≥ 3, 0 ≤ k ≤ N − 1 and σ ∈ [0, 2), we consider the Hardy–Sobolev

inequality

(1.1)

∫
RN
|∇v|2 dx ≥ C

(∫
RN
|z|−σ|v|2

∗
σ dx

)2/2∗
σ

for all v ∈ D1,2(RN ),

where x = (t, z) ∈ Rk×RN−k, C = C(N, σ, k) > 0 and 2∗σ := 2(N − σ)/(N − 2).

Here the Sobolev space D1,2(RN ) is given by the completion of C∞c (RN ) with

respect to the norm v 7→ (
∫
RN |∇v|

2 dx)1/2. Inequality (1.1) interpolates between

cylindrical Hardy inequality, which corresponds to the case σ = 2 and k 6= N−2,
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and the Sobolev inequality which is the case σ = 0. Moreover it is invariant under

scaling on RN and by translations in the t-direction. It is well known that in

the case of Hardy inequality, σ = 2 and k 6= N − 2, there is no positive constant

C and v ∈ D1,2(RN ) for which equality holds in (1.1). For σ ∈ [0, 2), the best

positive constant C in (1.1) is

(1.2) SN,σ := inf

{∫
RN
|∇v|2dx, v ∈ D1,2(RN ) and

∫
RN
|z|−σ|v|2

∗
σ dx = 1

}
.

In the case σ = 0, SN,0 is achieved by the standard bubble cN (1 + |x|2)(2−N)/2,

which is unique up to scaling and translations, e.g. Aubin [1] and Talenti [23].

For k = 0, (1.1) is a particular case of the Caffarelli–Kohn–Nirenberg inequality,

see [6]. In this case, Lieb showed in [20] that only functions of the form cN,σ(1 +

|x|2−σ)(2−N)/(2−σ) achieves SNσ, up to a scaling. When k = N − 1, Musina

proved in [21] that the support of the minimizer is contained in a half-space.

Therefore (1.1) becomes the Hardy–Sobolev inequality with singularity all the

boundary of the halfspace.

For 1 ≤ k ≤ N−2 and σ ∈ (0, 2), Badiale and Tarentello proved the existence

of a minimizer w for (1.2) in their paper [3], where they were motivated by

questions from astrophysics. Moreover, Mancini, Fabbri and Sandeep showed

decay and symmetry properties of w in [10]. In particular, they prove that

w(t, z) = θ(|t|, |z|), for some positive function θ. An interesting classification

result was also derived in [10] when σ = 1, that every minimizer is of the form

cN,k((1 + |z|)2 + |t|2)(2−N)/2, up to scaling in RN and translations in the t-

direction.

Since in this paper we are interested with Hardy–Sobolev inequality with

weight singular at a given curve, our asymptotic energy level is given by SN,σ
with k = 1 and σ ∈ (0, 2).

Let Ω be a bounded domain in RN , N ≥ 3, and h a continuous function

on Ω. Let Γ ⊂ Ω be a smooth closed curve. In this paper, we are concerned with

the existence of minimizers for the infinimum

(1.3) µh(Ω,Γ) := inf
u∈H1

0 (Ω)\{0}

∫
Ω

|∇u|2 dx+

∫
Ω

hu2 dx(∫
Ω

ρ−σΓ |u|
2∗
σ dx

)2/2∗
σ
,

where σ ∈ [0, 2], 2∗σ := 2(N − σ)/(N − 2) and ρΓ(x) := dist(x,Γ). Here and in

the following, we assume that −∆+h defines a coercive bilinear form on H1
0 (Ω).

We are interested with the effect of the geometry and/or the location of the curve

Γ on the existence of minimmizer for µh(Ω,Γ).

We not that for σ = 0, (1.3) reduces to the famous Brezis–Nirenberg prob-

lem [5]. In this case, for N ≥ 4 it is enough that h(y0) < 0 to get a minimizer,

whereas for N = 3, the problem is no more local and existence of minimizers
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is guaranteed by the positiveness of a certain mass — the trace of the regular

part of the Green function of the operator −∆ + h with zero Dirichlet data, see

Druet [9]. For σ = 2, the problem reduces to a linear eigenvalue problem with

Hardy potential, existence and nonexistence results were obtained by the second

author in [25].

Here, we deal with the case σ ∈ (0, 2). Our results exhibit similar local/global

phenomenon as in [5] and [9], with the additional property that for N ≥ 4, the

curvature of the curve at a point y0 tells how much h(y0) should be negative,

while positive mass at a point y0 ∈ Γ is enough in dimension N = 3.

Our first main result is the following

Theorem 1.1. Let N ≥ 4, σ ∈ (0, 2) and Ω be a bounded domain of RN .

Consider Γ a smooth closed curve contained in Ω. Let h be a continuous function

such that the linear operator −∆ + h is coercive. Then there exists a positive

constant CN,σ, only depending on N and σ with the property that if there exists

y0 ∈ Γ such that

(1.4) h(y0) < −CN,σ|κ(y0)|2

then µh(Ω,Γ) < SN,σ, and µh(Ω,Γ) is achieved by a positive function. Here

κ : Γ→ RN is the curvature vector of Γ.

Inequality (1.4) in Theorem 1.1 shows that the sign of the directional curva-

tures of Γ is not important but the size of the curvature κ at a point is.

For the explicit value of CN,σ appearing in (1.4), we refer the reader to Propo-

sition 4.2 below. It is given by weighted integrals involving partial derivatives of

w, a minimizer for SN,σ. In the case N = 4, we have C4,σ = 3/2.

We now give a consequence of Theorem 1.1 in the case where h ≡ λ a constant

function. We denote by λ1(Ω) > 0 the first Dirichlet eigenvalue of −∆ in Ω. It

is easy to see that −∆ + λ is coercive for every λ > −λ1(Ω). In our next result,

we will consider a curve Γ with curvature vanishing at a point. This is (trivially)

the case when Γ contains a segment.

Corollary 1.2. Let N ≥ 4, σ ∈ (0, 2) and Ω be a bounded domain of RN .

Consider Γ a smooth closed curve contained in Ω. Suppose that the curvature κ of

Γ vanishes at a point. Then for every λ ∈ (−λ1(Ω), 0), we have µλ(Ω,Γ) < SN,σ,

and µλ(Ω,Γ) is achieved by a positive function.

We observe that if Γ = S1
R a circle of radius R > 0 and h ≡ λ ∈ R then

condition (1.4) translates into

λ < −CN,σ
R2

.

Therefore, provided −λ1(Ω) < −CN,σ/R2, we have that µλ(Ω, S1
R) is achieved

for every λ ∈ (−λ1(Ω),−CN,σ/R2). One is thus led to find domains for which
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−λ1(Ω) < −CN,σ/R2. A particular example is given by the annulus Ωε =

BR+ε \ BR−ε, which contains S1
R for ε > 0. It is well known from, e.g., the

Faber–Krahn inequality that λ1(Ωε) ≥ c(N)/ε2, so that for sufficiently small ε,

one always has −λ1(Ωε) < −CN,σ/R2.

We now turn to the 3-dimensional case. We let G(x, y) be the Dirichlet Green

function of the operator −∆ + h, with zero Dirichlet data. It satisfies

(1.5)

−∆xG(x, y) + h(x)G(x, y) = 0 for every x ∈ Ω \ {y},
G(x, y) = 0 for every x ∈ ∂Ω.

In addition, for N = 3, there exists a continuous function m : Ω → R and

a positive constant c > 0 such that

(1.6) G(x, y) =
c

|x− y|
+ cm(y) + o(1) as x→ y.

We call the function m : Ω → R the mass of −∆ + h in Ω. We note that −m
is occasionally called the Robin function of −∆ + h in the literature. We now

state our second main result.

Theorem 1.3. Let σ ∈ (0, 2) and Ω be a bounded domain of R3. Consider

Γ a smooth closed curve contained in Ω. Let h be a continuous function such

that the linear operator −∆ +h is coercive. If m(y0) > 0, for some y0 ∈ Γ, then

µh(Ω,Γ) < S3,σ, and µh(Ω,Γ) is achieved by a positive function.

Since the mass m is independent on the curve, Theorem 1.3 shows that the

location of the curve in the domain Ω — so that to intersect the positive part

of m — matters for the existence of solution in general. We note that there

are situations in which the mass is everywhere positive. This is the case of the

operator −∆ + λ, provided λ ∈ (−λ1(B1),−λ1(B1)/4), as observed in Brezis–

Nirenberg [5]. We therefore have

Corollary 1.4. Let B1 the unit ball of R3 and let Γ be any smooth closed

curve contained in B1. If λ ∈ (−λ1(B1),−λ1(B1)/4) then µλ(Ω,Γ) < S3,σ and

µλ(Ω,Γ) is achieved by a positive function.

The effect of curvatures in the study of Hardy–Sobolev inequalities has been

intensively studied in the recent years. In each approach, the sign of the curva-

tures at the point of singularity plays important roles for the existence a solution.

The first paper in this direction, to our knowledge, is the one by Ghoussoub and

Kang [12] who considered the Hardy–Sobolev inequality with singularity at the

boundary. For more results, see Ghoussoub and Robert [16], [17], [15], [14], De-

myanov and Nazarov [8], Chern and Lin [7], Lin and Li [19], the authors and

Minlend [11] and the references there in. We point out that in the pure Hardy–

Sobolev case, σ ∈ (0, 2), with singularity at the boundary, one has existence of
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minimizers for every dimension N ≥ 3 as long as the mean curvature of the

boundary is negative at the point singularity, see [13].

The Hardy–Sobolev inequality with interior singularity on Riemannian man-

ifolds has been studied by Jaber [18] and Thiam [25]. Here also the impact of

the scalar curvature at the point singularity plays an important role for the ex-

istence of minimizers in higher dimensions N ≥ 4. The paper [18] contains also

existence result under positive mass condition for N = 3.

We expect that the arguments in this paper can be generalized to the case

Γ ⊂ Ω, a k-dimensional closed submanifold, with 2 ≤ k ≤ N − 2. Here we

believe that the norm of the second fundamental from of Γ will play a crucial

role for the existence of minimizers. Another problem of interest would be the

case Γ ⊂ ∂Ω, a k-dimensional submanifold of ∂Ω with, 1 ≤ k ≤ N − 1. In this

situation, we suspect that the sign of the mean curvature of ∂Ω at a point might

influence on the existence of minimizers. Finally we note that Ghoussoub and

Robert in [15] obtained several results for the case Γ a subspace of dimension

k ≥ 2, and among other results, if Γ intersects ∂Ω transversely, they obtained

existence results under certain negativity assumptions on the mean curvature.

The proofs of Theorems 1.1 and 1.3 rely on test function methods. Namely

on constructing appropriate test functions allowing to compare µh(Ω,Γ) and

SN,σ. While it always holds that µh(Ω,Γ) ≤ SN,σ, our main task is to find a

function for which µh(Ω,Γ) < SN,σ. This then allows to recover compactness

and thus every minimizing sequence for µh(Ω,Γ) converges to a minimizer, up

to a subsequence. Building these approximating solutions requires to have sharp

decay estimates of a minimizer w for SN,σ, see Section 3. In Section 4, we treat

the case N = 4 in the spirit of Aubin [1]. Here we find a continuous family of test

functions (uε)ε>0 concentrating at a point y0 ∈ Γ which yields µh(Ω,Γ) < SN,σ,

as ε→ 0, provided (1.4) holds. In Section 5, we consider the case N = 3, which

is more difficult. Here we use the argument of Schoen [22] to build our test

function. However we cannot adopt the method of [22] straightforwardly. In

fact, in contrast to the case N ≥ 4, we could only find a discrete family of test

functions (Ψεn)n∈N that leads to the inequality µh(Ω,Γ) < S3,σ. This is due to

the fact that the (flat) ground-state w for S3,σ, σ ∈ (0, 2), is not known explicitly,

it is not radially symmetric, it is not smooth, and S3,σ is only invariant under

translations in the t-direction. As in [22], we use some global test functions.

These are similar to the test functions (uεn)n∈N in dimension N ≥ 4 near the

concentration point y0, but away from it they are substituted with the regular

part of the Green function G(x, y0), which leads to appearing of the mass m(y0)

in its first order Taylor expansion, see (1.6).
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2. Geometric preliminaries

Let Γ ⊂ RN be a smooth closed curve. Let (E1; . . . ;EN ) be an orthonormal

basis of RN . For y0 ∈ Γ and r > 0 small, we consider the curve γ : (−r, r)→ Γ,

parameterized by an arclength so that γ(0) = y0. Up to a translation and a ro-

tation, we may assume that γ′(0) = E1. We choose a smooth orthonormal frame

field (E2(t); . . . ;EN (t)) on the normal bundle of Γ such that (γ′(t);E2(t); . . . ;

EN (t)) is an oriented basis of RN for every t ∈ (−r, r), with Ei(0) = Ei.

We fix the following notation, that will be used throughout the paper,

Qr := (−r, r)×BRN−1(0, r),

where BRk(0, r) denotes the ball in Rk with radius r centered at the origin.

Provided r > 0 is small, the map Fy0
: Qr → Ω, given by

(t, z) 7→ Fy0(t, z) := γ(t) +

N∑
i=2

ziEi(t),

is smooth and parameterizes a neighbourhood of y0 = Fy0(0, 0). We consider

ρΓ : Γ→ R, the distance function to the curve, given by

ρΓ(y) = min
y∈RN

|y − y|.

In the above coordinates, we have

(2.1) ρΓ(Fy0(x)) = |z| for every x = (t, z) ∈ Qr.

Clearly, for every t ∈ (−r, r) and i = 2, . . . N , there are real numbers κi(t) and

τ ji (t) such that

(2.2) E′i(t) = κi(t)γ
′(t) +

N∑
j=2

τ ji (t)Ej(t).

The quantity κi(t) is the curvature in the Ei(t)-direction while τ ji (t) is the torsion

from the osculating plane spanned by {γ′(t);Ej(t)} in the direction Ei. We

note that provided r > 0 is small, κi and τ ji are smooth functions on (−r, r).
Moreover, it is easy to see that

(2.3) τ ji (t) = −τ ij(t) for i, j = 2, . . . , N .

The curvature vector κ : Γ → RN is defined as κ(γ(t)) :=
N∑
i=2

κi(t)Ei(t) and its

norm is given by

|κ(γ(t))| :=

√√√√ N∑
i=2

κ2
i (t).
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Next, we derive the expansion of the metric induced by the parameterization Fy0

defined above. For x = (t, z) ∈ Qr, we define

g11(x) = ∂tFy0
(x) · ∂tFy0

(x),

g1i(x) = ∂tFy0
(x) · ∂ziFy0

(x),

gij(x) = ∂zjFy0
(x) · ∂ziFy0

(x).

We have the following result.

Lemma 2.1. There exists r > 0, depending only on Γ and N , such that for

every x = (t, z) ∈ Qr,

(2.4)



g11(x) = 1 + 2

N∑
i=2

ziκi(0) + 2t

N∑
i=2

ziκ
′
i(0)

+

N∑
ij=2

zizjκi(0)κj(0) +

N∑
ij=2

zizjβij(0) +O(|x|3),

g1i(x) =

N∑
j=2

zjτ
i
j(0) + t

N∑
j=2

zj(τ
i
j)
′(0) +O(|x|3),

gij(x) = δij ,

where βij(t) :=
N∑
l=2

τ li (t)τ
l
j(t).

Proof. To alleviate the notations, we will write F = Fy0 . We have

(2.5) ∂tF (x) = γ′(t) +

N∑
j=2

zjE
′
j(t) and ∂ziF (x) = Ei(t).

Therefore

(2.6) gij(x) = Ei(t) · Ej(t) = δij .

By (2.2) and (2.5), we have

(2.7) g1i(x) =

N∑
l=2

zlE
′
l(t) · Ei(t) =

N∑
j=2

zjτ
i
j(t)

and

g11(x) = ∂tF (x) · ∂tF (x) = 1 + 2

N∑
i=2

ziκi(t)(2.8)

+

N∑
ij=2

zizjκi(t)κj(t) +

N∑
ij=2

zizj

( N∑
l=2

τ li (t)τ
l
j(t)

)
.

By Taylor expansions, we get

κi(t) = κi(0) + tκ′i(0) +O(t2) and τki (t) = τki (0) + t(τki )′(0) +O(t2).

Using these identities in (2.8) and (2.7), we get (2.4), thanks to (2.6). �
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As a consequence we have the following result.

Lemma 2.2. There exists r > 0, depending only on Γ and N , such that for

every x ∈ Qr, we have

(2.9)
√
|g|(x) = 1 +

N∑
i=2

ziκi(0) + t

N∑
i=2

ziκ
′
i(0) +

1

2

N∑
ij=2

zizjκi(0)κj(0) +O(|x|3),

where |g| stands for the determinant of g. Moreover, g−1(x), the matrix inverse

of g(x), has components given by

(2.10)



g11(x) = 1− 2

N∑
i=2

ziκi(0)− 2t

N∑
i=2

ziκ
′
i(0)

+ 3

N∑
ij=2

zizjκi(0)κj(0) +O(|x|3),

gi1(x) = −
N∑
j=2

zjτ
i
j(0)− t

N∑
j=2

zj
(
τ ij
)′

(0)

+ 2

N∑
j=2

zlzjκl(0)τ ij(0) +O(|x|3),

gij(x) = δij +

N∑
lm=2

zlzmτ
j
l (0)τ im(0) +O(|x|3).

Proof. We write g(x) = id + H(x), where id denotes the identity matrix

on RN and H is a symmetric matrix with components for α, β = 1, . . . , N , given

by

(2.11)



H11(x) = 2

N∑
i=2

ziκi(0) + 2t

N∑
i=2

ziκ
′
i(0)

+

N∑
ij=2

zizjκi(0)κj(0) +

N∑
ij=2

zizjβij(0) +O(|x|3),

H1i(x) =

N∑
j=2

ziτ
i
j(0) +O(|x|2),

Hij(x) = 0.

We recall that, as |H| → 0,

(2.12)
√
|g| =

√
det (I +H) = 1 +

trH

2
+

(trH)
2

4
− tr (H2)

4
+O

(
|H|3

)
.
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Now, by (2.11), as |x| → 0, we have

(2.13)
trH

2
=

N∑
i=2

ziκi(0) + t

N∑
i=2

ziκ
′
i(0)

+
1

2

N∑
ij=2

zizjκi(0)κj(0) +
1

2

N∑
ij=2

zizjβij(0) +O(|x|3),

so that

(2.14)
(trH)

2

4
=

N∑
ij=2

zizjκi(0)κj(0) +O
(
|x|3
)
.

Moreover, from (2.11), we deduce that

tr (H2)(x) =

N∑
α=1

(H2(x))αα =

N∑
αβ=1

Hαβ(x)Hβα(x)

=

N∑
αβ=1

H2
αβ(x) = H2

11(x) + 2

N∑
i=2

H2
i1(x),

so that

(2.15) − tr (H2)

4
= −

N∑
ij=2

zizjκi(0)κj(0)− 1

2

N∑
ijl=2

zizjτ
l
i (0)τ lj(0) +O

(
|x|3
)
.

Therefore plugging the expression from (2.13)–(2.15) in (2.12), we get

√
|g|(x) = 1 +

N∑
i=2

ziκi(0) + t

N∑
i=2

ziκ
′
i(0) +

1

2

N∑
ij=2

zizjκi(0)κj(0) +O(|x|3).

The proof of (2.9) is thus finished.

By Lemma 2.1 we can write g(x) = id +A(x) +B(x) +O(|x|3), where A and

B are symmetric matrices with components (Aαβ) and (Bαβ), α, β = 1, . . . , N ,

given respectively by

(2.16) A11(x) = 2

N∑
i=2

ziκi(0), Ai1(x) =

N∑
j=2

zjτ
i
j(0) and Aij(x) = 0

and

(2.17)


B11(x) = 2t

N∑
i=2

ziκ
′(0) +

N∑
i=2

zizjκi(0)κj(0) +

N∑
ij=2

zizjβij(0),

Bi1(x) = t
∑
j=2

zj(τ
i
j)
′(0) and Bij(x) = 0.

We observe that, as |x| → 0, we have

g−1(x) = id−A(x)−B(x) +A2(x) +O(|x|3).
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We then deduce from (2.16) and (2.17) that

g11(x) = 1−A11(x)−B11(x) +

N∑
α=1

A2
1α(x) +O

(
|x|3
)

= 1−A11(x)−B11(x) +A2
11(x) +

N∑
i=1

A2
1i(x) +O(|x|3)

= 1− 2

N∑
i=2

ziκi(0)− 2t

N∑
i=2

ziκ
′(0)

+ 3

N∑
i=2

zizjκi(0)κj(0) + 3

N∑
ij=2

zizjβij(0) +O(|x|3),

gi1(x) = −A1i(x)−B1i(x) +

N∑
α=1

AiαA1α +O(|x|3)

= −A1i(x)−B1i(x) +Ai1(x)A11(x) +

N∑
j=2

Aij(x)A1j(x) +O(|x|3)

= −
N∑
j=2

zjτ
i
j(0)− t

∑
j=2

zj
(
τ ij
)′

(0) + 2

N∑
jl=2

zlzjκl(0)τ ij(0)

and

gij(x) = δij −Aij(x)−Bij(x) + (A2)ij(x) +O(|x|3)

= δij −Aij(x)−Bij(x) +A1iA1j +

N∑
l=2

Ail(x)Ajl(x) +O(|x|3)

= δij +

N∑
lm=2

zlzmτ
i
m(0)τ jl (0) +O(|x|3).

This ends the proof. �

3. Some preliminary results

We consider the best constant for the cylindrical Hardy–Sobolev inequality

SN,σ = min

{∫
RN
|∇w|2dx : w ∈ D1,2(RN ),

∫
RN
|z|−σ|w|2

∗
σ dx = 1

}
.

As mentioned in the first section, it is attained by a positive function w ∈
D1,2(RN ), satisfying

(3.1) −∆w = SN,σ|z|−σw2∗
σ−1 in RN ,

see, e.g., [3]. Moreover, from [10], we have

(3.2) w(x) = w(t, z) = θ(|t|, |z|) for a function θ : R+ × R+ → R+.
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Next we prove further decay properties of w involving its higher derivatives.

Lemma 3.1. Let θ be given by (3.2). Then we have the following properties.

(a) The function t 7→ θ(t, ρ) is of class C∞ with all its derivatives uniformly

bounded with respect to ρ.

(b) There exists a constant C > 0 such that for |(t, ρ)| ≤ 1, we have

θρ(t, ρ) + θtρ(t, ρ) + ρθρρ(t, ρ) ≤ Cρ1−σ.

Proof. For the proof of (a), see [10]. To prove (b), we first use polar

coordinates to deduce that

(3.3) ρ2−N (ρN−2θρ)ρ + θtt = SN,σρ
−σθ2∗

σ−1 for t, ρ ∈ R+.

Integrating this identity in the ρ variable, we therefore get, for every ρ > 0,

θρ(t, ρ) =
−1

ρN−2

∫ ρ

0

rN−2θtt(t, r) dr + SN,σ
1

ρN−2

∫ ρ

0

rN−2r−σθ2∗
σ−1(t, r) dr.

Moreover, we have

θtρ(t, ρ) =
−1

ρN−2

∫ ρ

0

rN−2θttt(t, r) dr

+ SN,σ
1

ρN−2

∫ ρ

0

rN−2r−σ∂tθ(t, r)θ
2∗
σ−2(t, r) dr.

By (a) and the fact that 2∗σ ≥ 2, we obtain

|θρ(t, ρ)|+ |θtρ(t, ρ)| ≤ Cρ+ Cρ1−σ ≤ Cρ1−σ for |(t, ρ)| ≤ 1.

Now using this in (3.3), we get |θρρ| ≤ Cρ−σ, for |(t, ρ)| ≤ 1. The proof of (b) is

completed. �

As a consequence we derive decay estimates of the derivatives of w up to

order two.

Corollary 3.2. Let w be a ground state for SN,σ then there exist positive

constants C1, C2, depending only on N and σ, such that

(a) For every x ∈ RN

(3.4)
C1

1 + |x|N−2
≤ w(x) ≤ C2

1 + |x|N−2
.

(b) For |x| = |(t, z)| ≤ 1, |∇w(x)|+ |x||D2w(x)| ≤ C2|z|1−σ.

(c) For |x| = |(t, z)| ≥ 1, |∇w(x)|+ |x||D2w(x)| ≤ C2 max(1, |z|−σ)|x|1−N .

Proof. For the proof of (a), we refer to [10, Lemma 3.1]. The proof of (b) is

an immediate consequence of Lemma 3.1 (b), recalling that w(t, z) = θ(|t|, |z|).
Now (c) follows by Kelvin transform, using that the function v : RN → R, given

by v(t, z) = v(x) = θ(|t||x|−2, |z||x|−2)|x|2−N , is also a ground-state for SN,σ,

thus it satisfies (b). �
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We close this section with the following result.

Lemma 3.3. Let v ∈ D1,2(RN ), N ≥ 3, satisfy v(t, z) = θ(|t|, |z|), for some

function θ : R+ × R+ → R. Then for 0 < r < R, we have∫
QR\Qr

|∇v|2g
√
|g| dx =

∫
QR\Qr

|∇v|2 dx+
|κ(x0)|2

N − 1

∫
QR\Qr

|z|2|∂tv|2 dx

+
|κ(x0)|2

2(N − 1)

∫
QR\Qr

|z|2|∇v|2 dx+O

(∫
QR\Qr

|x|3|∇v|2 dx
)
.

Proof. It is easy to see that

(3.5)

∫
QR\Qr

|∇v|2g
√
|g| dx =

∫
QR\Qr

|∇v|2 dx

+

∫
QR\Qr

(|∇v|2g − |∇v|2)
√
|g| dx+

∫
QR\Qr

|∇v|2
(√
|g| − 1

)
dx.

We recall that

|∇v|2g(x)− |∇v|2(x) =

N∑
αβ=1

[
gαβ(x)− δαβ

]
∂zαv(x)∂zβv(x).

It then follows that

(3.6)

∫
QR\Qr

[|∇v|2g − |∇v|2]
√
|g| dx =

N∑
ij=2

∫
QR\Qr

[gij − δij ]∂ziv∂zjv
√
|g| dx

+

N∑
i=2

∫
QR\Qr

gi1(∂tv∂ziv)
√
|g| dx+

∫
QR\Qr

[g11 − 1](∂tv)2
√
|g| dx.

We first use Lemma 2.2 and (2.3), to get

N∑
ij=2

∫
QR\Qr

[
gij − δij

]
∂ziv∂zjv

√
|g| dx(3.7)

=

N∑
ij=2

N∑
lm=2

τ im(0)τ jl (0)

∫
QR\Qr

zizjzlzm
|∇zv|2

|z|2
dx

+O

(∫
QR\Qr

|x|3|∇zv|2 dx
)

= O

(∫
QR\Qr

|x|3|∇zw|2 dx
)
.

Next, we observe that

N∑
i=2

∫
QR\Qr

gi1(∂tv · ∂iv)
√
|g| dx =

N∑
i=2

∫
QR\Qr

Υ(|t|, |z|)tzigi1 dx,

where Υ(|t|, |z|) = θt(|t|, |z|)θρ(|t|, |z|)/(|t||z|). In addition, from (2.3), we see

that
N∑
ij=2

τ ij(0)zizj =

N∑
ij=2

(τ ii (0))′zizj = 0.
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Consequently, from (2.9) and (2.10), we obtain

N∑
i=2

∫
QR\Qr

gi1∂tv∂ziv
√
|g| dx =

∫
QR\Qr

Υ(|t|, |z|)t
N∑
i=2

zig
i1
√
|g| dt dz(3.8)

= −
N∑
ij=2

τ ij(0)

∫
QR\Qr

Υ(|t|, |z|) tzizj dt dz

−
N∑
ij=2

(τ ij)
′(0)

∫
QR\Qr

Υ(|t|, |z|) t2zizj dt dz

+ 2

N∑
ijl=2

κl(0)τ ji (0)

∫
QR\Qr

Υ(|t|, |z|) tzizjzl dt dz

−
N∑

ijl=2

κ′(0)τ ij(0)

∫
QR\Qr

Υ(|t|, |z|) zlzizjt2 dt dz

−
N∑

ijl=2

τ ij(0)κl(0)

∫
QR\Qr

Υ(|t|, |z|) zlzizjt dt dz

+O

(∫
QR\Qr

|x|3|∇v|2 dx
)

= O

(∫
QR\Qr

|x|3|∇v|2 dx
)
.

By (2.9) and (2.10), we have∫
QR\Qr

|∂tv|2[g11 − 1]
√
|g| dx

=
|κ(x0)|2

N − 1

∫
QR\Qr

|z|2|∂tv|2 dx+O

(∫
QR\Qr

|x|3|∂tv|2 dx
)
.

Using this, (3.7) and (3.8) in (3.6), we then deduce that

(3.9)

∫
QR\Qr

[|∇v|2g − |∇v|2]
√
|g| dx

=
|κ(x0)|2

N − 1

∫
QR\Qr

|z|2|∂tv|2 dx+O

(∫
QR\Qr

|x|3|∇v|2 dx
)
.

Now, by (2.9) and (2.10), we also have that∫
QR\Qr

|∇v|2(
√
|g| − 1) dx

=
|κ(y0)|2

2(N − 1)

∫
QR\Qr

|z|2|∇v|2 dx+O

(∫
QR

|x|3|∇v|2 dx
)
.

This with (3.9) and (3.5) give the desired result. �
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4. Existence of minimzers for µh(Ω,Γ) in dimension N ≥ 4

We consider Ω, a bounded domain of RN , N ≥ 3, and Γ ⊂ Ω, a smooth

closed curve. For u ∈ H1
0 (Ω) \ {0}, we define the ratio

(4.1) J(u) :=

∫
Ω

|∇u|2 dy +

∫
Ω

hu2 dy(∫
Ω

ρ−σΓ |u|
2∗
σ dy

)2/2∗
σ
.

We let η ∈ C∞c (Fy0
(Q2r)) be such that 0 ≤ η ≤ 1 and η ≡ 1 in Qr. For ε > 0,

we consider uε : Ω→ R given by

(4.2) uε(y) := ε(2−N)/2η(F−1
y0

(y))w(ε−1F−1
y0

(y)).

In particular, for every x = (t, z) ∈ R× RN−1, we have

(4.3) uε(Fy0
(x)) := ε(2−N)/2η(x)θ(|t|/ε, |z|/ε).

It is clear that uε ∈ H1
0 (Ω). We have the following

Lemma 4.1. For J given by (4.1) and uε given by (4.2), as ε→ 0, we have

J(uε) =SN,σ + ε2 |κ(x0)|2

N − 1

∫
Qr/ε

|z|2|∂tw|2 dx(4.4)

+ ε2 |κ(x0)|2

2(N − 1)

∫
Qr/ε

|z|2|∇w|2 dx

− ε2

2∗σ

|κ(y0)|2

(N − 1)
SN,σ

∫
Qr/ε

|z|2−σw2∗
σ dx+ ε2h(y0)

∫
Qr/ε

w2 dx

+O

(
ε2

∫
Qr/ε

|h(Fy0
(εx))− h(y0)|w2 dx

)
+O(εN−2).

Proof. To simplify the notations, we will write F in the place of Fy0 . Re-

calling (4.2), we write

uε(y) = ε(2−N)/2η(F−1(y))Wε(y), where Wε(y) = w

(
F−1(y)

ε

)
.

Then |∇uε|2 = ε2−N (η2|∇Wε|2 + η2|∇Wε|2 + ∇W 2
ε · ∇η2/2). Integrating by

parts, we have∫
Ω

|∇uε|2 dy = ε2−N
∫
F (Q2r)

η2|∇Wε|2 dy(4.5)

+ ε2−N
∫
F (Q2r)\F (Qr)

W 2
ε

(
|∇η|2 − 1

2
∆η2

)
dy

= ε2−N
∫
F (Q2r)

η2|∇Wε|2 dy − ε2−N
∫
F (Q2r)\F (Qr)

W 2
ε η∆η dy

= ε2−N
∫
F (Q2r)

η2|∇Wε|2 dy +O

(
ε2−N

∫
F (Q2r)\F (Qr)

W 2
ε dy

)
.
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By the change of variable y = F (x)/ε and (4.3), we can apply Lemma 3.3, to get∫
Ω

|∇uε|2 dy =

∫
Qr/ε

|∇w|2gε
√
|gε| dx

+O

(
ε2

∫
Q2r/ε\Qr/ε

w2 dx+

∫
Q2r/ε\Qr/ε

|∇w|2 dx
)

=

∫
RN
|∇w|2 dx+ ε2 |κ(y0)|2

N − 1

∫
Qr/ε

|z|2|∂tw|2 dx

+ ε2 |κ(y0)|2

2(N − 1)

∫
Qr/ε

|z|2|∇w|2 dx

+O

(
ε3

∫
Qr/ε

|x|3|∇w|2 dx+ ε2

∫
Q2r/ε\Qr/ε

|w|2 dx

+

∫
RN\Qr/ε

|∇w|2 dx+ ε2

∫
Q2r/ε\Qr/ε

|z|2|∇w|2 dx
)

=SN,σ + ε2 3|κ(y0)|2

2(N − 1)

∫
Q2r/ε

|z|2|∇w|2 dx

+O

(
ε3

∫
Qr/ε

|x|3|∇w|2 dx+ ε2

∫
Q2r/ε\Qr/ε

|w|2 dx
)
.

Using Corollary 3.2, we find that∫
Ω

|∇uε|2 dy = SN,σ + ε2 |κ(y0)|2

N − 1

∫
Qr/ε

|z|2|∂tw|2 dx

+ ε2 |κ(y0)|2

2(N − 1)

∫
Qr/ε

|z|2|∇w|2 dx+O(εN−2).

By the change of variable y = F (x)/ε, (3.2), (2.1) and (2.9), we get∫
Ω

ρ−σΓ |uε|
2∗
σ dy =

∫
Qr/ε

|z|−sw2∗
σ

√
|gε| dx+O

(∫
Q2r/ε\Qr/ε

|z|−σ(η(εx)w)2∗
σ dx

)
=

∫
Qr/ε

|z|−σw2∗
σ dx+ ε2 |κ(y0)|2

2(N − 1)

∫
Qr/ε

|z|2−σw2∗
σ dx

+O

(
ε3

∫
Qr/ε

|x|3|z|−σw2∗
σ dx+

∫
Q2r/ε\Qr/ε

|z|−σw2∗
σ dx

)
= 1 + ε2 |κ(y0)|2

2(N − 1)

∫
Qr/ε

|z|2−σw2∗
σ dx

+O

(
ε3

∫
Qr/ε

|x|3|z|−σw2∗
σ dx

+

∫
RN\Qr/ε

|z|−σw2∗
σ dx+

∫
Q2r/ε\Qr/ε

|z|−σw2∗
σ dx

)
.
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Using (3.4), we have

ε3

∫
Qr/ε

|x|3|z|−σw2∗
σ dx+

∫
RN\Qr/ε

|z|−σw2∗
σ dx

+

∫
Q2r/ε\Qr/ε

|z|−σw2∗
σ dx = O(εN−σ).

Hence by Taylor expansion, we get(∫
Ω

ρ−σΓ |uε|
2∗
σ dx

)2/2∗
σ

= 1 +
ε2

2∗σ

|κ(y0)|2

(N − 1)

∫
Qr/ε

|z|2−σw2∗
σ dx+O(εN−σ).

Finally, by (4.5), we conclude that

J(uε) =SN,σ + ε2 |κ(y0)|2

N − 1

∫
Qr/ε

|z|2|∂tw|2 dx+ ε2 |κ(y0)|2

2(N − 1)

∫
Qr/ε

|z|2|∇w|2 dx

− ε2

2∗σ

|κ(y0)|2

(N − 1)
SN,σ

∫
Qr/ε

|z|2−σw2∗
σ dx+ ε2h(y0)

∫
Qr/ε

w2 dx

+O

(
ε2

∫
Qr/ε

|h(Fy0(εx)− h(y0)|w2 dx

)
+O(εN−2).

We thus get the desired result. �

Proposition 4.2. For N ≥ 5, we define

AN,σ :=
1

N − 1

∫
RN
|z|2|∂tw|2 dx

+

(
1

2
− 1

2∗σ

)
1

N − 1

∫
RN
|z|2|∇w|2 dx+

1

2∗σ

∫
RN

w2 dx > 0

and

BN,σ :=

∫
RN

w2 dx.

Assume that, for some y0 ∈ Γ, there holds
h(y0) < −AN,σ

BN,σ
|κ(y0)|2 for N ≥ 5,

h(y0) < −3

2
|κ(y0)|2 for N = 4.

Then µh(Ω,Γ) < SN,σ.

Proof. We claim that

(4.6) SN,σ

∫
Qr/ε

|z|2−σw2∗
σ dx

=

∫
Qr/ε

|z|2|∇w|2 dx− (N − 1)

∫
Qr/ε

w2 dx+O(εN−2).
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To prove this claim, we let ηε(x) = η(εx). We multiply (3.1) by |z|2ηεw and

integrate by parts to get

SN,σ

∫
Q2r/ε

ηε|z|2−σw2∗
σ dx =

∫
Q2r/ε

∇w · ∇(ηε|z|2w) dx

=

∫
Q2r/ε

ηε|z|2|∇w|2 dx

+
1

2

∫
Q2r/ε

∇w2 · ∇(|z|2ηε) dx
∫
Q2r/ε

ηε|z|2|∇w|2 dx

− 1

2

∫
Q2r/ε

w2∆(|z|2ηε) dx

=

∫
Q2r/ε

ηε|z|2|∇w|2 dx− (N − 1)

∫
Q2r/ε

w2ηε dx

= − 1

2

∫
Q2r/ε\Qr/ε

w2(|z|2∆ηε + 4∇ηε · z) dx.

We then deduce that

SN,σ

∫
Qr/ε

|z|2−σw2∗
σ dx =

∫
Qr/ε

|z|2|∇w|2dx− (N − 1)

∫
Qr/ε

w2 dx

+O

(∫
Q2r/ε\Qr/ε

|z|2−σw2∗
σ dx

+

∫
Q2r/ε\Qr/ε

|z|2|∇w|2 dx+

∫
Q2r/ε\Qr/ε

w2 dx

)
+O

(
ε

∫
Q2r/ε\Qr/ε

|z||∇w| dx+ ε2

∫
Q2r/ε\Qr/ε

|z|2w2 dx

)
.

Thanks to Corollary 3.2, we get (4.6) as claimed.

Next, by the continuity of h, for δ > 0, we can find rδ > 0 such that

(4.7) |h(y)− h(y0)| < δ for every y ∈ F (Qrδ) .

Case N ≥ 5. Using (4.6) and (4.7) in (4.4), we obtain, for every r ∈ (0, rδ),

J(uε) =SN,σ + ε2 |κ(y0)|2

N − 1

∫
RN
|z|2|∂tw|2 dx

+ ε2

(
1

2
− 1

2∗σ

)
|κ(y0)|2

N − 1

∫
RN
|z|2|∇w|2 dx

+
ε2

2∗σ
|κ(y0)|2

∫
RN

w2 dx+ ε2h(y0)

∫
RN

w2 dx

+O

(
ε2δ2

∫
RN

w2 dx

)
+O(εN−2),
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where we have used Corollary 3.2 to get the estimates∫
RN\Qr/ε

|z|2|∇w|2 dx+

∫
RN\Qr/ε

w2 dx = O(ε).

It follows that, for every r ∈ (0, rδ),

J(uε) = SN,σ + ε2{AN,σ|κ(y0)|2 +BN,σh(y0)}+O(δε2BN,σ) +O(ε3).

Suppose now that AN,σ|κ(y0)|2+BN,σh(y0) < 0. We can thus choose respectively

δ > 0 small and ε > 0 small so that J(uε) < SN,σ. Hence we get µh(Ω,Γ) < SN,σ.

Case N = 4. From (4.4) and (4.7), we estimate, for every r ∈ (0, rδ),

J (uε) ≤SN,σ + ε2 3|κ(y0)|2

2(N − 1)

∫
Qr/ε

|z|2|∇w|2 dx

− ε2

2∗σ

|κ(y0)|2

(N − 1)
SN,σ

∫
Qr/ε

|z|2−σw2∗
σ dx

+ ε2h(y0)

∫
Qr/ε

w2 dx+O

(
ε2δ

∫
Qr/ε

w2 dx

)
+O(εN−2).

This with (4.6) yield

J(uε) ≤SN,σ + ε2 3|κ(y0)|2

2(N − 1)
SN,σ

∫
Qr/ε

|z|2−σw2∗
σ dx

− ε2

2∗σ

|κ(y0)|2

(N − 1)
SN,σ

∫
Qr/ε

|z|2−σw2∗
σ dx

+ ε2

(
3

2
|κ(y0)|2 + h(y0)

)∫
Qr/ε

w2 dx

+O

(
ε2δ

∫
Qr/ε

w2 dx

)
+O(εN−2).

Since, by (3.4), ∫
Qr/ε

|z|2−σw2∗
σ dx = O(1),

we therefore have

J(uε) ≤ S4,σ + ε2

(
3|κ(y0)|2

2
+ h(y0)

)∫
Qr/ε

w2 dx

+O

(
ε2δ

∫
Qr/ε

w2 dx

)
+ Cε2,

for some positive constant C independent of ε. By (3.4), we have that∫
Qr/ε

C2
1

1 + |x|2
dx ≤

∫
Qr/ε

w2 dx ≤
∫
Qr/ε

C2
2

1 + |x|2
dx,
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so that

(4.8)

∫
BR4 (0,r/ε)

C2
1

(1 + |x|2)2
dx ≤

∫
Qr/ε

w2 dx ≤
∫
BR4 (0,2r/ε)

C2
2

(1 + |x|2)2
dx.

Using polar coordinates and a change of variable, for R > 0, we have∫
BR4 (0,R)

dx

(1 + |x|2)2
dx = |S3|

∫ R

0

t3

(1 + t2)2
dt

= |S3|
∫ √R

0

s

2(1 + st)2
ds =

|S3|
2

(
log(1 +

√
R)−

√
R

1 +
√
R

)
.

Therefore, there exist numerical constants c, c > 0 such that for every ε > 0

small, we have

(4.9) c| log ε| ≤
∫
Qr/ε

w2 dx ≤ c| log ε|.

Now we assume that 3|κ(y0)|2/2+h(y0) < 0. Therefore by Lemma 4.1 and (4.9),

we get

J(uε) ≤ S4,s + c

(
3

2
|κ(y0)|2 + h(y0)

)
ε2| log ε|+ cδε2| log ε|+ Cε2.

Then, choosing δ > 0 small and ε small, respectively, we deduce that µh (Ω,Γ) ≤
J(uε) < S4,σ. �

Proof of Theorem 1.1 (completed). By a classical partition of unity (see,

e.g., [2, Section 2.27]), we have that for every r > 0, there exist positive constants

cr > 0, depending only on Ω,Γ, N, σ and r, such that for every u ∈ H1
0 (Ω),

(4.10)

SN,σ

(∫
Ω

ρ−σΓ |u|
2∗
σ dy

)2/2∗
σ

≤ (1 + r)

∫
Ω

|∇u|2 dy + cr +

(∫
Ω

|u|2
∗
σ dy

)2/2∗
σ

.

By this and Proposition 4.2, the proof of Theorem 1.1 is completed, since if

µh(Ω,Γ) < SN,σ then every minimizing sequence for µh(Ω,Γ) converges, up to

a subsequence, to a minimizer in H1
0 (Ω), which is positive. �

5. Existence of minimizer for µh(Ω,Γ) in dimension three

We consider the function R : R3 \ {0} → R, defined by x 7→ R(x) = 1/|x|
which satisfies

(5.1) −∆R = 0 in R3 \ {0}.

We denote by G the solution to the equation

(5.2)

−∆xG(y, · ) + hG(y, · ) = 0 in Ω \ {y},
G(y, · ) = 0 on ∂Ω,
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and satisfying

(5.3) G(x, y) = R(x− y) +O(1) for x, y ∈ Ω and x 6= y.

We note that G is proportional to the Green function of −∆ + h with zero

Dirichlet data.

We let χ ∈ C∞c (−2, 2) with χ ≡ 1 on (−1, 1) and 0 ≤ χ ≤ 1. For r > 0, we

consider the cylindrical symmetric cut-off function

(5.4) ηr(t, z) = χ

(
|t|+ |z|

r

)
for every (t, z) ∈ R× R2.

It is clear that

ηr ≡ 1 in Qr, ηr ∈ H1
0 (Q2r), |∇ηr| ≤

C

r
in R3.

For y0 ∈ Ω, we let r0 ∈ (0, 1) such that

(5.5) y0 +Q2r0 ⊂ Ω.

We define the function My0 : Q2r0 → R given by

(5.6) My0
(x) := G(y0, x+ y0)− ηr(x)

1

|x|
for every x ∈ Q2r0 .

It follows from (5.3) that My0 ∈ L∞(Qr0). By (5.2) and (5.1),

| −∆My0(x) + h(x)My0(x)| ≤ C

|x|
= CR(x) for every x ∈ Qr0 ,

whereas R ∈ Lp(Qr0) for every p ∈ (1, 3). Hence by elliptic regularity theory,

My0
∈ W 2,p(Qr0/2) for every p ∈ (1, 3). Therefore by Morrey’s embedding

theorem, we deduce that

(5.7) ‖My0
‖C1,%(Qr0/2) ≤ C for every % ∈ (0, 1).

In view of (1.6), the mass of the operator −∆ + h in Ω at the point y0 ∈ Ω is

given by

(5.8) m(y0) = My0(0).

We recall that the positive ground state solution w satisfies

(5.9) −∆w = S3,σ|z|−σw2∗
σ−1 in R3,

∫
R3

|z|−σw2∗
σdx = 1,

where x = (t, z) ∈ R× R2. In addition by (3.4), we have

(5.10)
C1

1 + |x|
≤ w(x) ≤ C2

1 + |x|
for every x ∈ R3.

The following result will be crucial for the rest of this section.
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Lemma 5.1. Consider the function vε : R3 \ {0} → R given by

vε(x) = ε−1w
(x
ε

)
.

Then there exist a constant c > 0 and a sequence (εn)n∈N (still denoted by ε)

such that

vε(x)→ c

|x|
and ∇vε(x)→ −c x

|x|3
for all most every x ∈ R3,

and

(5.11) vε(x)→ c

|x|
and ∇vε(x)→ −c x

|x|3
for every x ∈ R3 \ {z = 0}.

Proof. By Corollary 3.2, we have that (vε) is bounded in C2
loc(R3\{z = 0}).

Therefore by Arzelá–Ascoli’s theorem vε converges to v in C1
loc(R3 \ {z = 0}).

In particular,

vε → v and ∇vε → ∇v almost every where on R3.

It is plain, from (5.10), that

(5.12) 0 <
C1

ε+ |x|
≤ vε(x) ≤ C2

ε+ |x|
for almost every x ∈ R3.

By (5.9), we have

(5.13) −∆vε(x) = ε2−σfε(x) in R3,

where

fε(x) = S3,σ|z|−σv
2∗
σ−1
ε (x) ≤ C|z|−σ|x|−5+2σ for almost every x = (t, z) ∈ R3.

We let ϕ ∈ C∞c (R3 \{0}). We multiply (5.13) by ϕ and integrate by parts to get

−
∫
R3

vε∆ϕdx = ε2−σ
∫
R3

fε(x)ϕ(x) dx.

By (5.12) and the dominated convergence theorem, we can pass to the limit in

the above identity and deduce that ∆v = 0 in D′(R3 \ {0}). In particular v

is equivalent to a function of class C∞
(
R3 \ {0}

)
which is still denoted by v.

Thanks to (5.12), by Bôcher’s theorem, there exists a constant c > 0 such that

v(x) = c/|x|. The proof of the lemma is thus finished. �

We start by recording some useful estimates.

Lemma 5.2. There exists a constant C > 0 such that for every ε, r ∈
(0, r0/2), we have∫

Qr/ε

|∇w|2 dx ≤ C max

(
1,
ε

r

)
,

∫
Qr/ε

|w|2 dx ≤ C max

(
1,
r

ε

)
,(5.14) ∫

Qr/ε

w|∇w| dx ≤ C max

(
1, log

r

ε

)
,(5.15)
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(5.16)

∫
Qr/ε

|∇w| dx ≤ C max

(
1,
r

ε

)
,

∫
Qr/ε

|w| dx ≤ C max

(
1,
r2

ε2

)
and

(5.17) ε2

∫
Qr/ε

|z|−σ|x|2w2∗
σ dx+ ε

∫
Q4r/ε\Qr/ε

|z|−σw2∗
σ−1 dx

+

∫
R3\Qr/ε

|z|−σw2∗
σ dx ≤ Crσ−3ε3−σ.

Proof. The proof of this lemma is not difficult and uses only the estimates

in Corollary 3.2. We therefore skip the details. �

5.1. Proof of Theorem 1.3. Given y0 ∈ Γ ⊂ Ω ⊂ R3, we let r0 as defined

in (5.5). For r ∈ (0, r0/2), we consider Fy0
: Qr → Ω (see Section 2) parame-

terizing a neighbourhood of y0 in Ω, with the property that Fy0
(0) = y0. For

ε > 0, we consider uε : Ω→ R given by

uε(y) := ε−1/2ηr(F
−1
y0

(y))w

(
F−1
y0

(y)

ε

)
.

We can now define the test function Ψε : Ω→ R by

(5.18) Ψε(y) = uε(y) + ε1/2c η2r(F
−1
y0

(y))My0
(F−1
y0

(y)).

It is plain that Ψε ∈ H1
0 (Ω) and

Ψε(Fy0
(x)) = ε−1/2ηr(x)w

(
x

ε

)
+ ε1/2c η2r(x)My0

(x) for every x ∈ RN .

The main result of this section is contained in the following

Proposition 5.3. Let (εn)n∈N and c be the sequence and the number given

by Lemma 5.1. Then there exist r0, n0 > 0 such that, for every r ∈ (0, r0) and

n ≥ n0,

J(Ψε) :=

∫
Ω

|∇Ψεn |2 dy +

∫
Ω

h|Ψεn |2 dy(∫
Ω

ρ−σΓ |Ψεn |2
∗
σ dy

)2/2∗
σ

= S3,σ − εnπ2m(y0)c2 +Or(εn),

for some numbers Or(εn) satisfying lim
r→0

lim
n→∞

ε−1
n Or(εn) = 0.

The proof of this proposition will be separated into two steps given by Lem-

mas 5.4 and 5.5 below. To alleviate the notations, we will write ε instead of εn
and we will remove the subscript y0, by writing M and F in the place of My0

and Fy0
, respectively. We define

η̃r(y) := ηr(F
−1(y)), Vε(y) := vε(F

−1(y))

M̃2r(y) := η2r(F
−1(y))M(F−1(y)),
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where vε(x) = ε−1w(x/ε). With these notations, (5.18) becomes

(5.19) Ψε(y) = uε(y) + ε1/2c M̃2r(y) = ε1/2Vε(y) + ε1/2c M̃2r(y).

We first consider the numerator in (5.3).

Lemma 5.4. We have

(5.20)

∫
Ω

|∇Ψε|2 dy +

∫
Ω

hΨ2
ε dy = S3,σ − εm(y0)c2

∫
∂Qr

∂R
∂ν

dσ(x) +Or(ε),

where ν is the unit outer normal of Qr.

Proof. Recalling (5.19), direct computations give∫
F (Q2r)\F (Qr)

|∇Ψε|2 dy =

∫
F (Q2r)\F (Qr)

|∇(η̃ruε)|2 dy(5.21)

+ εc2

∫
F (Q2r)\F (Qr)

|∇M̃2r|2 dy

+ 2ε1/2c

∫
F (Q2r)\F (Qr)

∇(η̃ruε) · ∇M̃2r dy

= ε

∫
F (Q2r)\F (Qr)

|∇(η̃rVε)|2 dy

+ εc2

∫
F (Q2r)\F (Qr)

|∇M̃2r|2 dy

+ 2εc

∫
F (Q2r)\F (Qr)

∇(η̃rVε) · ∇M̃2r dy.

By (5.4), ηrvε = ηrε
−1w( · /ε) is cylindrically symmetric. Therefore by the

change variable y = F (x) and using Lemma 3.3, we get

(5.22) ε

∫
F (Q2r)\F (Qr)

|∇(η̃rVε)|2 dy = ε

∫
Q2r\Qr

|∇(ηrvε)|2g
√
g dx

= ε

∫
Q2r\Qr

|∇(ηrvε)|2 dx+O

(
εr2

∫
Q2r\Qr

|∇(ηrvε)|2 dx
)
.

By computing, we find that

ε

∫
Q2r\Qr

|∇(ηrvε)|2 dx ≤ ε
∫
Q2r\Qr

|∇vε|2 dx

+ ε

∫
Q2r\Qr

v2
ε |∇ηr|2 dx+ 2ε

∫
Q2r\Qr

vε|∇vε||∇ηr| dx

≤ ε
∫
Q2r\Qr

|∇vε|2 dx+
C

r2
ε

∫
Q2r\Qr

v2
ε dx+

C

r
ε

∫
Q2r\Qr

vε|∇vε| dx

=

∫
Q2r/ε\Qr/ε

|∇w|2 dx

+ C
ε

r2

∫
Q2r/ε\Qr/ε

w2 dx+
C

r
ε

∫
Q2r/ε\Qr/ε

w|∇w| dx.
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From this and (5.14) and (5.15), we get

O

(
εr2

∫
Q2r\Qr

|∇(ηrvε)|2 dx
)

= Or(ε).

We replace this in (5.22) to have

(5.23) ε

∫
F (Q2r)\F (Qr)

|∇(η̃rVε)|2 dy = ε

∫
Q2r\Qr

|∇(ηrvε)|2 dx+Or(ε).

We have the following estimates:

(5.24)
0 ≤ vε ≤C|x|−1 for x ∈ R3 \ {0},

|∇vε(x)| ≤C|x|−2 for |x| ≥ ε,

which easily follow from (5.10) and Corollary 3.2. By these estimates, Lemma 2.2

and (5.7) together with the change of variable y = F (x), we have

ε

∫
F (Q2r)\F (Qr)

∇(η̃rVε) · ∇M̃2r dy

= ε

∫
Q2r\Qr

∇(ηrvε) · ∇M dx+O

(
ε

∫
Q2r\Qr

|∇vε| dx+
ε

r

∫
Q2r\Qr

vε dx

)
= ε

∫
Q2r\Qr

∇(ηrvε) · ∇M dx+Or(ε).

This with (5.23), (5.7) and (5.21) give∫
F (Q2r)\F (Qr)

|∇Ψε|2 dy = ε

∫
Q2r\Qr

|∇(ηrvε)|2 dx

+ εc2

∫
Q2r\Qr

|∇(η2rM)|2 dx+ 2εc

∫
Q2r\Qr

∇(ηrvε) · ∇M dx+Or(ε).

Thanks to Lemma 5.1 and (5.24), we can thus use the dominated convergence

theorem to deduce that, as ε→ 0,

(5.25)

∫
Q2r\Qr

|∇(ηrvε)|2 dx = c2

∫
Q2r\Qr

|∇(ηrR)|2 dx+ o(1).

Similarly, we easily see that∫
Q2r\Qr

∇(ηrvε) · ∇M dx = c

∫
Q2r\Qr

∇(ηrR) · ∇M dx+ o(1)

as ε→ 0. This and (5.25), then give

(5.26)

∫
F (Q2r)\F (Qr)

|∇Ψε|2 dy = εc2

∫
Q2r\Qr

|∇(ηrR)|2 dx

+ εc2

∫
Q2r\Qr

|∇M |2 dx+ 2εc2

∫
Q2r\Qr

∇(ηrR) · ∇M dx+Or(ε)

= εc2

∫
Q2r\Qr

|∇(ηrR+M)|2 dx+Or(ε).
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Since the support of Ψε is contained in Q4r while the one of ηr is in Q2r, it is

easy to deduce from (5.7) that

∫
Ω\F (Q2r)

|∇Ψε|2 dy = εc2

∫
F (Q4r)\F (Q2r )

|∇M̃2r|2dy = Or(ε)

and from Lemma 5.2, that

∫
Ω\F (Qr)

h|Ψε|2 dy = εc2

∫
F (Q4r)\F (Qr)

h|ηrVε + M̃2r|2 dy = Or(ε).

Therefore, by (5.26), we conclude that

∫
Ω\F (Qr)

|∇Ψε|2 dy +

∫
Ω\F (Qr)

h|Ψε|2 dy

= εc2

∫
Q2r\Qr

|∇(ηrR+M)|2 dx+εc2

∫
Q2r\Qr

h( · +y0)|ηrR+M |2 dx+Or(ε).

Recall that G(x+y0, y0) = ηr(x)R(x)+M(x) for every x ∈ Q2r and that by (5.2),

−∆xG(x+ y0, y0) + h(x+ y0)G(x+ y0, y0) = 0

for every x ∈ Q2r \Qr. Therefore, by integration by parts, we find that

∫
Ω\F (Qr)

|∇Ψε|2 dy +

∫
Ω\F (Qr)

h|Ψε|2 dy

= c2

∫
∂(Q2r\Qr)

(ηrR+M)
∂(ηrR+M)

∂ν
σ(x) +Or(ε),

where ν is the exterior normal vectorfield to Q2r \Qr. Thanks to (5.7), we finally

get

(5.27)

∫
Ω\F (Qr)

|∇Ψε|2 dy +

∫
Ω\F (Qr)

h|Ψε|2 dy

= −εc2

∫
∂Qr

R ∂R
∂ν

dσ(x)− εc2

∫
∂Qr

M
∂R
∂ν

dσ(x) +Or(ε),

where ν is the exterior normal vectorfield to Qr.
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Next we make the expansion of
∫
F (Qr)

|∇Ψε|2 dy for r and ε small. First, we

observe that, by Lemma 5.2 and (5.7), we have∫
F (Qr)

|∇Ψε|2 dy =

∫
F (Qr)

|∇uε|2 dy

+ εc2

∫
F (Qr)

|∇M |2 dy + 2ε1/2c

∫
F (Qr)

∇uε · ∇M̃2r dy

=

∫
Qr/ε

|∇w|2 dx

+O

(
ε2

∫
Qr/ε

|x|2|∇w|2 dx+ ε2

∫
Qr/ε

|∇w| dx
)

+Or(ε)

=

∫
Qr/ε

|∇w|2 dx+Or(ε).

By integration by parts and using (5.17), we deduce that∫
F (Qr)

|∇Ψε|2 dy = S3,σ

∫
Qr/ε

|z|−σw2∗
σ dx+

∫
∂Qr/ε

w
∂w

∂ν
dσ(x) +Or(ε)(5.28)

= S3,σ + ε

∫
∂Qr

vε
∂vε
∂ν

dσ(x) +Or(ε).

Now (5.24), (5.11) and the dominated convergence theorem yield, for fixed r > 0

and ε→ 0,∫
∂Qr

vε
∂vε
∂ν

dσ(x) =

∫
∂B2

R2 (0,r)

∫ r

−r
vε(t, z)∇vε(t, z) ·

z

|z|
dσ(z) dt(5.29)

+ 2

∫
B2

R2

vε(r, z) ∂tvε(r, z) dz

= c2

∫
∂B2

R2 (0,r)

∫ r

−r
R(t, z)∇R(t, z) · z

|z|
dσ(z) dt

+ 2c2

∫
B2

R2

R(r, z) ∂tR(r, z) dz + o(1)

= c2

∫
∂Qr

R ∂R
∂ν

dσ(x) + o(1).

Moreover, (5.16) implies that∫
F (Qr)

hΨ2
ε dy = Or(ε).

From this together with (5.28) and (5.29), we obtain∫
F (Qr)

|∇Ψε|2 dy +

∫
F (Qr)

hΨ2
ε dy = S3,σ + c2ε

∫
∂Qr

R ∂R
∂ν

dσ(x) +Or(ε).
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Combining this with (5.27), we then have

(5.30)

∫
Ω

|∇Ψε|2 dy+

∫
Ω

hΨ2
ε dy = S3,σ− εc2

∫
∂Qr

M
∂R
∂ν

dσ(x) +Or(ε) +o(ε).

Since (recalling (5.8)) M(y) = M(0) + O(r) = m(y0) + O(r) in Q2r, we get

equation (5.20). �

The following result together with the previous lemma provides the proof of

Proposition 5.3.

Lemma 5.5. We have(∫
Ω

ρ−σΓ |Ψε|2
∗
σ dy

)2/2∗
σ

= 1− 2

S3,σ
εm(y0)c2

∫
∂Qr

∂R
∂ν

dσ(x) +Or(ε).

Proof. Since 2∗σ > 2, there exists a positive constant C(σ) such that∣∣|a+ b|2
∗
σ − |a|2

∗
σ − 2∗σab|a|2

∗
σ−2
∣∣ ≤ C(σ)(|a|2

∗
σ−2b2 + |b|2

∗
σ ) for all a, b ∈ R.

As a consequence, we obtain∫
Ω

ρ−σΓ |Ψε|2
∗
σ dy =

∫
F (Qr)

ρ−σΓ |uε + ε1/2M̃2r|2
∗
σ dy(5.31)

+

∫
F (Q4r)\F (Qr)

ρ−σΓ |Wε + ε1/2M̃2r|2
∗
σ dy

=

∫
F (Qr)

ρ−σΓ |uε|
2∗
σ dy + 2∗σc ε

1/2

∫
F (Qr)

ρ−σΓ |uε|
2∗
σ−1M̃2r dy

+O

(∫
F (Q4r)

ρ−σΓ |ηruε|
2∗
σ−2(ε1/2M̃2r)

2 dy

+

∫
F (Q4r)

ρ−σΓ |ε
1/2M̃2r|2

∗
σ dy

)
+O

(∫
F (Q4r)\F (Qr)

ρ−σΓ |uε|
2∗
σ dy

+ 2∗σc ε
1/2

∫
F (Q4r)\F (Qr)

ρ−σΓ |uε|
2∗
σ−1M̃2r dy

)
.

By Hölder’s inequality and (2.9), we have∫
F (Q4r)

ρ−σΓ |ηuε|
2∗
σ−2(ε1/2β̃r)

2 dy(5.32)

≤ ε‖uε‖
2∗
σ−2

L2∗σ (F (Q4r);ρ−σ)
‖M̃2r‖2L2∗σ (F (Q4r);ρ−σΓ )

= ε‖w‖2
∗
σ−2

L2∗σ (Q4r;|z|−σ
√
|g|)
‖M̃2r‖2L2∗σ (F (Q4r);ρ−σΓ )

≤ ε(1 + Cr)‖M̃2r‖2L2∗σ (F (Q4r);ρ−σΓ )
= Or(ε),
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recalling that ‖w‖L2∗σ (R3;|z|−σ) = 1. Furthermore, since 2∗σ > 2, by (5.7), we

easily get ∫
F (Q4r)

ρ−σΓ |ε
1/2M̃2r|2

∗
σdy = o(ε).(5.33)

Moreover, by change of variables and (5.17), we also have

∫
F (Q4r)\F (Qr)

ρ−σΓ |uε|
2∗
σ dy + 2∗σc ε

1/2

∫
F (Q4r)\F (Qr)

ρ−σΓ |uε|
2∗
σ−1M̃2r dy

≤ C
∫
Q4r/ε\Qr/ε

|z|−σ|w|2
∗
σ dx+ Cε

∫
Q4r/ε\Qr/ε

|z|−σ|w|2
∗
σ−1 dx = o(ε).

By this, (5.31), (5.33) and (5.32), it results

∫
Ω

ρ−σΓ |Ψε|2
∗
σ dy =

∫
F (Qr)

ρ−σΓ |uε|
2∗
σ dy

+ 2∗σc ε
1/2

∫
F (Qr)

ρ−σΓ |uε|
2∗
σ−1M̃2r dy +Or(ε).

We define Bε(x) := M(εx)
√
|gε|(x) = M(εx)

√
|g|(εx). Then by the change of

variable y = F (x)/ε in the above identity and recalling (2.9), by oddness, we

have∫
Ω

ρ−σΓ |Ψε|2
∗
σ dy

=

∫
Qr/ε

|z|−σw2∗
σ

√
|gε| dx+ 2∗σε c

∫
Qr/ε

|z|−σ|w|2
∗
σ−1Bε dx+Or(ε)

=

∫
Qr/ε

|z|−σw2∗
σ dx+ 2∗σε c

∫
Qr/ε

|z|−σ|w|2
∗
σ−1Bε dx+Or(ε)

+O

(
ε2

∫
Qr/ε

|z|−σ|x|2w2∗
σ dx

)
= 1 + 2∗σε c

∫
Qr/ε

|z|−σ|w|2
∗
σ−1Bε dx

+O

(∫
R3\Qr/ε

|z|−σw2∗
σ dx+ ε2

∫
Qr/ε

|z|−σ|x|2w2∗
σ dx

)
+Or(ε).

Therefore by (5.17) we then have

(5.34)

(∫
Ω

ρ−σΓ |Ψε|2
∗
σ dy

)2/2∗
σ

= 1 + 2ε c

∫
Qr/ε

|z|−σ|w|2
∗
σ−1Bε(x) dx+Or(ε).
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Multiply (5.9) by Bε ∈ C1(Qr) and integrate by parts to get

S3,σ

∫
Qr/ε

|z|−σ|w|2
∗
σ−1Bε dx =

∫
Qr/ε

∇w · ∇Bε dx−
∫
∂Qr/ε

Bε
∂w

∂ν
dσ(x)

=

∫
Qr/ε

∇w · ∇Bε dx−
∫
∂Qr

B1
∂vε
∂ν

dσ(x).

Since |∇Bε| ≤ Cε, by Lemma 5.1 and (5.7), we then have

ε

∫
Qr/ε

∇w · ∇Bε dx = O

(
ε2

∫
Qr/ε

|∇w| dx
)

= Or(ε).

Consequently, on the one hand,

S3,σ ε

∫
Qr/ε

|z|−σ|w|2
∗
σ−1Bε dx = − ε

∫
∂Qr

B1
∂vε
∂ν

dσ(x) +Or(ε).

On the other hand by Lemma 5.1, (5.7) and the dominated convergence theorem,

we get ∫
∂Qr

B1
∂vε
∂ν

dσ(x) = c

∫
∂Qr

B1
∂R
∂ν

dσ(x) + o(1)

= cM(0)

∫
∂Qr

∂R
∂ν

dσ(x) +O(r) + o(1),

so that

εc

∫
Qr/ε

|z|−σ|w|2
∗
σ−1Bε dx = − ε c2 1

S3,σ
M(0)

∫
∂Qr

∂R
∂ν

dσ(x) +Or(ε).

It then follows from (5.34) that(∫
Ω

ρ−σΓ |Ψε|2
∗
σ dy

)2/2∗
σ

= 1− 2

S3,σ
ε c2M(0)

∫
∂Qr

∂R
∂ν

dσ(x) +Or(ε).

Since M(0) = m(y0), see (5.8), the proof of the lemma is thus finished. �

Proof of Proposition 5.3 (completed). By Lemmas 5.4 and 5.5, we have

J(Ψε) = S3,σ − ε c2m(y0)

∫
∂Qr

∂R
∂ν

dσ(x) +Or(ε).(5.35)

Finally, recalling that R(x) = 1/|x|, we can compute∫
∂Qr

∂R
∂ν

dσ(x) = −
∫
∂Qr

x · ν(x)

|x|3
dσ(x)

=

∫
BR2 (0,r)

−2r

r2 + |z|2
dz − 2π

∫ r

−r

r3

r2 + t2
dt = −π2(1 + r2).

From this and (5.35), we then have

J(Ψε) = S3,σ − επ2c2m(y0) +Or(ε). �
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Proof of Theorem 1.3 (completed). By Lemma 5.3, if m(y0) > 0 for some

y0 ∈ Γ, then µh(Ω,Γ) < S3,σ. This with (4.10) (which holds for N ≥ 3) imply

that every minimizing sequence for µh(Ω,Γ) converges, up to a subsequence, to

a minimizer which is positive. �
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