
Topological Methods in Nonlinear Analysis
Volume 52, No. 2, 2018, 665–675

DOI: 10.12775/TMNA.2017.060

c© 2018 Juliusz Schauder Centre for Nonlinear Studies
Nicolaus Copernicus University

NONZERO POSITIVE SOLUTIONS

OF A MULTI-PARAMETER ELLIPTIC SYSTEM

WITH FUNCTIONAL BCS

Gennaro Infante

This paper is dedicated to the memory of the late Panagiotis K. Palamides,

for his teachings and friendship

Abstract. We prove, by topological methods, new results on the existence
of nonzero positive weak solutions for a class of multi-parameter second or-

der elliptic systems subject to functional boundary conditions. The setting

is fairly general and covers the case of multi-point, integral and nonlinear
boundary conditions. We also present a non-existence result. We provide

some examples to illustrate the applicability of our theoretical results.

1. Introduction

In this paper we discuss the solvability of the multi-parameter system of

second order elliptic equations subject to functional boundary conditions (BCs)

(1.1)

Liui(x) = λifi(x, u(x)), x ∈ Ω, i = 1, . . . , n,

Biui(x) = ηihi[u], x ∈ ∂Ω, i = 1, . . . , n,

where Ω ⊂ Rm (m ≥ 2) is a bounded domain with sufficiently regular boundary,

Li is a strongly uniformly elliptic operator, Bi is a first order boundary operator,
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u = (u1, . . . , un), fi is a continuous function, hi is a suitable compact functional,

λi, ηi are parameters.

A motivation for studying this kind of boundary value problems (BVPs) is

that they often occur in physical applications. In order to illustrate this fact,

take n = 1, m = 2 and consider the BVP

(1.2)

−∆u(x) = f(x, u(x)), ‖x‖2 < 1,

u(x) = ηu(0), ‖x‖2 = 1,

where ‖·‖2 is the Euclidean norm. The BVP (1.2) can be used as a model for the

steady-states of the temperature of a heated disk of radius 1, where a controller

located in the border of the disk adds or removes heat in manner proportional

to the temperature registered by a sensor located in the center of the disk. In

the context of ODEs, a good reference for this kind of thermostat problems is

the recent paper [25].

The assumptions we make on the functionals hi that occur in (1.1) are fairly

weak and allow to cover, for example, the special cases of multi-point BCs of the

form

(1.3) hi[u] =

n∑
k=1

N∑
j=1

α̂ijkuk(ωj),

where α̂ijk are non-negative coefficients and ωj ∈ Ω, or integral BCs of the type

(1.4) hi[u] =

n∑
k=1

∫
Ω

α̂ik(ω)uk(ω) dω,

where α̂ik are non-negative continuous functions on Ω. Note that the functionals

hi in (1.3) and (1.4) allow an interaction between the components of the solution.

There exists a wide literature on multi-point, integral and, more in general,

nonlocal BCs. As far as we know multi-point BCs have been studied firstly by

Picone [23] in the context of ODEs. For an introduction to nonlocal BCs, we

refer the reader to the reviews [6], [17], [20], [24], [27] and the papers [13], [14],

[22], [26].

Note that our approach is not restricted to linear functionals like (1.3)

and (1.4), we may also deal with the case of nonlinear BCs. These type of

BCs also make physical sense; for example the BVP (1.2) might be modified

in order to take into account a nonlinear response of the controller, by having

a nonlinear, nonlocal BC of the form

(1.5) u(x) = ĥ(u(0)), ‖x‖2 = 1,

where ĥ is a continuous function. In the context of radial solutions of PDEs

on annular domains, conditions similar to (1.5) have been investigated recently
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in [4], [7]–[10]. We stress that nonlinear BCs have been widely studied for dif-

ferent classes of differential equations, nonlinearities and domains, we refer the

reader to [2]–[4], [11], [18], [19], [21], [29] and references therein; in particular,

the method of upper and lower solutions has been employed for the system (1.1)

in the case of non-homogeneus (not necessarily constant) BCs in [2] and in the

case of nonlinear BCs (where λi = ηi = 1) in [18], [21].

We highlight that the existence of positive solutions of the system (1.1) with

homogeneous BCs has been recently discussed in [15], [16] (in the sublinear case)

and in [5] (under monotonicity assumptions on the nonlinearities). Our theory

can be applied also in this case, by considering hi[u] ≡ 0. We do not assume

global restrictions on the growth nor we assume monotonicity of the nonlineari-

ties, thus complementing the results in [5], [15], [16].

We prove, by means of classical fixed point index, the existence of one non-

trivial weak solution of the system (1.1). We also prove, via an elementary ar-

gument, a non-existence result. We provide some examples in order to illustrate

the applicability of our theoretical results.

2. Existence and non-existence results

In what follows, for every µ̂ ∈ (0, 1) we denote by Cµ̂(Ω) the space of all

µ̂-Hölder continuous functions g : Ω → R and, for every k ∈ N, we denote by

Ck+µ̂(Ω) the space of all functions g ∈ Ck(Ω) such that all the partial deriva-

tives of g of order k are µ̂-Hölder continuous in Ω (for more details see [2,

Examples 1.13 and 1.14]). We make the following assumptions on the domain Ω

and the operators Li and Bi that occur in (1.1) (see [2, Section 4 of Chapter 1]

and [15], [16]):

(1) Ω ⊂ Rm, m ≥ 2, is a bounded domain such that its boundary ∂Ω is an

(m − 1)-dimensional C2+µ̂−manifold for some µ̂ ∈ (0, 1), such that Ω

lies locally on one side of ∂Ω (see [28, Section 6.2] for more details).

(2) Li is a the second order elliptic operator given by

Liu(x) = −
m∑

j,l=1

aijl(x)
∂2u

∂xj∂xl
(x) +

m∑
j=1

aij(x)
∂u

∂xj
(x) + ai(x)u(x),

for x ∈ Ω, where aijl, aij , ai ∈ Cµ̂(Ω) for j, l = 1, . . . ,m, ai(x) ≥ 0

on Ω, aijl(x) = aijl(x) on Ω for j, l = 1, . . . ,m. Moreover Li is strongly

uniformly elliptic, that is, there exists µi0 > 0 such that

m∑
j,l=1

aijl(x)ξjξl ≥ µi0‖ξ‖2, for x ∈ Ω and ξ = (ξ1, ξ2, . . . , ξm) ∈ Rm.

(3) Bi is a boundary operator given by

Biu(x) = bi(x)u(x) + δi
∂u

∂ν
(x), for x ∈ ∂Ω,
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where ν is an outward pointing and nowhere tangent vector field on ∂Ω of

class C1+µ̂ (not necessarily a unit vector field), ∂u/∂ν is the directional

derivative of u with respect to ν, bi : ∂Ω → R is of class C1+µ̂ and

moreover, one of the following conditions holds:

(a) δi = 0 and bi(x) ≡ 1 (Dirichlet boundary operator).

(b) δi = 1, bi(x) ≡ 0 and ai(x) 6≡ 0 (Neumann boundary operator).

(c) δi = 1, bi(x) ≥ 0 and bi(x) 6≡ 0 (Regular oblique derivative bound-

ary operator).

It is known (see [2, Section 4]) that, under the previous conditions, a strong

maximum principle holds and, furthermore, given g ∈ Cµ̂(Ω), the boundary

value problem

(2.1)

{
Liu(x) = g(x), x ∈ Ω,

Biu(x) = 0, x ∈ ∂Ω,

admits a unique classical solution u ∈ C2+µ̂(Ω).

In order to seek solutions of the system (1.1), we work in a suitable cone of

positive functions. We recall that a cone P of a real Banach space X is a closed

set with P + P ⊂ P , λP ⊂ P for all λ ≥ 0 and P ∩ (−P ) = {0}. A cone P

induces a partial ordering in X by means of the relation

x ≤ y if and only if y − x ∈ P.

The cone P is normal if there exists d > 0 such that for all x, y ∈ X with

0 ≤ x ≤ y, ‖x‖ ≤ d‖y‖. Note that every (closed) cone P has the Archimedean

property, that is, nx ≤ y for all n ∈ N and some y ∈ X implies x ≤ 0. In what

follows, with abuse of notation, we will use the same symbol “≥” for the different

cones appearing in the paper.

Now consider the (normal) cone of non-negative functions P = C(Ω,R+).

Then the solution operator Ki : C
µ̂(Ω)→ C2+µ̂(Ω) defined as Kig = u is linear,

continuous and (due to the maximum principle) positive, that is Ki(P ) ⊂ P . It

is known that K can be extended uniquely to a continuous, linear and compact

operator Ki : C(Ω) → C(Ω) (that we denote again by the same name). The

following result (see [1, Lemma 5.3]) provides further positivity properties of the

generalized solution operator.

Proposition 2.1. Let ei = Ki1 ∈ C(Ω,R+)\{0}. Then Ki : C(Ω)→ C1(Ω)

⊂ C(Ω) is e-positive (and in particular positive), that is, for each g ∈ C(Ω,R+)\
{0} there exist αg > 0 and βg > 0 such that αgei ≤ Kig ≤ βgei.

Denote by r(Ki) the spectral radius of Ki. As a consequence of Proposi-

tion 2.1 and the Krein–Rutman theorem, it is known (for details see, for example,

Lemma 3.3 of [16]) that r(Ki) ∈ (0,+∞) and there exists ϕi ∈ P \{0} such that

(2.2) ϕi = µiKiϕi,
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where µi = 1/r(Ki).

We utilize the space C(Ω,Rn), endowed with the norm

‖u‖ := max
i=1,...,n

{‖ui‖∞}, where ‖z‖∞ = max
x∈Ω
|z(x)|,

and consider (with abuse of notation) the cone P = C(Ω,Rn+). Given a nonempty

set D ⊂ C(Ω,Rn) we define

DI = {u ∈ D : u(x) ∈ I for all x ∈ Ω},

I =
n∏
i=1

Ii ⊂ Rn, where each Ii ⊂ R is a closed nonempty interval.

Given a function fi : Ω× I → R, we define the Nemytskĭı (or superposition)

operator Fi in the following way:

Fi(u)(x) := fi(x, u(x)), for u ∈ C(Ω, I) and x ∈ Ω.

We now fix I =
n∏
i=1

[0, ρi] and rewrite the elliptic system (1.1) as a fixed

point problem in the product space of continuous functions by considering the

operators T,Γ: C(Ω, I)→ C(Ω,Rn) given by

T (u) := (λiKiFi(u))i=1,...,n, Γ(u) := (ηiγihi[u])i=1,...,n,(2.3)

where γi ∈ C2+µ̂(Ω) is the unique solution (non-negative, due to the maximum

principle, see [2, Section 4 of Chapter 1]) of the BVPLiu(x) = 0, x ∈ Ω,

Biu(x) = 1, x ∈ ∂Ω.

Definition 2.2. We say that u ∈ C(Ω, I) is a weak solution of the sys-

tem (1.1) if and only if u is a fixed point of the operator T + Γ, that is,

u = Tu+ Γu = (λiKiFi(u) + ηiγihi[u])i=1,...,n;

if, furthermore, the components of u are non-negative with uj 6≡ 0 for some j we

say that u is a nonzero positive solution.

In the following proposition we recall the main properties of the classical fixed

point index for compact maps, for more details see [2], [12]. In what follows the

closure and the boundary of subsets of a cone P̂ are understood to be relative

to P̂ .

Proposition 2.3. Let X be a real Banach space and let P̂ ⊂ X be a cone.

Let D be an open bounded set of X with 0 ∈ D ∩ P̂ and D ∩ P̂ 6= P̂ . Assume

that T : D ∩ P̂ → P̂ is a compact operator such that x 6= Tx for x ∈ ∂(D ∩ P̂ ).

Then the fixed point index iP̂ (T,D ∩ P̂ ) has the following properties:

(a) If there exists e ∈ P̂ \ {0} such that x 6= Tx + λe for all x ∈ ∂(D ∩ P̂ )

and all λ > 0, then iP̂ (T,D ∩ P̂ ) = 0.
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(b) If Tx 6= λx for all x ∈ ∂(D ∩ P̂ ) and all λ > 1, then iP̂ (T,D ∩ P̂ ) = 1.

(c) Let D1 be open bounded in X such that (D1 ∩ P̂ ) ⊂ (D∩P̂ ). If iP̂ (T,D∩
P̂ ) = 1 and iP̂ (T,D1 ∩ P̂ ) = 0, then T has a fixed point in (D ∩ P̂ ) \
(D1 ∩ P̂ ). The same holds if iP̂ (T,D ∩ P̂ ) = 0 and iP̂ (T,D1 ∩ P̂ ) = 1.

With these ingredients we can now state a result regarding the existence of

positive solutions for the system (1.1).

Theorem 2.4. Let I =
n∏
i=1

[0, ρi] and assume the following conditions hold:

(a) For every i = 1, . . . , n, fi ∈ C(Ω× I) and fi ≥ 0. Set

Mi := max
(x,u)∈Ω×I

fi(x, u).

(b) There exist δ ∈ (0,+∞), i0 ∈ {1, . . . , n} and ρ0 ∈
(

0, min
i=1,...,n

ρi

)
such

that

fi0(x, u) ≥ δui0 , for every (x, u) ∈ Ω× I0,

where I0 :=
n∏
i=1

[0, ρ0].

(c) For every i = 1, . . . , n, hi : PI → [0,+∞) is continuous and

Hi := sup
u∈PI

hi[u] < +∞.

(d) For every i = 1, . . . , n, the following two inequalities are satisfied:

(2.4)
µi0
δ
≤ λi0 and λiMi‖Ki(1)‖∞ + ηiHi‖γi‖∞ ≤ ρi.

Then the system (1.1) has a nonzero positive weak solution u such that

ρ0 ≤ ‖u‖ and ‖ui‖∞ ≤ ρi, for every i = 1, . . . , n.

Proof. Take P = C(Ω,Rn+). Due to the assumptions above the operator

T + Γ maps PI into P and is compact (the compactness of T is well known and

Γ is a finite rank operator). If T + Γ has a fixed point either on ∂PI or ∂PI0 we

are done.

Assume now that T + Γ is fixed point free on ∂PI ∪ ∂PI0 , we are going to

prove that T +Γ has a fixed point in PI \ (∂PI ∪PI0). We firstly prove, by means

of (a), (c) and (d), that

σu 6= Tu+ Γu, for every u ∈ ∂PI and every σ > 1.

If this does not hold, then there exist u ∈ ∂PI and σ > 1 such that σu = Tu+Γu.

Note that ‖uj‖∞ = ρj for some j and ‖ui‖∞ ≤ ρi for every i. Furthermore, for

every x ∈ Ω, we obtain

σuj(x) = λjKjFj(u)(x) + ηjhj [u]γj(x) ≤ ‖λjKjFj(u) + ηjhj [u]γj‖∞
≤ ‖λjKj(Mj)‖∞ + ‖ηjHjγj‖∞ = λjMj‖Kj(1)‖∞ + ηjHj‖γj‖∞ ≤ ρj .
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Taking the supremum over Ω we obtain σρj ≤ ρj , a contradiction which yields

iP (T + Γ, PI \ ∂PI) = 1.

We now consider ϕ = (ϕ1, . . . , ϕn) where ϕi is given by (2.2) and use (b) and

(d) to show that

u 6= Tu+ Γu+ σϕ, for every u ∈ ∂PI0 and every σ > 0.

If not, there exist u ∈ ∂Pρ0 and σ > 0 such that u = Tu + Γu + σϕ. Then we

have u ≥ σϕ and, in particular, ui0 ≥ σϕi0 . For every x ∈ Ω we have

ui0(x) = (λi0Ki0Fi0u)(x) + ηi0hi0 [u]γi0(x) + σϕi0(x)

≥ (λi0Ki0δui0)(x) + σϕi0(x) ≥ (λi0δKi0(σϕi0))(x) + σϕi0(x)

=
σλi0δ

µi0
ϕi0(x) + σϕi0(x) ≥ 2σϕi0(x).

By iterating the process, for x ∈ Ω, we get ui0(x) ≥ nσϕi0(x) for every n ∈ N,

a contradiction, since u is bounded. Thus we obtain iP (T + Γ, PI0 \ ∂PI0) = 0.

Therefore we have

iP (T + Γ, PI \ (∂PI ∪ PI0)) = iP (T + Γ, PI \ ∂PI)− iP (T + Γ, PI0 \ ∂PI0) = 1,

which proves the result. �

Remark 2.5. Note that, in the applications, sometimes it could be useful to

replace the constants Mi and Hi with some majorants, say M̂i and Ĥi, at the

cost of having to deal with the condition

λiM̂i‖Ki(1)‖∞ + ηiĤi‖γi‖∞ ≤ ρi, for every i = 1, . . . , n,

which is more stringent than the corresponding one occurring in (2.4).

We now illustrate the applicability of Theorem 2.4.

Example 2.6. Take Ω = {x ∈ R2 : ‖x‖2 < 1}, and consider the system

(2.5)


−∆u1 = λ1(|(u1, u2)|1/2 + tan |(u1, u2)|) in Ω,

−∆u2 = λ2(1− sin(u2))|(u1, u2)|2 in Ω,

u1 = η1h1[u], u2 = η2h2[u] on ∂Ω,

where |(u1, u2)| = max{|u1|, |u2|},

h1[u] = (u1(0))2 + (u2(0))1/2 and h2[u] = (u1(0))1/4 +

(∫
Ω

u2(ξ) dξ

)2

.

By direct calculation we obtain K1(1) = K2(1) = (1 − x2
1 − x2

2)/4, where

x = (x1, x2), and we may take γ1 = γ2 ≡ 1, this gives ‖Ki(1)‖∞ = 1/4 and

‖γi‖∞ = 1 for i = 1, 2.
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Fix ρ1, ρ2 = 15π/64 and set

f1(u1, u2) = |(u1, u2)|1/2 + tan |(u1, u2)|,

f2(u1, u2) = (1− sin(u2))|(u1, u2)|2.

First of all, note that given δ > 0, f1 satisfies condition (b) in Theorem 2.4 for

ρ0 sufficiently small, due to the behaviour near the origin.

In the reminder of this example the numbers are rounded from above to the

third decimal place unless exact.

We have M1 = f1(15π/64, 15π/64) ≈ 1.765 and M2 = f2(15π/64, 0) =

(15π/64)2 ≈ 0.543. Moreover, we can use the estimates H1 ≤ (15π/64)2 +

(15π/64)1/2 ≈ 1.401 and H2 ≤ (15π/64)1/4 + (15π2/64)2 ≈ 6.278.

By Theorem 2.4, the system (2.5) has a nonzero positive solution (u1, u2)

such that 0 < ‖(u1, u2)‖ ≤ 15π/64 for every λ1, λ2, η1, η2 > 0 with

1.765× λ1

4
+ 1.401× η1 ≤

15

64
π and 0.543× λ2

4
+ 6.278× η2 ≤

15

64
π.

We now prove, via an elementary argument, a non-existence result.

Theorem 2.7. Let I =
n∏
i=1

[0, ρi] and assume that for every i = 1, . . . , n we

have:

(a) fi ∈ C(Ω× I) and there exist τi ∈ (0,+∞) such that

0 ≤ fi(x, u) ≤ τiui, for every (x, u) ∈ Ω× I,

(b) hi : PI → [0,+∞) is continuous and there exist ξi ∈ (0,+∞) and

hi[u] ≤ ξi‖u‖, for every u ∈ PI ,

(c) the following inequality holds:

(2.6) λiτi‖Ki(1)‖∞ + ηiξi‖γi‖∞ < 1.

Then the system (1.1) has at most the zero solution in PI .

Proof. Assume, on the contrary, that there exists u ∈ PI , ‖u‖ = σ > 0,

such that u = Tu + Γu. Then there exists j such that ‖uj‖∞ = σ. For x ∈ Ω

we have

uj(x) = λjKjFj(u)(x) + ηjhj [u]γj(x) ≤ ‖λjKjFj(u) + ηjhj [u]γj‖∞
≤ ‖λjKj(τjσ)‖∞ + ‖ηjξjσγj‖∞ = (λjτj‖Kj(1)‖∞ + ηjξj‖γj‖∞)σ < σ.

By taking the supremum over Ω, we obtain σ < σ, a contradiction. �

We conclude by illustrating in the next example the applicability of Theo-

rem 2.7.
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Example 2.8. Take Ω = {x ∈ R2 : ‖x‖2 < 1} and consider the system

(2.7)


−∆u1 = λ1u

2
1 sin(u2) in Ω,

−∆u2 = λ2u
4
2 cos(u1) in Ω,

u1 = η1h1[u], u2 = η2h2[u] on ∂Ω,

where h1[u] = u1(0)+(u2(0))2 and h2[u] = u1(0)+(u2(0))3. First of all note that

the trivial solution satisfies the system (2.7). Let us fix I = [0, π/4] × [0, π/2]

and note that for every (x, u1, u2) ∈ Ω× [0, π/4]× [0, π/2] we have

0 ≤ u2
1 sin(u2) ≤ π

4
u1, 0 ≤ u4

2 cos(u1) ≤ π3

8
u2.

Furthermore, for u ∈ PI , we have

0 ≤ h1[u] ≤
(
π

2
+ 1

)
‖u‖, 0 ≤ h2[u] ≤

(
π2

4
+ 1

)
‖u‖.

Thus, in this case, condition (2.6) reads

(2.8)
π

4
λ1 +

(
π

2
+ 1

)
η1 < 1 and

π3

8
λ2 +

(
π2

4
+ 1

)
η2 < 1.

Therefore if (2.8) is satisfied, by Theorem 2.7 the system (2.7) admits only the

trivial solution in PI .
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