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SCHRÖDINGER–POISSON SYSTEMS

WITH RADIAL POTENTIALS

AND DISCONTINUOUS QUASILINEAR NONLINEARITY

Anmin Mao — Hejie Chang

Abstract. We consider the following Schrödinger–Poisson system:{
−4u+ V (|x|)u+ φu = Q(|x|)f(u) in R3,

−4φ = u2 in R3,

with more general radial potentials V,Q and discontinuous nonlinearity f .

The Lagrange functional may be locally Lipschitz. Using nonsmooth critical
point theorem, we obtain the multiplicity results of radial solutions, we

also show concentration properties of the solutions. This is in contrast

with some recent papers concerning similar problems by using the classical
Sobolev embedding theorems.

1. Introduction and main results

In this paper we look for radial solutions of the following Schrödinger–Poisson

system:

(1.1)

−4u+ V (|x|)u+ φu = Q(|x|)f(u) in R3,

−4φ = u2 in R3.

Throughout the paper we assume V and Q are continuous, nonnegative functions

in (0,∞). System (1.1) is also called the Schrödinger–Maxwell equation. Systems
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like (1.1) have been widely investigated due to its strong physical background.

From a physical point of view, it describes systems of identical charged particles

interacting with each other in the case that magnetic effects could be ignored,

and its solution is a standing wave for such a system. The general nonlinear

term f models the interaction between the particles. The first equation of (1.1)

is coupled with a Poisson equation, which means that the potential is determined

by the charge of the wave function. The term φu is nonlocal and concerns the

interaction with the electric field. For more detailed mathematical and physical

interpretation, we refer to [6] and references therein.

Recent studies of the system

(1.2)

−4u+ V (x)u+ φu = f(x, u) in R3,

−4φ = u2 in R3,

have focused on existence and nonexistence of solutions, multiplicity of solu-

tions, ground states, radially and nonradial solutions, semiclassical limit and

concentrations of solutions (see [3], [17], [25], [14], [13] and references therein).

In [3], Azzollini and Pomponio proved the existence of ground state solutions

of (1.2) when 3 < p < 6 and V is a positive constant. The case nonconstant

potential was also treated in [3] for 4 < p < 6 and V is possibly unbounded

below. L. Zhao and F. Zhao [25] proved the existence of ground state solu-

tions for the system (1.2) and obtained at least a ground state solution when

f(x, u) = |u|p−1u with p ∈ (2, 3]. Using a Nehari-type manifold and gluing

solution pieces together, Kim and Seok [14] proved the existence of radial sign-

changing solutions with prescribed numbers of nodal domains for (1.2) in the

case where V (x) ≡ 1, f(u) = |u|p−2u, and p ∈ (4, 6). Ianni [13] obtained a

similar result to [14] for p ∈ [4, 6), via a heat flow approach together with a limit

procedure. There is an extensive literature concerning the existence of infinitely

many large energy solutions (cf. Ambrosetti and Rabinowitz [3], Bartsch [4],

Bartsch and Willem [5], etc).

In [16], the following Schrödinger–Poisson system has been studied:

(1.3)

−4u+ V (x)u+ λφu = Q(x)f(u) in RN ,
−4φ = u2, lim

|x|→∞
φ(x) = 0,

where N = 3, 4, 5, V,Q : RN → R are radial smooth. By using the classical

Mountain Pass Theorem, Mercuri obtained the existence of positive solutions

for (1.3) in the presence of external potentials V,Q. To be precise, V,Q in

(1.3) are assumed to satisfy the same conditions as were introduced in [1] in the

framework of nonlinear Schrödinger equations, i.e.

(1.4)
a

1 + |x|α
≤ V (x) ≤ A
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for some α ∈ (0, 2], a,A > 0, and

(1.5) 0 < Q(x) ≤ b

1 + |x|β

for some β, b > 0. The author proved that problem (1.3) has a positive solution

for λ ≡ 1, f(u) = up, 1 < p < (N + 2)/(N − 2). In [26], under assumptions

(1.4) and (1.5), Zhu studied (1.3) when f(u) is asymptotically linear in u at ∞.

Very recently, in [2], Azzollini, D’Avenia and Pomponio proved the existence of a

nontrivial solution of (1.3) with V and Q being constants when the nonlinearity

satisfies the general hypotheses introduced by Berestycki and Lions.

As mentioned above, most known results were obtained by using smooth

critical point theory. However, when we study system (1.1) and focus on such

discontinuous nonlinearity f , the corresponding Lagrange functional is locally

Lipschitz continuous, it may not be differentiable, thus smooth critical point

theory seems not to be suitable. In the past decades many efforts have been de-

voted to extending the theory of nonlinear partial differential equations (PDE)

to PDE with discontinuous nonlinearities (DPDE). We refer the readers to the

pioneering work [8] and the references therein for some historic developments

and explanations in view of physical and mathematical aspects. The abstract

methods for dealing with DPDE have been developed. In [8], Chang developed

variational methods for nondifferentiable functional by using the generalized gra-

dients for locally Lipschitz continuous functions on Banach space introduced by

Clarke [10]. On the other hand, Schrödinger–Poisson equations with superlinear

or sublinear nonlinearity have been well studied in the literature, but little has

been done in the case of quasilinear nonlinearity. This is due to the fact that the

quasilinear system is not easy to study.

In the present paper, we are interested in the case that f in system (1.1)

is not only discontinuous but also quasilinear, and obtain multiplicity results

of radial solutions, we also show concentration properties of the solutions. In

contrast to previous works, we have much more difficulties to face. The main

tool used here is nonsmooth critical point theory.

We make the following hypotheses on f, V and Q:

(f1) f is a measurable function.

(f2) There is C1 > 0 such that |f(u)| ≤ C1 for u ∈ R.

(f3) There is C2 > 0 such that F (u) =
∫ u
0
f(t) dt ≥ C2|u| for u ∈ R.

(f4) f(−u) = −f(u), for u ∈ R.

(V) There exist numbers α1 and α2 such that

lim inf
r→∞

V (r)

rα1
> 0, lim inf

r→0

V (r)

rα2
> 0.
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(Q) There exist numbers β1 and β2 such that

lim sup
r→∞

Q(r)

rβ1
<∞, lim sup

r→0

Q(r)

rβ2
<∞.

Before stating our main results, we give several notations. Denote the com-

pletion of C∞0,r(R3) under the norm

‖u‖D1,2 =

(∫
R3

|∇u|2 dx
)1/2

by D1,2
r (R3). Set

Lp(R3;Q) =

{
u : R3 → R

∣∣∣u is Lebesgue measurable,

∫
R3

Q(|x|)|u|p <∞
}
,

E = W 1,2
r (R3;V ) =

{
u ∈ D1,2

r (R3) :

∫
R3

V (|x|)|u|2 <∞
}
,

E is a Hilbert space (see [21]) equipped with the inner product and norm

(u, v)E =

∫
R3

(∇u · ∇v + V (|x|)uv) dx, ‖u‖E = (u, u)
1/2
E .

Now we are ready to give our main result.

Theorem 1.1. Assume (V) and (Q) with

β1 < max

{
− 5

2
,
α1

4
− 2

}
, β2 > min

{
− 5

2
,
α2

4
− 2

}
.

If f satisfies (f1)–(f4), then (1.1) has infinitely many radial solutions uk in

W 1,2
r (R3;V ) with energy I(uk) = ck < 0 satisfying ck → 0 as k →∞.

Example 1.2. f(x) = sgnu(x) satisfies (f1)–(f4).

Remark 1.3. It is easy to see that V,Q in Theorem 1.1 are more general

than that in (1.4)–(1.5). Since there is no continuous function f that satisfies

(f3) and f(0) = 0, (f1) and (f2) imply F (u) =
∫ u
0
f(t) dt is locally Lipschitz

continuous, and it may not be differentiable which implies that (1.1) considered

here is completely different from those studied in the literature.

Remark 1.4. The proof of the multiplicity result is different from that in

the literature because the compactness of a (PS) sequence cannot be obtained

by the usual methods. To overcome this difficulty, we adopt an idea from [19] to

check that the functional

ψ(u) :=
1

2

∫
R3

(|∇u|2 + V (|x|)u2) dx, u ∈ E,

possesses the (S+) property on E which is defined in (2.2).
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The novelty of this paper is two-fold. One is that we consider the quasilin-

ear Schrödinger–Poisson system (1.1) on the whole space RN with discontinuous

nonlinearity. Another one is that we obtain existence and concentration of in-

finitely many radial solutions via nonsmooth critical point theory. As showed in

remarks, our results extend and improve some recent work.

This paper is organized as follows. In Sections 2 and 3, we state the varia-

tional setting and abstract critical point theorems for nondifferentiable function-

als. In Section 4, we finish the proof of main results via abstract critical point

theorems given in [15] for locally Lipschitz continuous functionals.

2. Preliminaries

Throughout this paper we denote by → (resp. ⇀) the strong (resp. weak)

convergence. We use Ci to denote various constants independent of the functions

in W 1,2
r (R3;V ).

Lemma 2.1 ([18, Theorem 2.1]). Assume (V) and (Q) with

β1 < max

{
− 5

2
,
α1

4
− 2

}
, β2 > min

{
− 5

2
,
α2

4
− 2

}
.

Then the embedding E ↪→ L1(R3;Q) is compact.

Lemma 2.2 ([16, Lemma 2]). Let γ = 1 − α/4. The space E is compactly

embedded in Lq(R3) for any q such that 2 + α/γ < q < 6.

See also [21] for a more general case of Lemma 2.2. Furthermore E is em-

bedded in Lq(R3) for any q ∈ [2 + α/γ, 6] (see Mercuri [16], Su, Wang and

Willem [21]) and E is compactly embedded in Lqloc(R3) for all q < 6 by the

classical Rellich theorem. We should note that the related problem involving

radial weighted embeddings for Schrödinger–Poisson systems has been studied

by Bonheure and Mercuri in [7].

(1.1) is the Euler–Lagrange equations for the functional J : E × D1,2 → R

defined by

J(u, φ) =
1

2
‖u‖2E −

1

4

∫
R3

|∇φ|2 dx+
1

2

∫
R3

φu(x)u2 dx−
∫
R3

Q(|x|)F (u) dx.

It follows from above-mentioned embedding results that J is well defined in

E × D1,2(R3) and its critical points are the solutions of (1.1). Since (f1) and

(f2) imply that F (u) =
∫ u
0
f(t) dt is locally Lipschitz continuous and it may not

be differentiable, J is not of class C1. Note that J0(u) :=
∫
R3 Q(|x|)F (u) dx is

uniformly Lipschitz continuous when (f1), (f2) are assumed. It is known that

J exhibits a strong indefiniteness, namely it is unbounded both from below

and from above on infinitely dimensional subspaces. This indefiniteness can be

removed using the reduction method described in [6], by which we are led to



84 A. Mao — H. Chang

study a one variable functional that does not present such a strongly indefinite

nature.

Now, we recall this method. For any u ∈ E, 0<α<4/11, 2 +α/γ<12/5<6,

the linear operator T : D1,2
r → R defined as

T (v) =

∫
R3

u2v

is continuous in D1,2(R3). Then by the Riesz Representation Theorem, there

exists a unique φu ∈ D1,2
r (R3) such that∫

R3

∇φu∇v dx =

∫
R3

u2v dx.

Therefore, −4φ = u2 in a weak sense. We can write an integral expression for

φu in the form:

(2.1) φu =
1

4π

∫
R3

u2(y)

|x− y|
dy,

for any u ∈ E (for detail, see Section 2 of [9]). The functions φu possess the

following properties:

Lemma 2.3 ([9, Lemma 2.2]). For any u ∈ E, we have:

(a) ‖φu‖D1,2 ≤ C3‖u‖L12/5 , where C3 > 0 does not depend on u. As a con-

sequence there exists C4 > 0 such that∫
R3

φuu
2 dx ≤ C4‖u‖2E ;

(b) φu ≥ 0.

So, we can consider the functional I : E → R defined by I(u) = J(u, φ).

After multiplying −4φ = u2 by φu and integration by parts, we obtain∫
R3

|∇φ|2 dx =

∫
R3

φu(x)u2 dx.

Therefore, the reduced functional takes the form

I(u) =
1

2
‖u‖2E +

1

4

∫
R3

φu(x)u2 dx−
∫
R3

Q(|x|)F (u) dx.

From Lemma 2.2, I is well defined with the derivative given by

(I ′(u), v) =

∫
R3

(
∇u∇v + V (|x|)uv + φu(x)uv −Q(|x|)f(u)v

)
dx.

Set the functionals

I1(u) =
1

2
‖u‖2E =

1

2

∫
R3

(|∇u|2 + V (|x|)u2) dx, I2(u) =

∫
R3

Q(|x|)F (u) dx,

I1 is of class C1(E,R) and for I ′1 there holds the following (S+) property on E

(see [12], [20]) in the sense that for any sequence {un} ⊂ E:
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(S+) if un ⇀ u in E and lim sup
n→∞

(I ′1(un), un − u) ≤ 0, then un → u in E.

It follows from (f1) and (f2) that I2 is uniformly Lipschitz continuous on E

which implies that I(u) is a locally Lipschitz functional on E.

The following result has also been proved by Mercuri [16] and by Ruiz [17].

Lemma 2.4. Consider the operator Φ: E → D1,2
r , Φ[u] = φu, that is, the

solution in D1,2 of the problem. Let {un} be a sequence satisfying un ⇀ u in E.

Then, Φ[un]→ Φ[u] in D1,2 and, as a consequence,

(2.2)

∫
Φ[un]u2n →

∫
Φ[u]u2.

Proof. Define the linear operators Tn : D1,2
r → R,

Tn(v) =

∫
u2nv, T (v) =

∫
u2v.

Recall that the inclusion E ↪→ Lq is compact for 2 < q < 6. In particular,

u2n → u2 in the norm of L6/5. Note that

|Tn(v)− T (v)| ≤
(∫

|u2n − u2|
)5/6(∫

v6
)1/6

.

This implies that Tn converges strongly (as a linear operator) to T . Hence,

Φ[un]→ Φ[u] in D1,2. To conclude (2.2) it suffices to observe that Φ[un]→ Φ[u]

in L6 and u2n → u2 in the norm of L6/5. �

3. A nonsmooth critical point theorem

In this section we establish the variational framework for locally Lipschitz

functionals. Let X be a real Banach space and X∗ be its dual space, I : X → R

be a locally Lipschitz continuous functional. For each v ∈ X, the generalized

directed derivative I0(u; v) of I at u ∈ X in the direction v is defined as

I0(u, v) = lim
h→0

sup
λ↓0

1

λ
[I(u+ h+ λv)− I(u+ h)].

The generalized directed derivative ϕ0(u; · ) enjoys some basic properties: for

each u ∈ X, the function v 7→ I0(u; v) is continuous in v and satisfies |I0(u; v)| ≤
K‖v‖, and furthermore, it is subadditive, positively homogenous, and then con-

vex. We refer to [10] for these facts.

Definition 3.1 ([10]). Let I : X → R be a locally Lipschitz continuous

functional. The generalized gradient of I at u ∈ X denoted by ∂I(u), is defined

to be the sub-differential of the convex function I0(u; v) at v = 0:

∂I(u) := {ω ∈ X∗ | 〈ω, v〉 ≤ I0(u; v) for all v ∈ X}.

We refer the readers to [8] for some general information about the generalized

gradient.
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Definition 3.2 ([8]). Let I : X → R be a locally Lipschitz functional. We

say that u0 ∈ X is a critical point of I if 0 ∈ ∂I(u0), I satisfies the (PS) condition

if any sequence {un} ⊂ X along which I(un) is bounded and

λ(un) = min
ω∈∂I(un)

‖ω‖X∗ → 0

possesses a convergent subsequence.

Theorem 3.3 ([15]). Let X is a Banach space and I : X → R be a locally

Lipschitz functional. Assume that I satisfies the (PS) condition and is even and

bounded from below, and ϕ(0) = 0. If for any k ∈ N, there exists a k-dimensional

subspace Xk and ρk > 0 such that

(3.1) sup
Xk∩Sρk

I < 0

where Sρ = {u ∈ X | ‖u‖ = ρ}, then I has a sequence of critical values ck < 0

satisfying ck → 0 as k →∞.

Proposition 3.4 ([8, Theorem 2.2]). Let X and Y be two Banach spaces.

Assume that X is reflexive, the embedding X ↪→ Y is continuous and X is dense

in Y . Let G̃ be a locally Lipschitz continuous functional in Y and G = G̃|X ,

then ∂G(u) ⊂ ∂G̃(u), for u ∈ X.

4. Proof of Theorem 1.1

In this section, we will apply the above lemmas and Theorem 3.3 to complete

the proof of Theorem 1.1.

Proof of Theorem 1.1. It follows from the above lemmas that the func-

tional

I(u) =
1

2
‖u‖2E +

1

4

∫
R3

φu(x)u2 dx−
∫
R3

Q(|x|)F (u) dx

is well defined.

(1) I is coercive. Denote by C5 the constant of the embedding E ↪→L1(RN;Q).

From (f2), we have, for u ∈ E,

I(u) =
1

2
‖u‖2E +

1

4

∫
R3

φu(x)u2 dx−
∫
R3

Q(|x|)F (u) dx

≥ a

2
‖u‖2E − C1‖u‖L1(R3;Q) ≥

a

2
‖u‖2E − C1C5‖u‖E ,

thus,

(4.1) I(u)→ +∞ as ‖u‖E →∞.

Consequently, I is bounded from below.

(2) I satisfies the (PS) condition. Let

X = W 1,2
r (R3;V ), Y = (W 1,2

r (R3;V ), ‖ · ‖L1(R3;Q)).
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By Lemma 2.1, X and Y fit in with the conditions on spaces in Proposition 3.4

in the sense that X is reflexive, the embedding X ↪→ Y is continuous (and

compact), and X is dense in Y . We use the notation X instead of W 1,2
r (R3;V ).

Let {un} ⊂ X be such that I(un) is bounded and

(4.2) λ(un) = min
ω∈∂I(un)⊂X∗

‖ω‖X∗ → 0 as n→∞.

By (4.1), {un} is bounded in X. Since X is reflexive and the embedding X ↪→ Y

is compact, one gets, for some u ∈ X,

un ⇀ u in X, n→∞,(4.3)

un → u in Y ⊂ L1(RN ;Q), n→∞.(4.4)

Using the properties of the generalized gradient (see [8]), there exists u∗n ∈
∂I(un) ⊂ X∗ for each n ∈ N satisfying

(4.5) λ(un) = ‖un‖X∗ ,

and there exists v∗n ∈ ∂I2(un) ⊂ X∗ satisfying

(4.6) 〈u∗n, v〉 =

∫
R3

(∇un∇v+V (|x|)unv) dx−〈v∗n, v〉−
∫
R3

φun(x)un(u−un) dx,

for v ∈ X. Taking v = un − u in (4.6), then

(4.7) 〈I ′1(un), un − u〉 =

∫
RN

(∇un∇(un − u) + V (|x|)un(un − u)) dx

= 〈u∗n, un − u〉+ 〈v∗n, un − u〉+

∫
R3

φun(x)un(u− un) dx.

We conclude from (4.2), (4.3) and (4.5) that

(4.8) 〈u∗n, un − u〉 → 0, as n→∞.

It follows from Proposition 3.4 that v∗n ∈ ∂I2(un) ⊂ ∂Ĩ2(un) ⊂ Y ∗. Since ∂I2
is uniformly Lipschitz continuous on Y , using the properties of the generalized

gradient again one has that

(4.9) ‖v∗n‖Y ∗ ≤ Ĉ, n ∈ N.

It follows from (4.4) and (4.9) that

(4.10) |〈v∗n, un − u〉| ≤ ‖v∗n‖Y ∗‖un − u‖Y ≤ Ĉ‖un − u‖Y → 0, n→∞.

From Lemma 2.2 and 2 + α/γ < 12/5 < 6,

(4.11) un → u in L12/5(R3).

By the Hölder inequality, the Sobolev inequality and Lemma 2.4, we have∫
R3

φunun(u− un) dx ≤ ‖φun‖6‖un‖12/5‖u− un‖12/5

≤ C6‖φun‖D1,2‖un‖12/5‖u− un‖12/5 ≤ C3C6‖un‖12/5‖u− un‖12/5
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where C6 > 0 is a constant. By (4.11), we have∫
R3

φunun(u− un) dx→ 0.

So we get the conclusion that 〈I ′1(un), un − u〉 → 0 as n → ∞. Since I ′1 enjoys

the (S+) property, we have that un → u in X, n→∞. Then I satisfies the (PS)

condition.

(3) I verifies (3.1). For any k ∈ N, we take k independent smooth functions

φi ∈ C∞0,r(RN ) for i = 1, . . . , k, and define Xk = span{φ1, . . . , φk}. Then Xk ⊂
E ⊂ L1(RN ;Q) and dimXk = k. From (f3) one has

I(u) =
1

2
‖u‖2E +

1

4

∫
R3

φu(x)u2 dx−
∫
R3

Q(|x|)F (u) dx.

Since all norms on Xk are equivalent, one has, for ρk > 0 small enough,

sup
Xk∩Sρk

I(u) < 0,

that is, (3.1) holds. Since all conditions of Theorem 3.3 are checked, the proof

of Theorem 1.1 is complete by applying Theorem 3.3. �
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