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LOCALIZATION OF POSITIVE CRITICAL POINTS

IN BANACH SPACES AND APPLICATIONS

Radu Precup — Csaba Varga

Abstract. Two critical point theorems of M. Schechter in a ball of

a Hilbert space are extended to uniformly convex Banach spaces by exploit-
ing the properties of the duality mapping. Moreover, the critical points are

sought in the intersection of a ball with a wedge, in particular with a cone,

making possible applications to positive solutions of variational problems.
The extension from Hilbert to Banach spaces not only requires a major

refining of reasoning, but also a different statement by adding a third pos-

sibility to the original two alternatives from Schechter’s results. The theory
is applied to positive solutions for p-Laplace equations.

1. Introduction

Fixed point theory offers a large number of useful methods for the study of

nonlinear equations. Such a method is the Leray–Schauder continuation princi-

ple, see [8], [11], consisting in embedding the original equation in a one-parameter

family of equations in a such way that the solution of a simpler equation can be

continued inside a given set until a solution of the initial equation. This con-

tinuation process is guaranteed by the robustness of the simpler equation and
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by a condition making closed the boundary of the given set. Here is a simple

version of the Leray–Schauder continuation principle.

Theorem 1.1. Let (X, ‖ · ‖) be a Banach space, R > 0 and let XR be the

closed ball of radius R centered in the origin. Assume that N : XR → X is

a compact map such that the following Leray–Schauder boundary condition is

satisfied:

(1.1) u 6= λN(u) for ‖u‖ = R, and λ ∈ (0, 1).

Then N has at least one fixed point in XR.

This theorem allows us to obtain the existence and localization of a solution

of the equation

(1.2) N(u) = u,

in the Banach space X, for a completely continuous operator N : X → X, via

the so-called “a priori bounds” technique. Indeed, if there exists a number R > 0

such that all the solutions u ∈ X of the equations λN(u) = u for λ ∈ (0, 1) are

a priori bounded by R, i.e. ‖u‖ < R, then the condition (1.1) is trivially satisfied

and thus, according to Theorem 1.1, the equation (1.2) has at least one solution

satisfying ‖u‖ ≤ R. There is a huge literature devoted to the applications of the

Leray–Schauder continuation principle to lots of classes of nonlinear problems,

see [11], [12]. Variational versions of the Leray–Schauder principle are due to

Schechter [15], [16] (for the role of the Leray–Schauder boundary condition in

critical point theory, see also [13]). This kind of results allows to establish the

existence and localization of solutions to (1.2), of a precise level of energy, when

the equation (1.2) has a variational form, i.e. N(u) = u − E′(u) for some C1

(energy) functional E : X → R, where X is a Hilbert space identified to its

dual and with inner product ( · ; · ). Clearly, in this case, the fixed points of the

operator N coincide with the critical points of the functional E. In order to

recall Schechter’s results, we introduce some notions and notations.

We say that a C1 functional E : XR → R satisfies the Schechter–Palais–Smale

condition at the level λ, (SPS)λ for short, in XR if any sequence of elements

uk ∈ XR \ {0} for which

E(uk)→ λ, E′(uk)− (E′(uk);uk)

‖uk‖2
uk → 0, (E′(uk);uk)→ ν ≤ 0

as k →∞, has a convergent subsequence.

We say that the functional E : XR → R satisfies the mountain pass geometry

in XR if there are elements u0, u1 ∈ XR and a number r > 0 such that ‖u0‖ <
r < ‖u1‖ and

inf{ E(u) : ‖u‖ = r} > max{E(u0), E(u1)}.
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Let us introduce the following notations:

ΓR = {γ ∈ C([0, 1];XR) : γ(0) = u0, γ(1) = u1},

ξR = inf
γ∈ΓR

max
t∈[0,1]

E(γ(t)), mR = inf
u∈XR

E(u).

We say that E is bounded from below in XR, if mR > −∞.

With these definitions and notations Schechter’s theorems read as follows [16]:

Theorem 1.2. Let (X, ( · ; · )) be a Hilbert space which is identified to its

dual, R > 0 and let E : XR → R be a C1 functional with (E′(u);u) ≥ −ν0 for

‖u‖ = R and some ν0 > 0. If E has the mountain pass geometry in XR, satisfies

the (SPS)ξR condition, and the Leray–Schauder boundary condition

(1.3) E′(u) + µu 6= 0 for ‖u‖ = R and µ > 0,

then E has at least one critical point u ∈ XR \ {u0, u1} with E(u) = ξR.

Theorem 1.3. Let (X, ( · ; · )) be a Hilbert space which is identified to its

dual, R > 0 and let E : XR → R be a C1 functional with (E′(u);u) ≥ −ν0 for

‖u‖ = R and some ν0 > 0. If E is bounded from below in XR, satisfies the

(SPS)mR
condition, and the Leray–Schauder boundary condition (1.3), then E

has at least one critical point u ∈ XR with E(u) = mR.

In [13] these results were extended to Hilbert spaces not identified to their

duals and for the localization of critical points in a wedge (particularly, in the

whole space or in a cone). Also, in [14], the results were completed in order to

localize critical points in annular conical sets and obtain multiplicity of positive

solutions. In the present paper we shall go further, namely we shall extend

Theorems 1.2, 1.3 to uniformly convex Banach spaces. As has already been

remarked in [9], the extension from Hilbert to Banach spaces is not immediate

and requires a major refining of the reasoning based on the use of the duality

map. Notice that in [9] only Theorem 1.3 was extended to general Banach spaces,

and this extension was done by a completely different method using Ekeland’s

variational principle. Some related topics can be found in the recent paper [10].

The theory that is developed in the present paper is then applied to positive

solutions for elliptic boundary value problems with p-Laplacian. Compared to [9],

here we shall localize not only one positive solution but two: a minimum and

a mountain pass type critical point. We can anticipate that a similar approach

is possible to some other homogeneous operators including the Finsler–Laplace

operator, see [1] and [5].

2. Main results

Let X be a real Banach space, X∗ its dual, 〈 · , · 〉 denote the duality between

X∗ and X. The norm on X and on X∗ is denoted by ‖ · ‖. By a wedge of X we
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shall understand a convex closed nonempty set K ⊂ X, K 6= {0}, with λx ∈ K
for every x ∈ K and λ ≥ 0. For a number R > 0, we denote:

XR = {x ∈ X : ‖x‖ ≤ R}, ∂XR = {x ∈ X : ‖x‖ = R},

KR = XR ∩K, ∂KR = K ∩ ∂XR.

Now we recall some geometric properties of Banach spaces and the notion of

duality mapping. For details we refer to [2], [3], [7], [6].

A continuous function ϕ : R+ → R+ is called a normalization function, if it

is strictly increasing, ϕ(0) = 0 and ϕ(r)→∞ as r →∞.

The duality mapping on X corresponding to the normalization function ϕ is

the set-valued mapping Jϕ : X → P(X∗) defined by

Jϕx =
{
x∗ ∈ X∗ : 〈x∗, x〉 = ϕ(‖x‖)‖x‖, ‖x∗‖ = ϕ(‖x‖)

}
, x ∈ X.

The Banach space X is said to be uniformly convex if for each ε ∈ (0, 2],

there exists δ(ε) > 0 such that if ‖x‖ = ‖y‖ = 1 and ‖x−y‖ ≥ ε, then ‖x+y‖ ≤
2(1− δ(ε)).

Throughout this paper we suppose that the following assumption holds:

(A1) X and X∗ are uniformly convex Banach spaces.

Under this assumption, the duality mapping is single-valued and bijective

and both Jϕ, J
−1
ϕ are bounded continuous and monotone operators. In what

follows, when there is no confusion, we shall denote Jϕ and J−1
ϕ simply by J and

J . Hence

〈Jx, x〉 = ϕ(‖x‖)‖x‖, ‖Jx‖ = ϕ(‖x‖)

and

(2.1) 〈x?, Jx?〉 = ϕ−1(‖x?‖)‖x?‖, ‖Jx?‖ = ϕ−1(‖x?‖)

for every x ∈ X and x? ∈ X∗. Thus J appears as the duality mapping on X∗

corresponding to the normalization function ϕ−1. Notice that if ϕ(t) = tp−1

(p > 1), then ϕ−1(t) = tq−1, where q = p/(p− 1).

The following differentiability formula is useful.

Lemma 2.1. Under assumption (A1), if ϕ : R+ → R+ is a normalization

function, ψ(t) =
∫ t

0
ϕ(s), and σ ∈ C1(R+;X), then

(2.2)
d

dt
ψ(‖σ(t)‖) = 〈Jϕσ(t), σ′(t)〉.

Proof. The proof is similar to that of Proposition 1.4.9 in [3, p. 29]. Clearly

(2.3)
d

dt
ψ(‖σ(t)‖) = ϕ(‖σ(t)‖) d

dt
‖σ(t)‖.

Also

〈Jϕσ(t), σ(t)〉 = ϕ(‖σ(t)‖)‖σ(t)‖
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and

〈Jϕσ(t), σ(s)〉 ≤ ‖Jϕσ(t)‖‖σ(s)‖ = ϕ(‖σ(t)‖)‖σ(s)‖.

Substraction gives

〈Jϕσ(t), σ(s)− σ(t)〉 ≤ ϕ(‖σ(t)‖)[‖σ(s)‖ − ‖σ(t)‖].

If s > t, then 〈
Jϕσ(t),

σ(s)− σ(t)

s− t

〉
≤ ϕ(‖σ(t)‖) ‖σ(s)‖ − ‖σ(t)‖

s− t
and letting s ↓ t we obtain

〈Jϕσ(t), σ′(t)〉 ≤ ϕ(‖σ(t)‖) d‖σ(t)‖
dt

.

For s < t we obtain the converse inequality. Hence

(2.4) 〈Jϕσ(t), σ′(t)〉 = ϕ(‖σ(t)‖) d‖σ(t)‖
dt

.

Now (2.3) and (2.4) yield (2.2). �

For the rest of the paper we assume that the duality mapping J on X cor-

responds to the normalization function ϕ(t) = tp−1, where p > 1. The technical

result which follows is a common generalization to Banach spaces of Lemma 5.9.1

in [16] and Lemma 4.1 in [13].

Lemma 2.2. Assume that the Banach space X satisfies the condition (A1)

and K is a wedge of X.

(a) Let v ∈ X \ {0}, w? ∈ X∗ \ {0}, θ > 0 and 0 < α < 1− θ. If

(2.5) −〈w?, v〉 ≤ θ‖w?‖‖v‖ and − 〈Jv, Jw?〉 ≤ θ‖Jw?‖‖Jv‖,

then there exists h ∈ X with ‖h‖ = 1 such that

〈w?, h〉 ≤ −α‖w?‖ and 〈Jv, h〉 < 0.

(b) If in addition v ∈ K and v − Jw? ∈ K, then there exists λ∗ > 0 such

that v + µh ∈ K for every µ ∈ [0, λ∗].

(c) Moreover, if 1− θ < 2α, ‖v‖ ≥ ρ > 0 and ‖Jw?‖ ≥ ω > 0, then λ∗ does

not depend on v and w?.

Proof. (a) Let

(2.6) h0 := − Jw?

‖Jw?‖
− β v

‖v‖
, where β :=

1− α
θ + α

.

Since α < 1− θ, one has β > θ. Clearly ‖h0‖ ≤ 1 + β. Let us show that h0 6= 0.

Assume the contrary. Then from (2.6) and (2.5),

−β 〈w
?, v〉
‖v‖

=
〈w∗, Jw?〉
‖Jw?‖

=
‖w?‖q

‖w?‖q−1
≤ βθ‖w?‖,
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where q = p/(p− 1). It follows that 1 ≤ βθ, which is false since βθ < 1. Hence

h0 6= 0. Next

〈w?, h0〉 =− ‖w?‖ − β 〈w
?, v〉
‖v‖

≤ −‖w?‖+ θβ‖w?‖

= (θβ − 1)‖w?‖ = −α(1 + β)‖w?‖ ≤ −α‖w?‖‖h0‖.

Thus, if we take h := h0/‖h0‖, we have 〈w?, h〉 ≤ −α‖w?‖. Furthermore, since

β > θ,

〈Jv, h0〉 = −〈Jv, Jw
?〉

‖Jw?‖
− β 〈Jv, v〉

‖v‖

= −〈Jv, Jw
?〉

‖Jw?‖
− β‖v‖p−1 ≤ (θ − β)‖v‖p−1 < 0.

Hence 〈Jv, h〉 < 0 as desired.

(b) We have

v + µh = v − 1

‖h0‖
µ

(
Jw?

‖Jw?‖
+ β

v

‖v‖

)
=

µ

‖h0‖‖Jw?‖
(v − Jw?) +

(
1− µ

‖h0‖‖Jw?‖
− µβ

‖h0‖‖v‖

)
v.

Since v, v − Jw? ∈ K, this shows that v + µh ∈ K for all small enough µ > 0

such that

(2.7) 1− µ

‖h0 ‖‖Jw?‖
− µβ

‖h0‖‖v‖
≥ 0,

that is

µ ≤ ‖h0‖
1/‖Jw?‖+ β/‖v‖

.

(c) If 1− θ < 2α, then β < 1. Also ‖h0‖ ≥ 1− β > 0. Then for ‖v‖ ≥ ρ > 0

and ‖Jw?‖ ≥ ω > 0, one has

‖h0‖
1/‖Jw?‖+ β/‖v‖

≥ 1− β
1/ω + β/ρ

.

Hence the condition (2.7) is guaranteed for every µ ∈ [0, λ∗], where

λ∗ :=
1− β

1/ω + β/ρ
.

Remark 2.3. If we denote 〈u, v〉+ := 〈Jv, u〉 and [u, v] := min{〈u, v〉+,

〈v, u〉+}, then the two inequalities in (2.5) can be put under a single inequality

as follows:

−
[
v

‖v‖
, J

(
w∗

‖w∗‖

)]
≤ θ.

The next technical result extends to Banach spaces Lemma 4.2 from [13].
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Lemma 2.4. Let G : KR → X∗ be continuous and a > 0. Consider D̂ :=

{u ∈ KR : ‖Gu‖ ≥ a}, and a closed set D0 ⊂ {u ∈ D̂ : ‖u‖ = R}. Assume that

u− JGu ∈ K for all u ∈ KR and there is θ ∈ [0, 1) such that

−〈Gu, u〉 ≤ θ‖u‖‖Gu‖ and − 〈Ju, JGu〉 ≤ θ‖Ju‖‖JGu‖ for all u ∈ D0.

Then there exists α > 0 and a locally Lipschitz map H : D̂ → X such that

‖Hu‖ ≤ 1, u+Hu ∈ K,

〈Gu,Hu〉 ≤ − α‖Gu‖, u ∈ D̂,

〈Ju,Hu〉 < 0, u ∈ D0.

Proof. Let 0 < α′ < 1− θ < 2α′. We look for a mapping h : D̂ → X with

‖h(u)‖ = 1 for all u ∈ D̂, such that

h(u) = −‖JGu‖−1JGu, u ∈ D̂ \D0,

〈Gu, h(u)〉 ≤ −α′‖Gu‖, u ∈ D̂,

〈Ju, h(u)〉 < 0, u ∈ D0,

u+ µh(u) ∈ K for all u ∈ D̂ and µ ∈ [0, λ∗],

where λ∗ = λ∗(θ, α′, a) > 0. For u ∈ D0, h(u) is given by Lemma 2.2 applied to

v = u and w∗ = G(u). Now we check the last two properties for u ∈ D̂ \ D0.

Thus, in such case,

〈Gu, h(u)〉 = − 1

‖JG(u)‖
〈Gu, JGu〉 = −‖Gu‖ ≤ −α′‖Gu‖.

Also

u+ µh(u) =

(
1− µ

‖JGu‖

)
u+

µ

‖JGu‖
(u− JGu)

and since ‖JGu‖ ≥ aq−1, we have u+µh(u) ∈ K for all µ ∈ [0, aq−1]. Thus h has

the required properties for some λ∗ > 0. Clearly we may assume that λ∗ < 1.

Next, based on this possibly noncontinuous mapping h, we shall construct the

desired locally Lipschitz map H. Let α′′ ∈ (0, α′) be a fixed number. Because

G is continuous, it follows that for every u ∈ D̂, there exists a neighborhood

V (u) ⊂ D̂ of u, such that

〈Gv, h(u)〉 ≤ −α′′‖Gv‖, for all v ∈ V (u).

If u ∈ D0, taking into account the continuity of J , we may assume that

〈Jv, h(u)〉 < 0, for all v ∈ V (u).

For u ∈ D̂\D0, we may take the neighbourhood V (u) of u such that V (u)∩D0 =

∅. Also we may assume that diamV (u) ≤ r, for every u ∈ D̂ and some r > 0.

We have that {V (u) : u ∈ D̂} is an open covering of D̂. Because D̂ is

paracompact, it admits a local finite refinement {Vτ}. Let {ψτ} be a locally
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Lipschitz partition of unity subordinated to {Vτ}. For every τ , let uτ ∈ D̂ be an

element with Vτ ⊂ V (uτ ) and let b(uτ ) = uτ + λ?h(uτ ). Clearly b(uτ ) ∈ K for

every τ . Now we define the locally Lipschitz map H : D̂ → X by

Hv = −v +
∑
τ

ψτ (v)b(uτ ).

Clearly

v +Hv =
∑
τ

ψτ (v)b(uτ ) ∈ K, for all v ∈ D̂.

For every v ∈ D̂ and r ∈ (0, 1− λ?], we have

‖Hv‖ =

∥∥∥∥∑
τ

ψτ (v)(b(uτ )− uτ ) +
∑
τ

ψτ (v)(uτ − v)

∥∥∥∥ ≤ λ? + r ≤ 1.

Furthermore

〈Gv,Hv〉 = −〈Gv, v〉+
∑
τ

ψτ (v)〈Gv, b(uτ )〉

= λ?
∑
τ

ψτ (v)〈Gv, h(uτ )〉+
∑
τ

ψτ (v)〈Gv, uτ − v〉

≤ −λ?α′′‖Gv‖+ r‖Gv‖ ≤ −(λ?α′′ − r)‖Gv‖.

Hence 〈Gv,Hv〉 ≤ −α‖Gv‖, where α := λ∗α′′ − r > 0 and r < λ∗α′′.

Next, if v ∈ D0, then

(2.8) 〈Jv,Hv〉 = λ∗
∑
τ

ψτ (v)〈Jv, h(uτ )〉+
∑
τ

ψτ (v)〈Jv, uτ − v〉.

We have 〈Jv, h(uτ )〉 < 0 whenever v ∈ V (uτ ). Hence the first sum in (2.8) is

strictly less than zero. Also, if v ∈ V (uτ ), since v ∈ D0, we have uτ ∈ D0 and

so ‖v‖ = ‖uτ‖ = R. Then

〈Jv, uτ − v〉 = 〈Jv, uτ 〉 − ϕ(‖v‖)‖v‖ ≤ ϕ(‖v‖)‖uτ‖ − ϕ(‖v‖)‖v‖ = 0.

Hence the second sum in (2.8) is less than or equal to zero. Hence

〈Jv,Hv〉 < 0, for all v ∈ D0. �

Before stating the main results concerning the existence of (SPS)µ sequences,

we recall a global existence result for flows in Banach spaces, see [4].

Lemma 2.5. Let X be a Banach space and let D be a closed convex set in X.

Assume that W : D → X is a locally Lipschitz map such that

‖W (u)‖ ≤ C, lim inf
λ→0+

d(u+ λW (u), D) = 0

for all u ∈ D and some constant C. Then, for any u ∈ D, the initial value

problem in Banach space

dσ

dt
= W (σ), σ(0) = u

has a unique solution σ(u, t) on R+ and σ(u, t) ∈ D for every t ∈ R+.
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Now we are ready to state and prove the extension to general Banach spaces

of two bounded critical point theorems of Schechter (Theorems 5.3.1 and 5.3.3

in [16]). We shall work more generally in a wedge K of a Banach space X. This

requires that XR be everywhere replaced by KR, including the definitions of

ΓR, ξR and mR. In what follows E will be a C1 functional on X.

Theorem 2.6. Assume that

u− JE′(u) ∈ K for all u ∈ K,(2.9)

min {〈E′(u), u〉, 〈Ju, JE′(u)〉} ≥ −ν0 for all u ∈ ∂KR,(2.10)

and some ν0 > 0. In addition assume that E has the mountain pass property

in KR. Then there exists a sequence of elements (uk) such that

(2.11) E(uk)→ ξR

and one of the following statements holds:

(a) uk ∈ KR for all k and

(2.12) E′(uk)→ 0;

(b) uk ∈ ∂KR for all k and

(2.13) E′(uk)− 〈E
′(uk), uk〉
Rp

Juk → 0, 〈E′(uk), uk〉 ≤ 0;

(c) uk ∈ ∂KR for all k and

(2.14) JE′(uk)− 〈Juk, JE
′(uk)〉

Rp
uk → 0, 〈Juk, JE′(uk)〉 ≤ 0.

Proof. Assume that a sequence satisfying (2.11) and (b) does not exist.

Then there are a, δ > 0 such that∥∥∥∥E′(u)− (E′(u), u)

Rp
Ju

∥∥∥∥ ≥ a
when u ∈ ∂KR, |E(u) − ξR| ≤ δ and 〈E′(u), u〉 ≤ 0. Since X∗ is assumed

uniformly convex, and J is the duality mapping on X∗ corresponding to the

normalization function tq−1, q = p/(p− 1), for any r > 0, there exists a continu-

ous strictly increasing convex function g : R+ → R+, g(0) = 0 such that (see [2,

p. 40])

(2.15) ‖x+ y‖q − ‖x‖q ≥ q〈y, Jx〉+ g(‖y‖)

for all x, y ∈ X∗ with ‖x‖ ≤ r and ‖y‖ ≤ r (see [2, p. 40]). Take x := ηJu and

y := E′(u)− ηJu with η := 〈E′(u), u〉/Rp. Then

〈y, Jx〉 = 〈E′(u)− ηJu, J(ηJu)〉 = |η|q−2η〈E′(u)− ηJu, u〉 = 0.
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So (2.15) gives

‖E′(u)‖q −R−p(q−1)|〈E′(u), u〉|q = ‖E′(u)‖q − |η|qRp

≥ g(‖E′(u)− ηJu‖) ≥ g(a) > 0.

Thus

Rp(q−1)‖E′(u)‖q − |〈E′(u), u〉|q ≥ Rp(q−1)g(a).

Let θ > 0 be such that

1

θq
− 1 ≤ ν−q0 Rp(q−1)g(a).

Then, also using 0 ≥ 〈E′(u), u〉 ≥ −ν0, we deduce

|〈E′(u), u〉|q
(

1

θq
− 1

)
≤ |〈E′(u), u〉|qν−q0

(
Rp(q−1)‖E′(u)‖q − |〈E′(u), u〉|q

)
≤ Rp(q−1)‖E′(u)‖q − |〈E′(u), u〉|q.

It follows that

|〈E′(u), u〉|q ≤ θqRp(q−1)‖E′(u)‖q.
Hence, since p(q − 1) = q, for all u ∈ ∂KR with |E(u)− ξR| ≤ δ, 〈E′(u), u〉 ≤ 0,

we have −〈E′(u), u〉 ≤ θR‖E′(u)‖.
Next assume that there are no sequences satisfying (2.11) and (c). We may

assume that ∥∥∥∥JE′(u)− 〈Ju, JE
′(u)〉

Rp
u

∥∥∥∥ ≥ a
when u ∈ ∂KR, |E(u) − ξR| ≤ δ and 〈Ju, JE′(u)〉 ≤ 0. Similarly, since X is

uniformly convex, for any r > 0, there exists a continuous strictly increasing

convex function h : R+ → R+, h(0) = 0 such that

‖x+ y‖p − ‖x‖p ≥ p〈Jx, y〉+ h(‖y‖),

for all x, y ∈ X with ‖x‖ ≤ r and ‖y‖ ≤ r. Then, with the choice x = ηu,

y = JE′(u)− ηu and η = 〈Ju, JE′(u)〉/Rp, we find that 〈Jx, y〉 = 0 and

‖JE′(u)‖p − |η|p‖u‖p ≥ h(‖JE′(u)− ηu‖) ≥ h(a) > 0.

Thus

Rp(p−1)‖JE′(u)‖p − |〈Ju, JE′(u)〉|p ≥ Rp(p−1)h(a).

Assume that
1

θp
− 1 ≤ ν−p0 Rp(p−1)h(a).

Then

|〈Ju,JE′(u)〉|p
(

1

θp
− 1

)
≤ |〈Ju, JE′(u)〉|pν−p0

(
Rp(p−1)‖JE′(u)‖p − |〈Ju, JE′(u)〉|p

)
≤ Rp(p−1)‖JE′(u)‖p − |〈Ju, JE′(u)〉|p.
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It follows that

|〈Ju, JE′(u)〉|p ≤ θpRp(p−1)‖JE′(u)‖p.

Thus, for all u ∈ ∂KR with |E(u)− ξR| ≤ δ and 〈Ju, JE′(u)〉 ≤ 0, we have

−〈Ju, JE′(u)〉 ≤ θRp−1‖JE′(u)‖.

Hence

(2.16) −〈E′(u), u〉 ≤ θ‖u‖‖E′(u)‖ and − 〈Ju, JE′(u)〉 ≤ θ‖Ju‖‖JE′(u)‖

for all u ∈ ∂KR with |E(u)− ξR| ≤ δ. Next assume that there are no sequences

satisfying (2.11) and (a). Then we may assume that ‖E′(u)‖ ≥ a for all u in

Q := {u ∈ KR : |E(u)− ξR| ≤ 3δ}.

Clearly we may assume that 3δ < ξR−max{E(u0), E(u1)} and that (2.16) holds

in Q̃ := Q ∩ ∂KR. Let

Q0 := {u ∈ KR : |E(u)− ξR| ≤ 2δ},

Q1 := {u ∈ KR : |E(u)− ξR| ≤ δ},

Q2 := KR \Q0,

and let

η(u) =
d(u,Q2)

d(u,Q1) + d(u,Q2)
.

Clearly η(u) = 1 in Q1, η(u) = 0 in Q2 and 0 < η(u) < 1 otherwise.

Applying Lemma 2.4 to Gu := E′(u) and D0 := Q̃, we find an α > 0 and

a locally Lipschitz map H : D̂ → X, where D̂ = {u ∈ KR : ‖E′(u)‖ ≥ a}, such

that

‖H(u)‖ ≤ 1, u+H(u) ∈ K for all u ∈ D̂,

〈E′(u), H(u)〉 ≤ −α‖E′(u)‖, u ∈ D̂,

〈Ju,H(u)〉 < 0, u ∈ Q̃.

Let W : KR → X be given by

W (u) =

η(u)H(u) for u ∈ D̂,
0 for u ∈ KR \ D̂.

This map can be extended to a locally Lipschitz map on the whole K, by

W (u) = W

(
R

‖u‖
u

)
for u ∈ K, ‖u‖ > R.

Let σ be the flow generated by W as shown by Lemma 2.5. From Lemma 2.1 it

follows that

(2.17)
d‖σ(u, t)‖p

dt
= p

〈
Jσ(u, t),

dσ(u, t)

dt

〉
= pη(σ)〈Jσ,H(σ)〉.
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Now we prove that for every u ∈ KR, the flow σ(u, · ) does not exit KR. Suppose

that ‖σ(u, t)‖ ≤ R for all t ∈ [0, t0) and u1 := σ(u, t0) ∈ ∂KR for some t0 ∈ R+.

If u1 ∈ Q̃, then 〈Ju1, H(u1)〉 < 0 and (2.17) gives

d‖σ(u, t)‖p

dt
≤ 0

in a neighbourhood [t0, t0 + ε) of t0. In consequence, ‖σ(u, · )‖ is nonincreasing

in the interval [t0, t0 + ε). If u1 /∈ Q̃, then η(σ(u, t)) = 0 in some vicinity of t0,

and the conclusion for ‖σ(u, · )‖ is as above. Therefore σ(u, · ) does not exit KR

for t ∈ R+.

Using Lemma 2.4 we have

dE(σ(u, t))

dt
=

〈
E′(σ(u, t)),

dσ(u, t)

dt

〉
(2.18)

= η(σ(u, t))〈E′(σ(u, t)), H(σ(u, t))〉 ≤ −η(σ(u, t))αa,

which shows that E(σ(u, · )) is a decreasing function.

For any number λ, denote by Eλ the level set Eλ = {u ∈ KR : E(u) ≤ λ}.
Let t1 > 2δ/(αa) and u ∈ EξR+δ be an arbitrary element. If there is t0 ∈ [0, t1]

with σ(u, t0) /∈ Q1, then

E(σ(u, t1)) ≤ E(σ(u, t0)) < ξR − δ.

Hence σ(u, t1) ∈ EξR−δ. Otherwise, σ(u, t) ∈ Q1 for all t ∈ [0, t1], and so

η(σ(u, t)) = 1. Then (2.18) yields

E(σ(u, t1)) ≤ E(u)− αat1 < ξR + δ − 2δ = ξR − δ.

Therefore

(2.19) σ(EξR+δ, t1) ⊂ EξR−δ.

Now by definition of ξR, there is a γ ∈ ΓR with

(2.20) γ(t) ∈ EξR+δ for all t ∈ [0, 1].

We define a new path γ1 joining u0 and u1, by

γ1(t) = σ(γ(t), t1), t ∈ [0, 1].

Since η vanishes in the neighbourhood of u0 and u1, we have that σ(u0, t) ≡ u0

and σ(u1, t) ≡ u1. Hence γ1(0) = u0, γ1(1) = u1 and so γ1 ∈ ΓR. On the other

hand, from (2.19) and (2.20) it follows that E(γ1(t)) ≤ ξR − δ for all t ∈ [0, 1],

which contradicts the definition of ξR. �

Notice that in case of a Hilbert space identified with its dual, when J is the

identity mapping, the statements (b) and (c) coincide and the three alternatives

in Theorem 2.6 reduce to only two as in the original theorem of Schechter.

A similar result holds for mR replacing ξR. It extends to Banach spaces

Theorem 2.2 in [13].
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Theorem 2.7. Assume that conditions (2.9) and (2.10) hold. In addition

assume that E is bounded from below in KR. Then there exists a sequence of

elements uk ∈ KR such that

(2.21) E(uk)→ mR

and one of the statements (a), (b), (c) holds.

Proof. The proof can be reproduced after that of Theorem 2.6 by replacing

ξR with mR and making a mirror modification after relation (2.18), as described

below. Indeed, using the relation (2.18) i.e.

dE(σ(u, t))

dt
≤ −η(σ(u, t))αa,

if we fix any u ∈ Q1 := {v ∈ KR : E(v) ≤ mR + δ} and take t1 > 2δ/(αa), one

can deduce that σ(u, t) ∈ Q1 for all t ≥ 0 and

E(σ(u, t1)) ≤ E(σ(u, 0))− αat1 = E(u)− αat1 ≤ mR + δ − αat1 < mR − δ,

contradicting the definition of mR. �

Definition 2.8. We say that E satisfies the (SPS)µ condition in KR for

some µ ∈ R, if every sequence of elements uk ∈ KR with E(uk) → µ which

satisfies any of the conditions (a), (b), (c), contains a convergent subsequence.

Under the above compactness condition, Theorems 2.6 and 2.7 yield the

following critical point results in KR.

Theorem 2.9. Under the assumptions of Theorem 2.6, if in addition E

satisfies the (SPS)ξR condition in KR, and the boundary condition

(2.22) E′(u) + µJu 6= 0 for all u ∈ ∂KR and µ > 0,

then E has a critical point u in KR with E(u) = ξR.

Proof. Let (uk) be a sequence as in Theorem 2.6 and let u be the limit of its

convergent subsequence guaranteed by the (SPS)ξR condition. If we are in the

case (a) we are finished. Assume the case (b). Since 〈E′(uk), uk〉 ∈ [−ν0, 0], pass-

ing if necessary to another subsequence we may assume that−〈E′(uk), uk〉/Rp →
µ ≥ 0. Then E′(u) + µJu = 0. The case µ > 0 is excluded by hypothesis. It

remains that µ = 0 and we are finished again. Assume (c). As above, we may

assume that −〈Juk, JE′(uk)〉/Rp → µ ≥ 0. Then JE′(u) +µu = 0. In case that

µ > 0, from JE′(u) = −µu we deduce E′(u) = J(−µu) = −µp−1J(u). Hence

E′(u) + µp−1Ju = 0, which contradicts the hypothesis. Hence µ = 0, and then

JE′(u) = 0, whence E′(u) = 0 as desired. �

Theorem 2.10. Under the assumptions of Theorem 2.7, if in addition E

satisfies the (SPS)mR
condition in KR, and the boundary condition (2.22), then

E has a critical point u in KR with E(u) = mR.
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3. Application

We consider the boundary value problem

(3.1)


∆pu+ f(u) = 0 in Ω,

u > 0 in Ω,

u = 0 on ∂Ω.

Denote by cq (1 ≤ q ≤ p∗) the embedding constant for W 1,p
0 (Ω) ⊂ Lq(Ω). Using

Theorems 2.9 and 2.10 we obtain the following result.

Theorem 3.1. Let Ω ⊂ RN be a bounded open set and f : R+ → R+ a con-

tinuous function. Assume that the following conditions are satisfied :

(a) There exist constants a, b > 0 and q ∈ [1, p∗) such that

f(τ) ≤ aτ q−1 + b for all τ ∈ R+;

(b) there exist τ0 > 0, α > p− 1 and c > 0 such that

f(τ) ≥ cτα for all τ ∈ [0, τ0];

(c) one has

lim sup
τ→0+

f(τ)

τp−1
< λ1;

(c) the following inequality is true:

1

p
− c

α+ 1
τα−p+1
0

∫
(φ≤1)

φ(x)α+1dx ≤ 0;

(e) there exists R ≥ τ0 with

Rp−1 ≥ acqqRq−1 + bc1.

Then (3.1) has at least one solution satisfying 0 < |u|W 1,p
0 (Ω) ≤ R. In case that

f(0) > 0, (3.1) has at least two such solutions.

Remark 3.2. (a) If f is such that f(τ) ≥ cτα for τ ∈ [0, τ0] and some α ≥ 0

and c > 0, and conditions (c) and (d) in Theorem 3.1 hold, then necessarily

α > p − 1. Indeed, if α < p − 1, then from cτα−p+1 ≤ f(τ)/τp−1 we deduce

lim sup
τ→0+

f(τ)/τp−1 =∞, which contradicts (c). Also, if α = p− 1, then (c) gives

c < λ1, while (d) shows that c ≥ 1/
∫

(φ≤1)
φ(x)p dx. Since 1 = |φ|W 1,p

0 (Ω) and∫
(φ≤1)

φ(x)p dx ≤ |φ|pLp(Ω), we have 1/
∫

(φ≤1)
φ(x)p dx ≥ |φ|p

W 1,p
0 (Ω)

/|φ|pLp(Ω) =

λ1. Hence c ≥ λ1, which is contradictory.

(b) The condition (d) in Theorem 3.1 requires that for a given c > 0, the

length τ0 of the interval [0, τ0] of “p-superliniarity” of f is large enough.

(c) If q < p, then the condition (e) in Theorem 3.1 holds with any sufficiently

large R.
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Example 3.3. The typical example of a function satisfying the assumptions

(a)–(d) is the following:

f(τ) =

cτα for τ ∈ [0, τ0],

a(τ − τ0)q−1 + cτα0 for τ > τ0,

where a, c > 0, p− 1 < α < p∗, 1 ≤ q < p∗ and τ0 > 0 is large enough. Thus f is

“p-superlinear” on a large enough interval [0, τ0] and has a p-subcritical behavior

on [0,∞).

Proof of Theorem 3.1. Let E : W 1,p
0 (Ω)→ R+,

E(u) :=

∫
Ω

(
1

p
|∇u|p − F (u)

)
dx

be the energy functional associated to (3.1), where F (τ) =
∫ τ

0
f(s) ds, and let

K := {u ∈W 1,p
0 (Ω) : u ≥ 0}.

(1) E is bounded from below on the intersection of K with any ball of

W 1,p
0 (Ω). Indeed, if u ∈ K, then

E(u) =
1

p
|u|p

W 1,p
0 (Ω)

−
∫

Ω

F (u) dx ≥ 1

p
|u|p

W 1,p
0 (Ω)

− a

q
|u|qLq(Ω) − b|u|L1(Ω).

Since q ≤ p∗, the embeddingW 1,p
0 (Ω) ⊂ Lq(Ω) is continuous as well asW 1,p

0 (Ω) ⊂
L1(Ω). Hence

E(u) ≥ 1

p
|u|p

W 1,p
0 (Ω)

− ã|u|q
W 1,p

0 (Ω)
− b̃|u|W 1,p

0 (Ω).

The function xp/p− ãxq− b̃x is bounded on each compact interval [0, R], whence

our claim.

(2) The mountain pass condition: Choose a number d such that

1

p
lim sup
τ→0+

f(τ)

τp−1
< d <

λ1

p
.

From (a) (here we use the strict inequality q < p∗) and (c), we deduce that

F (τ) ≤ dτp + cdτ
p∗ , for all τ ∈ R+.

Then, for every u ∈ K,

E(u) ≥
|u|p

W 1,p
0 (Ω)

p
−
∫

Ω

(dup + cdu
p∗) dx ≥ |u|p

W 1,p
0 (Ω)

(
1

p
− d

λ1
− c̃d|u|p

∗−p
W 1,p

0 (Ω)

)
.

We have 1/p− d/λ1 > 0 and p∗ > p. Then there exist r ∈ (0, τ0) and γ > 0 such

that

E(u) ≥ γ > 0 for u ∈ K with |u|W 1,p
0 (Ω) = r.

Furthermore, if we take u0 = 0 and u1 = τ0φ, then E(u0) = 0, while from (b),

F (τ) ≥ c

α+ 1
τα+1, for τ ∈ [0, τ0]
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and so

E(τ0φ) =
τp0
p
−
∫

Ω

F (τ0φ) dx ≤ τp0
p
− cτα+1

0

α+ 1

∫
(φ≤1)

φ(x)α+1 dx ≤ 0.

Thus the mountain pass condition holds.

(3) The boundary condition: Assume that for some u ∈ K, with |u|W 1,p
0 (Ω) =

R, one has E′(u)+µJu = 0 for some µ > 0. Then (1+µ)∆pu+f(u) = 0, whence

(1 + µ)Rp =

∫
Ω

uf(u) dx.

Using (a), we see that uf(u) ≤ auq + bu, and so∫
Ω

uf(u) dx ≤ a|u|qLq + b|u|L1 ≤ acqqRq + bc1R.

Then

Rp < (1 + µ)Rp ≤ acqqRq + bc1R,

which contradicts (e). Thus the boundary condition holds.

(4) The Palais–Smale condition: Let (uk) satisfy (2.13). Passing to a subse-

quence we may assume that −〈E′(uk), uk〉/Rp → µ ≥ 0. Then

vk := E′(uk) + µJuk → 0.

We have vk = −(1 + µ)∆puk − f(uk), whence

uk = J

(
1

1 + µ
(vk + f(uk))

)
.

Thus, in order that (uk) has a convergent subsequence, it is enough to show that

the sequence (f(uk)) is relatively compact in W−1,p(Ω). For this, we first note

that according to (a), the superposition operator associated to f maps Lp
∗
(Ω)

into Lp
∗/(q−1)(Ω) and is a continuous bounded operator. Since (uk) is bounded

in W 1,p
0 (Ω), the embedding W 1,p

0 (Ω) ⊂ Lp
∗
(Ω) is bounded and the embedding

Lp
∗/(q−1)(Ω) ⊂W−1,p(Ω) is compact (since p∗/(q− 1) > (p∗)′ when q < p∗), we

may infer that (f(uk)) is relatively compact in W−1,p(Ω), as we wished.

Let now (uk) satisfy (2.14). Passing to a subsequence we may assume that

−〈Juk, JE′(uk)〉/Rp → µ ≥ 0. The case µ = 0 is similar to the previous one. It

remains to discuss the case µ > 0. If we let vk := JE′(uk) + µuk, then it is easy

to see that

uk =
1

µ
vk −

1

µ
J(Juk − f(uk)).

Now it is clear that the relatively compactness of the sequence (f(uk)) inW−1,p(Ω),

which follows as above, is enough to conclude about the same property of (uk).

The conclusion now follows from Theorems 2.9 and 2.10. �
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