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AN INDEFINITE CONCAVE-CONVEX EQUATION

UNDER A NEUMANN BOUNDARY CONDITION II

Humberto Ramos Quoirin — Kenichiro Umezu

Abstract. We proceed with the investigation of the problem

(Pλ) −∆u = λb(x)|u|q−2u+ a(x)|u|p−2u in Ω,
∂u

∂n
= 0 on ∂Ω,

where Ω is a bounded smooth domain in R
N (N ≥ 2), 1 < q < 2 < p,

λ ∈ R, and a, b ∈ Cα(Ω) with 0 < α < 1. Dealing now with the case b ≥ 0,
b �≡ 0, we show the existence (and several properties) of an unbounded
subcontinuum of nontrivial nonnegative solutions of (Pλ). Our approach
is based on a priori bounds, a regularisation procedure, and Whyburn’s
topological method.

1. Introduction and statements of main results

Let Ω be a bounded domain of RN (N ≥ 2) with smooth boundary ∂Ω. This

paper is devoted to the study of nontrivial nonnegative solutions for the problem

(Pλ)

⎧⎨
⎩
−∆u = λb(x)uq−1 + a(x)up−1 in Ω,
∂u

∂n
= 0 on ∂Ω,

where

• ∆ =
N∑
j=1

∂2/∂x2j is the usual Laplacian in R
N ;
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• λ ∈ R;

• 1 < q < 2 < p <∞;

• a, b ∈ Cα(Ω) for some α ∈ (0, 1), a, b �≡ 0, and b ≥ 0;

• n is the unit outer normal to the boundary ∂Ω.

By a nonnegative (classical) solution of (Pλ) we mean a nonnegative function

u ∈ C2+θ(Ω) for some θ ∈ (0, 1) which satisfies (Pλ) in the classical sense. When

λ ≥ 0, the strong maximum principle and the boundary point lemma apply to

(Pλ), and as a consequence a nontrivial nonnegative solution of (Pλ) is positive

on Ω. In the sequel we call it a positive solution of (Pλ).

In this article, we proceed with the investigation of (Pλ) made in [13]. We

are now concerned with the case where b ≥ 0 and we investigate the existence of

an unbounded subcontinuum C0 = {(λ, u)} of nontrivial nonnegative solutions

of (Pλ), bifurcating from the trivial line {(λ, 0)}. Note that since q < 2 the

nonlinearity in (Pλ) is not differentiable at u = 0, so that we cannot apply the

standard local bifurcation theory from [5] directly. When a ≡ 0, Γ0 = {(0, c) :
c is a positive constant} is a continuum of positive solutions of (Pλ) bifurcating

at (0, 0), and there is no positive solution for any λ �= 0. Throughout this paper

we shall then assume a �≡ 0, and we shall observe that the existence and behavior

of C0 depend on the sign of a.

To state our main results we introduce the following sets:

Ωa
± = {x ∈ Ω : a(x) ≷ 0}, Ωb

+ = {x ∈ Ω : b(x) > 0}.
We remark that Ωa

±,Ω
b
+ are all open subsets of Ω. We shall use the following

conditions on these sets:

(H1) Ωa± are both smooth subdomains of Ω, with either

Ωa
+ ⊂ Ω and Ω = Ωa

+ ∪ Ωa
−, or(1.1)

Ωa− ⊂ Ω and Ω = Ωa− ∪ Ωa
+.(1.2)

(H2) Under (H1) there exist a function α+ which is continuous, positive, and

bounded away from zero in a tubular neighbourhood of ∂Ωa
+ in Ωa

+ and

γ > 0 such that

a+(x) = α+(x) dist(x, ∂Ωa
+)

γ ,

where dist(x,A) denotes the distance function to a set A, and moreover,

2 < p < min

{
2N

N − 2
,
2N + γ

N − 1

}
if N > 2.

Assumptions (H1) and (H2) are used to obtain a priori bounds on positive

solutions of (Qλ,ε) below, cf. Amann and López-Gómez [2].

Remark 1.1. In (H1) we may allow Ωa
+ = ∅ (resp. Ωa

− = ∅). In this case it

is understood that Ω = Ωa
− (resp. Ω = Ωa

+).



An Indefinite Concave-Convex Equation II 741

Let us recall that a positive solution u of (Pλ) is said to be asymptotically

stable (resp. unstable) if γ1(λ, u) > 0 (resp. < 0), where γ1(λ, u) is the smallest

eigenvalue of the linearized eigenvalue problem at u, namely,⎧⎨
⎩
−∆φ = λ(q − 1)b(x)uq−2φ+ (p− 1)a(x)up−2φ+ γφ in Ω,
∂φ

∂n
= 0 on ∂Ω.

(1.3)

In addition, u is said to be weakly stable if γ1(λ, u) ≥ 0.

First we state a result on the existence of an unbounded subcontinuum of

nontrivial nonnegative solutions of (Pλ), and its behavior and stability in the

case
∫
Ω a ≥ 0.

Theorem 1.2. Assume
∫
Ω
a ≥ 0 and p ≤ 2N/(N − 2) if N > 2. Then (Pλ)

possesses an unbounded subcontinuum of nonnegative solutions C0 = {(λ, u)} ⊂
R× C(Ω) bifurcating at (0, 0). Moreover, the following assertions hold:

(a) There is no positive solution of (Pλ) for any λ ≥ 0. Consequently, if

(λ, u) ∈ C0 \ {(0, 0)} then λ < 0.

(b) Any positive solution of (Pλ) is unstable.

(c) C0 ∩ {(λ, 0) : λ �= 0} = ∅. More precisely, for any Λ > 0 there exists

δ0 > 0 such that maxΩ u > δ0 for all nontrivial nonnegative solutions of

(Pλ) with λ ≤ −Λ.

(d) If (H1) and (H2) hold then for any Λ > 0 there exists CΛ > 0 such

that maxΩ u ≤ CΛ for all (λ, u) ∈ C0 with λ ∈ [−Λ, 0). Consequently,

{λ ∈ R : (λ, u) ∈ C0 \ {(0, 0)}} = (−∞, 0). In this case, (Pλ) has at least

one nontrivial nonnegative solution for every λ < 0, see Figure 1.

Remark 1.3. The non-existence result in assertion (a) of Theorem 1.2 does

not require the condition p ≤ 2N/(N − 2) if N > 2.

O

λ

maxΩ u

C0

Figure 1. An unbounded subcontinuum of nontrivial nonnegative solu-
tions in the case

∫
Ω a ≥ 0.
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To state our result corresponding to Theorem 1.2 in the case
∫
Ω a < 0 we

consider the following eigenvalue problem:⎧⎨
⎩
−∆φ = λb(x)φ + σφ in Ω,
∂φ

∂n
= 0 on ∂Ω.

(1.4)

For λ > 0 we denote by σλ the smallest eigenvalue of (1.4), which is simple

and principal, and by φλ a positive eigenfunction associated with σλ. Note that

σλ < 0.

We shall deal with the following cases as well:

(H01) Ωa
+ ∩ Ωb

+ �= ∅.
(H02) Ωa

+ = ∅.
Theorem 1.4. Assume

∫
Ω
a < 0 and p < 2N/(N − 2) if N > 2. Then

(Pλ) possesses an unbounded subcontinuum of nontrivial nonnegative solutions

C0 = {(λ, u)} ⊂ R × C(Ω) bifurcating at (0, 0) and such that (C0 \ {(0, 0)}) ∩
([0,∞) × C(Ω)) consists of positive solutions of (Pλ) in λ ≥ 0. Moreover, the

following assertions hold:

(a) There exists δ0 > 0 such that maxΩ u > δ0 for all nontrivial nonnegative

solutions of (Pλ) with λ ≤ 0. Consequently, C0 bifurcates to the region

λ > 0 at (0, 0) and does not meet {(λ, 0) : λ < 0}.
(b) Let Λ > 0. Then there exists cΛ > 0 such that u ≥ cΛφΛ on Ω for all

positive solutions u of (Pλ) with λ ≥ Λ. Consequently, C0 does not meet

{(λ, 0) : λ > 0}.
(c) For some Λ0 ∈ (0,∞], C0 contains {(λ, uλ) : 0 < λ < Λ0}, where uλ is

the minimal positive solution of (Pλ) for λ ∈ (0,Λ0), i.e. uλ ≤ u on Ω

for all positive solutions u of (Pλ). In addition, we have:

(c1) λ �→ uλ is increasing;

(c2) λ �→ uλ is C∞ from (0,Λ0) to C
2+α(Ω);

(c3) uλ → 0 and λ−1/(p−q)uλ → c∗ in C2+α(Ω) as λ → 0+, where

c∗ =
(∫

Ω
b/(− ∫

Ω
a)
)1/(p−q)

;

(c4) uλ is asymptotically stable for λ ∈ (0,Λ0).

Finally, there exists δ > 0 such that if |λ| ≤ δ and u is a positive solution

of (Pλ) such that maxΩ u ≤ δ then (λ, u) ∈ C0.
(d) If (H01) holds then

Λ0 <∞.(1.5)

Moreover, the following assertions hold:

(d1) (Pλ) has a minimal positive solution uΛ0
for λ = Λ0, and λ �→ uλ

is continuous from (0,Λ0] to C
2+α(Ω).

(d2) C0 consists of a smooth curve around (Λ0, uΛ0
). More precisely,

it is given by (λ(s), u(s)), |s| < s1 (for some s1 > 0) such that
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λ(0) = Λ0, λ
′(0) = 0 > λ′′(0), u(0) = uΛ0

. Moreover, u(s) = uλ(s)
for s ∈ (−s1, 0];

(d3) There is no positive solution of (Pλ) for any λ > Λ0.

(d4) The minimal positive solution uΛ0
is weakly stable. More precisely,

γ1(Λ0, uΛ0
) = 0.

(d5) Any positive solution u of (Pλ) except uλ for 0 < λ ≤ Λ0, is un-

stable. In particular, any positive solution u of (Pλ) with (λ, u) ∈
C0 \ {(λ, uλ) : 0 < λ ≤ Λ0} is unstable.

(e) If (H02) holds then Λ0 = ∞. Moreover, the minimal positive solution uλ
is unique among the positive solutions of (Pλ) for λ > 0.

(f) If (H1) and (H2) hold, then for any Λ > 0 there exists CΛ > 0 such that

maxΩ u ≤ CΛ for all (λ, u) ∈ C0 with λ ∈ [−Λ,Λ].

Remark 1.5. (a) Assertion (b), assertions (c1)–(c4) and the uniqueness re-

sult in assertion (e) of Theorem 1.4 do not require the condition p < 2N/(N − 2)

if N > 2.

(b) In the case
∫
Ω a < 0, it holds under (H01), (H1) and (H2) that

{λ ∈ R : (λ, u) ∈ C0} = (−∞,Λ0].

Consequently, (Pλ) has at least one nontrivial nonnegative solution for every

λ < 0 and at least one positive solution for λ = 0, Λ0, and at least two positive

solutions for every λ ∈ (0,Λ0), see Figure 2.

O

λ

maxΩ u

C0

Λ0

Figure 2. An unbounded subcontinuum of nontrivial nonnegative solu-
tions in the case

∫
Ω a < 0.

1.1. Notation. Throughout this article we use the following notations and

conventions:

• The infimum of an empty set is assumed to be ∞.
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• Unless otherwise stated, for any f ∈ L1(Ω) the integral
∫
Ω f is considered

with respect to the Lebesgue measure, whereas for any g ∈ L1(∂Ω) the

integral
∫
∂Ω g is considered with respect to the surface measure.

• For r ≥ 1 the Lebesgue norm in Lr(Ω) will be denoted by ‖ · ‖r and the

usual norm of H1(Ω) by ‖ · ‖.
• The strong and weak convergence are denoted by → and⇀, respectively.

• The positive and negative parts of a function u are defined by u± :=

max{±u, 0}.
• If U ⊂ R

N then we denote the closure of U by U and the interior of U

by intU .

• The support of a measurable function f is denoted by supp f .

The rest of this article is organized as follows. In Section 2 we prove some

non-existence results. In Section 3, to bypass the difficulty that (Pλ) is not dif-

ferentiable at u = 0, we consider a regularized problem with a new parameter

ε > 0 and prove the existence of an unbounded subcontinuum of positive solu-

tions for this problem. By the Whyburn topological technique, we shall deduce

the existence of an unbounded subcontinuum of nontrivial nonnegative solutions

for (Pλ), passing to the limit as ε → 0+. Section 4 is devoted to the proofs of

Theorems 1.2 and 1.4.

2. Some non-existence results

First we prove the following non-existence result for the case
∫
Ω a ≥ 0.

Proposition 2.1. Assume
∫
Ω
a ≥ 0. Then the following two assertions hold:

(a) There is no positive solution of (Pλ) for any λ ≥ 0.

(b) Assume p ≤ 2N/(N − 2) if N > 2. Then, for any Λ > 0 there exists

δ0 > 0 such that maxΩ u > δ0 for all nontrivial nonnegative solutions of

(Pλ) with λ ≤ −Λ.

Proof. (a) Let u be a positive solution of (Pλ) for some λ ∈ R. We consider

two cases:

Case 1. We assume that a(x) �≡ cb(x) for any c ∈ R. Then u is not a constant.

The divergence theorem provides
∫
Ω

−∆u

up−1
=

∫
Ω

∇u∇
(

1

up−1

)
= −

∫
Ω

(p− 1)|∇u|2u−p < 0.

It follows that ∫
Ω

−∆u

up−1
=

∫
Ω

a+ λ

∫
Ω

buq−p < 0.

Since
∫
Ω
buq−p > 0, it should hold that λ < 0.
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Case 2. We assume now that a(x) ≡ cb(x) for some c ∈ R. Since
∫
Ω a ≥ 0

and b ≥ 0, we have c > 0. If u is a constant then it is clear that λ < 0. Otherwise

we argue as in Case 1.

(b) Let Λ > 0. Assume by contradiction that there exists a sequence (un)

of nontrivial nonnegative solutions of (Pλ) with λ = λn such that λn ≤ −Λ and

maxΩ un → 0 (λn → −∞ may occur). It follows that

∫
Ω

|∇un|2 =

∫
Ω

aupn + λn

∫
Ω

buqn ≤
∫
Ω

aupn → 0,(2.1)

and consequently un → 0 in H1(Ω). We set vn = un/‖un‖, and we assume that

vn ⇀ v0 for some v0 ∈ H1(Ω). From

∫
Ω

∇un∇φ =

∫
Ω

aup−1
n φ+ λn

∫
Ω

buq−1
n φ for all φ ∈ H1(Ω),

we get λn
∫
Ω
bvq−1

n φ→ 0 for every φ ∈ H1(Ω). It follows that
∫
Ω
bvq−1

0 φ = 0 for

every φ ∈ H1(Ω), so that bvq−1
0 ≡ 0.

On the other hand, from (2.1) we get lim
∫
Ω
|∇vn|2 = 0, which implies vn →

v0 in H1(Ω), and v0 is a constant. Since ‖vn‖ = 1, we have v0 > 0. Hence, from

bvq−1
0 ≡ 0 we obtain b ≡ 0, which is a contradiction. �

Proposition 2.2. Assume
∫
Ω
a < 0 and p < 2N/(N − 2) if N > 2. Then

there exists c0 > 0 such that maxΩ u ≥ c0 for all nontrivial nonnegative solutions

u of (Pλ) with λ ≤ 0.

Proof. Similarly as in the proof of Proposition 2.1 (b), we argue by contra-

diction. Assume that there exists a sequence {(λn, un)} of nontrivial nonnegative
solutions un of (Pλ) with λ = λn such that λn ≤ 0 and maxΩ un → 0 (λn → −∞
may occur). It follows that ‖un‖ → 0 using (2.1) again. Set vn = un/‖un‖. We

may assume that vn ⇀ v0 for some v0 ∈ H1(Ω), and vn → v0 in Lp(Ω). From

(2.1) it follows that lim
∫
Ω
|∇vn|2 = 0. We deduce that v0 is a positive constant,

and vn → v0 in H1(Ω). On the other hand, from (2.1) we infer
∫
Ω au

p
n ≥ 0, so

that
∫
Ω
avpn ≥ 0. Since vn → v0 in Lp(Ω), we have 0 ≤ ∫

Ω
avp0 = vp0

∫
Ω
a, which

contradicts our assumption. �

3. Positive solutions of a regularized problem

We consider now the existence of a subcontinuum of nontrivial nonnegative

solutions for (Pλ) emanating from the trivial line. Since the mapping t �→ tq−1 is

not differentiable at t = 0 we cannot use the local and global bifurcation theory

from simple eigenvalues [4] and [5]. To overcome this difficulty we investigate

the existence of a subcontinuum of positive solutions emanating from the trivial
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line for a regularized version of (Pλ), which is formulated as

(Qλ,ε)

⎧⎨
⎩
−∆u = λb(x)(u + ε)q−2u+ a(x)up−1 in Ω,
∂u

∂n
= 0 on ∂Ω,

where 0 < ε ≤ 1. Indeed, the mapping t �→ (t + ε)q−2t is analytic at t = 0.

We remark that (Qλ,0) = (Pλ), so that (Pλ) is the limiting case of (Qλ,ε) as

ε→ 0+. To study the existence of bifurcation points on the trivial line {(λ, 0)} for
(Qλ,ε), we consider the linearized eigenvalue problem at a nonnegative solution

u of (Qλ,ε)⎧⎪⎪⎪⎨
⎪⎪⎪⎩

−∆φ = a(x)(p − 1)up−2φ

+λb(x){(q − 2)(u+ ε)q−3u+ (u+ ε)q−2}φ+ σφ in Ω,
∂φ

∂n
= 0 on ∂Ω.

(3.1)

Plugging u = 0 into (3.1), we obtain the linearized eigenvalue problem⎧⎨
⎩
−∆φ = λεq−2b(x)φ + σφ in Ω,
∂φ

∂n
= 0 on ∂Ω.

(3.2)

This problem has a unique principal eigenvalue σε(λ), which is simple. Moreover,

we see that σε(λ) > 0 for λ < 0, σε(λ) = 0 for λ = 0, and σε(λ) < 0 for λ > 0.

Note that (3.2) has a positive eigenfunction associated with σε(λ), which is

a positive constant if λ = 0.

Proposition 3.1. Let 0 < ε ≤ 1. Then the following two assertions hold:

(a) If un is a positive solution of (Qλ,ε) for λ = λn such that maxΩ un → 0

and λn → λ∗ for some λ∗ ∈ R then λ∗ = 0.

(b) (Qλ,ε) possesses an unbounded subcontinuum Cε = {(λ, u)} in R×C(Ω)

of positive solutions, which bifurcates at (0, 0) and does not meet (λ, 0)

for any λ �= 0.

Proof. Assertion (a) is straightforward from the fact that σε(λ) > 0 for

λ < 0, and σε(λ) < 0 for λ > 0. By using assertion (a), assertion (b) is a direct

consequence of the global bifurcation theory from [9]. �

4. Proofs of Theorems 1.2 and 1.4

4.1. A priori upper bounds. The following a priori upper bound of λ for

positive solutions of (Qλ,ε) follows from [13, Proposition 6.1].

Proposition 4.1. If (H01) holds then there exists λ > 0 such that (Qλ,ε)

has no positive solutions for λ ≥ λ and ε ∈ [0, 1].
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The following a priori upper bound on the uniform norm of nonnegative so-

lutions of (Qλ,ε) is obtained using a blow up technique from Gidas and Spruck [6]

and follows from Amann and López-Gómez [2] and López-Gómez, Molina-Meyer

and Tellini [7]:

Proposition 4.2. Assume (H1) and (H2). Then for any Λ > 0 there exists

CΛ > 0 such that maxΩ u ≤ CΛ for all nonnegative solutions of (Qλ,ε) with

λ ∈ [−Λ,Λ] and ε ∈ [0, 1]. In particular, the conclusion holds for (Pλ).

Proof. The case where (1.1) holds follows by means of Proposition A.1 as

in the proof of [13, Proposition 6.5], whereas the case where (1.2) holds follows

from the following lemma:

Lemma 4.3. Assume (H1) with (1.2). Assume in addition that for any Λ > 0

there exists a constant C1 > 0 such that maxΩa
+
u ≤ C1 for all nonnegative

solutions u of (Qλ,ε) with λ ∈ [−Λ,Λ] and ε ∈ (0, 1]. Then, for any Λ > 0 there

exists a constant C2 such that maxΩ u ≤ C2 for all nonnegative solutions u of

(Qλ,ε) with λ ∈ [−Λ,Λ] and ε ∈ (0, 1].

Proof. We use a comparison principle. For Λ > 0 we first consider the case

λ ∈ [0,Λ]. Let u be a nonnegative solution of (Qλ,ε). Then, since u ≤ C1 on

∂Ωa− by assumption, u is a subsolution of the problem

(4.1)

⎧⎨
⎩
−∆u = λb(x)(u + ε)q−2u− a−(x)up−1 in Ωa

−,

u = C1 on ∂Ωa−.

Let w0 be the unique positive solution of the Dirichlet problem

(4.2)

⎧⎨
⎩
−∆w = 1 in Ωa

−,

w = 0 on ∂Ωa−.

Set w1 = C(1+w0) with C > 0. Then w1 is a supersolution of (4.1) if we choose

C such that

C2−q = max

{
C2−q

1 ,Λ

(
max
Ωa

−
b

)(
1 + max

Ωa
−
w0

)q−1}
.

Indeed, we observe that

−∆w1 + a−wp−1
1 − λb(w1 + ε)q−2w1

≥C − Λ

(
max
Ωa

−
b

)
(C(1 + w0) + ε)q−2C(w0 + 1)

≥C − Λ

(
max
Ωa

−
b

)
Cq−1(1 + w0)

q−1

≥Cq−1

(
C2−q − Λ

(
max
Ωa

−
b

)(
1 + max

Ωa
−
w0

)q−1)
≥ 0.
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So, the comparison principle (Proposition A.1 in the Appendix) for (4.1) provides

us with the assertion

u ≤ C(1 + w0) ≤ C

(
1 + max

Ωa
−
w0

)
on Ωa−.

Next we consider the case λ ∈ [−Λ, 0]. Let u be a nonnegative solution

of (Qλ,ε). It is straightforward that u is a subsolution of the problem

(4.3)

⎧⎨
⎩
−∆u = −a−(x)up−1 in Ωa

−,

u = C1 on ∂Ωa
−.

Using the unique positive solution w0 of (4.2), we see that C1(1 + w0) is a su-

persolution of (4.3), and thus, from the comparison principle, we deduce again

u ≤ C1(1 + w0) ≤ C1

(
1 + max

Ωa
−
w0

)
on Ωa−.

Summing up, C2 = C(1 + maxΩa
−
w0) yields the desired conclusion. �

The following a priori upper bound of the uniform norm on Ωa
+ for nonnega-

tive solutions of (Qλ,ε) can be established in a similar manner as [7, Theorem 6.3].

Lemma 4.4. Assume (H2) in addition to (H1) with (1.2). Then, for any

Λ > 0 there exists a constant C1 > 0 such that maxΩa
+
u ≤ C1 for all nonnegative

solutions u of (Qλ,ε) with λ ∈ [−Λ,Λ] and ε ∈ (0, 1].

Lemma 4.4 completes the proof of Proposition 4.2 in view of Lemma 4.3. �

4.2. Proof of Theorem 1.2. Assertions (a) and (c) follow from Proposi-

tion 2.1. By use of the Nehari manifold technique, assertion (b) can be verified in

a similar way just as in [13, Remark 2.2], relying on the assumption that λ < 0,

b ≥ 0 and b �≡ 0.

We use now a topological method proposed by Whyburn [14] to prove the

existence of an unbounded subcontinuum of nontrivial nonnegative solutions

of (Pλ). Let 0 < ε ≤ 1 and Λ > 0 be fixed. By Proposition 3.1, there exists

a subcontinuum C′
ε of positive solutions of (Qλ,ε) such that

C′
ε ⊂ Cε ∩ {(λ, u) ∈ R× C(Ω) : |λ| ≤ Λ, ‖u‖C(Ω) ≤ CΛ},

where CΛ is a positive constant given by Proposition 4.2. Then, we have we have

(0, 0) ∈ C′
ε and there exists (λε, uε) ∈ C′

ε such that |λε| = Λ. Moreover, since

we can prove that (Qλ,ε) with λ ≥ 0 and ε ∈ (0, 1] has no positive solution in

the same way just as in the proof of Proposition 2.1 (a), we have that λ < 0 if

(λ, u) ∈ C′
ε \ {(0, 0)}. Consequently, λε = −Λ, see Figure 3.

Arguing as in Section 3 of [11], we have the following facts:

• ⋃
0<ε≤1

C′
ε is precompact in C(Ω);
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O Λ−Λ

Λ

λ

maxΩ u

C′
ε

Cε

(λε, uε)

Figure 3. The subcontinuum C′
ε.

• (0, 0) ∈ lim inf
ε→0+

C′
ε, i.e. it is nonempty;

• up to a subsequence, there holds (λε, uε) → (−Λ, u0) in R × C(Ω), and

u0 is a nonnegative solution of (Pλ) for λ = −Λ.

Hence we use (9.12) Theorem on page 11 of [14], to deduce that C0 := lim sup
ε→0+

C′
ε

is nonempty, closed and connected, i.e. it is a subcontinuum. Furthermore, we

can check that C0 is contained in the set of nonnegative weak solutions of (Pλ)

(and therefore in the set of nonnegative solutions of (Pλ) by elliptic regularity).

Finally, we shall show that C0\{(0, 0)} consists of nontrivial nonnegative solu-
tions of (Pλ). To this end, we prove the following lemma, see Proposition 2.1 (b).

Lemma 4.5. Assume p ≤ 2N/(N − 2) if N > 2. Then, for any Λ > 0, there

exists δ0 > 0 such that maxΩ u > δ0 for all positive solutions of (Qλ,ε) with

λ ≤ −Λ and ε→ 0+.

Proof. The proof is carried out with a minor modification of that of Propo-

sition 2.1 (b). Assume that un is a positive solution of (Qλn,εn) such that

maxΩ un → 0, εn → 0+, and λn ≤ −Λ. As in the proof of Proposition 2.1 (b),

we deduce un → 0 in H1(Ω), and then, putting vn = un/‖un‖, it follows that,

up to a subsequence, vn → v0 in H1(Ω) for some positive constant v0.

Now, from the assumption of un, we derive∫
Ω

aup−1
n + λn

∫
Ω

b(un + εn)
q−2un = 0.

By multiplying the left hand side by ‖un‖−1, we deduce∫
Ω

avp−1
n ‖un‖p−2 + λn

∫
Ω

b(un + εn)
q−2vn = 0,
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so that

0 ≤ 1

(maxΩ un + εn)2−q

∫
Ω

bvn ≤
∫
Ω

b(un + εn)
q−2vn → 0.

It follows that ∫
Ω

bvn →
∫
Ω

bv0 = 0.

Since v0 is a positive constant, we have
∫
Ω b = 0, a contradiction. �

Now, we end the proof of Theorem 1.2. By definition, (−Λ, u0) ∈ C0. From

Lemma 4.5, it follows that u0 �≡ 0, so that u0 is a nontrivial nonnegative solution

of (Pλ) for λ = −Λ. Combining this assertion, Proposition 2.1, and the connec-

tivity of C0, we deduce that C0 \ {(0, 0)} is contained in the set of nontrivial

nonnegative solutions of (Pλ). Since Λ is arbitrary, assertion (d) of this theorem

follows, and now, C0 is the desired subcontinuum. We have finished the proof of

Theorem 1.2. �

4.3. Proof of Theorem 1.4. The argument is similar. Assertion (a) fol-

lows from Proposition 2.2, whereas assertion (1.5) follows from Proposition 4.1.

Assertions (b) through (d) except (1.5) and assertion (d5) can be proved simi-

larly as [12, Theorem 1.1]. Assertion (d5) is verified carrying out the argument

in [12, Proposition 5.2 (4)] for λ > 0, and the one in assertion (b) of Theorem 1.2

for λ < 0. Assertion (f) follows from Proposition 4.2.

Now it remains to verify assertion (e). To prove the uniqueness of a positive

solution of (Pλ) for λ > 0, we first reduce (Pλ) to an equation with a nonlinear,

compact and increasing mapping, as follows. If u is a positive solution of (Pλ)

then, for a constant ω > 0, we have

u = K(ωu+ a(x)up−1 + λb(x)uq−1) =: KFω(u) in C(Ω),

where K : C(Ω) → C1(Ω) is the compact mapping defined as the resolvent of the

linear Neumann problem ⎧⎨
⎩
(−∆+ ω)u = ψ in Ω,
∂u

∂n
= 0 on ∂Ω.

More precisely, for any ψ ∈ Cθ(Ω), θ ∈ (0, 1), Kψ ∈ C2+θ(Ω) is the unique

solution of the linear problem above. Moreover, K is known to be strongly

positive, i.e. for u ≥ 0 satisfying u �≡ 0 we have Ku > 0 on Ω (we denote it by

Ku� 0).

Next we shall observe that

for C > 0, Fω(u) is nondecreasing in 0 ≤ u ≤ C if ω is large enough,(4.4)

Fω(τu) ≥ τFω(u) (and �≡ τFω(u)) for τ ∈ (0, 1) and u� 0.(4.5)
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We derive (4.4) from the slope condition of Fω . Indeed, we see that if 0 ≤ u ≤
v ≤ C then

ωu+ a(x)up−1 − {ωv + a(x)vp−1} = (u − v)

{
ω + a(x)

up−1 − vp−1

u− v

}
≤ 0,

provided that ω is large. We derive (4.5) by the direct computation

Fω(τu)− τFω(u) = −a(x)τup−1(1 − τp−2) + λb(x)τq−1uq−1(1− τ2−q) ≥ 0

(and �≡ 0).

Now we use a uniqueness argument from the proof of [1, Theorem 24.2]. Let

λ > 0, u1 be the minimal positive solution of (Pλ), and u2 another positive

solution of (Pλ). Then we have u1 ≤ u2. Assume by contradiction that u1 �≡ u2.

Then, since u1 � 0, there exists τ0 ∈ (0, 1) such that u1−τ0u2 ≥ 0 but u1−τ0u2 ∈
∂P , where P = {u ∈ C(Ω) : u ≥ 0} denotes the positive cone of C(Ω) and ∂P

the boundary of P . Note that if u � 0 then u is an interior point of P . Take

a constant C > 0 such that u1, u2 ≤ C. Using (4.4), (4.5) and the fact that K

is strongly positive, we deduce that

u1 = KFω(u1) ≥ KFω(τ0u2) � τ0KFω(u2) = τ0u2,

where u� v means u− v � 0. Hence u1 − τ0u2 is an interior point of P , which

contradicts u1 − τ0u2 ∈ ∂P . Consequently, u1 ≡ u2, and the uniqueness holds.

Moreover, under (H01), the implicit function theorem is applicable at any

positive solution of (Pλ) with λ > 0. Therefore, based on assertion (a), we

deduce that C0 \ {(0, 0)} = {(λ, uλ) : 0 < λ < Λ0}.
To prove Λ0 = ∞, we establish an a priori bound for positive solutions of

(Pλ) in a similar way as Proposition 2.1 (b). For the sake of a contradiction we

may assume |λn| ≤ Λ, ‖un‖ → ∞, and un is a positive solution for λ = λn.

Since ∫
Ω

|∇un|2 =

∫
Ω

aupn + λn

∫
Ω

buqn ≤ λn

∫
Ω

buqn,

we deduce that lim sup
n

∫
Ω |∇vn|2 → 0, where vn = un/‖un‖. Hence we may

assume that vn → v0 in H1(Ω) and v0 is a positive constant. Also we have

vn → v0 in Lp−1(Ω). On the other hand, we see that∫
Ω

∇un∇φ =

∫
Ω

aup−1
n φ+ λn

∫
Ω

buq−1
n φ for all φ ∈ H1(Ω).

It follows that
∫
Ω av

p−1
n φ → 0, so that

∫
Ω av

p−1
0 φ = 0 for every φ ∈ H1(Ω).

Hence we have avp−1
0 ≡ 0. Since v0 is a positive constant, this contradicts the

assumption a �≡ 0. Therefore we have proved that for any Λ > 0 there exists

CΛ > 0 such that if u is a positive solution of (Pλ) with λ ∈ [−Λ,Λ] then

‖u‖ ≤ CΛ, and thus, ‖u‖C(Ω) ≤ C for some C > 0 by elliptic regularity, as

desired. By combining the a priori bound and the use of the implicit function

theorem, we verify assertion (e). The proof of Theorem 1.4 is now complete. �
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We conclude with the following remark on Theorems 1.2 and 1.4:

Remark 4.6. Consider (Pλ) with q = 1, 2. These cases do not correspond

to a concave-convex nonlinearity but it is worthwhile discussing the nontrivial

nonnegative solutions set of (Pλ). We may check that (Pλ) still has a subcon-

tinuum C0 of solutions such that C0 \ {(0, 0)} consists of nontrivial nonnegative

solutions (with the same nature as in the case q ∈ (1, 2)).

(a) Case q = 1. In this case, λb(x)uq−1 = λb(x) does not depend on u, so

that (Pλ) no longer possesses the trivial line of solutions {(λ, 0)}. However, when∫
Ω
a < 0, we can prove the existence of a subcontinuum C1 = {(λ, u)} of nonneg-

ative solutions bifurcating at (0, 0) to λ > 0 and such that C1 \ {(0, 0)} consists

of positive solutions of (Pλ), when λ ≥ 0. To this end we carry out again the

Whyburn topological argument developed in Subsection 4.2. Let Cq = {(λ, u)},
q ∈ (1, 2), be the unbounded subcontinuum of positive solutions of (Pλ) bifur-

cating at (0, 0), as provided by Theorem 1.4. Then, the topological argument

in Subsection 4.2 holds with ε replaced by q for λ ≥ 0. Note that λ given by

Proposition 4.1 and CΛ given by Proposition 4.2 are determined uniformly as

q → 1+. Moreover, we can check in the same way that assertions (a) through

(f) in Theorem 1.4 hold true for q = 1. Consequently, C1 = lim sup
q→1+

Cq|λ≥0 is our

desired subcontinuum.

(b) Case q = 2. In this case, λb(x)uq−1 = λb(x)u is linear. There is a large

literature on this case, with many results on the positive solutions set. Indeed,

the general global bifurcation theory due to Rabinowitz provides the existence

of an unbounded subcontinuum C2 = {(λ, u)} of solutions of (Pλ) bifurcating

at (0, 0) and such that C2 \ {(0, 0)} consists of positive solutions. Furthermore,

assertions (a) through (d) in Theorem 1.2 and assertions (a) through (f) in

Theorem 1.4 are verified in the same way, except the assertion Λ0 = ∞ in

Theorem 1.4 (e). Actually, this assertion is not true in general for q = 2. Indeed,

when (H02) is satisfied, we know the following two results:

• If a < 0 on Ω then Λ0 = ∞ (see Amann [1, Theorem 25.4]).

• Assume that {x ∈ Ω : a(x) = 0} �= ∅ and b ≡ 1. Assume additionally

that D0 := Ω \Ωa− is a smooth subdomain of Ω bounded away from ∂Ω.

Consider the smallest eigenvalue λ1(D0) > 0 of the Dirichlet eigenvalue

problem ⎧⎨
⎩
−∆φ = λφ in D0,

φ = 0 on ∂D0.

Then Λ0 = λ1(D0) and the minimal positive solution uλ grows up to

infinity in C(Ω) as λ→ λ1(D0)
−. Moreover, there is no positive solution

of (Pλ) for any λ ≥ λ1(D0) (see Ouyang [8, Theorem 3]).
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On the other hand, it would be difficult to consider the limiting case p = 2

by the same approach as in the cases q = 1, 2, since our argument essentially

uses the condition p > 2. Indeed, we do not know whether Proposition 2.1 (b)

and Proposition 2.2 remain true for the case p = 2. Thus, in the case p = 2, one

should follow another approach to study bifurcation from zero.

Appendix A. A slight variant of the comparison principle

for concave problems

In this appendix we provide a variant of the comparison principle proved by

Ambrosetti, Brezis and Cerami [3, Lemma 3.3] to mixed Dirichlet and Neumann

nonlinear boundary conditions. We consider the general boundary value problem⎧⎪⎪⎪⎨
⎪⎪⎪⎩

−∆u = f(x, u) in D,
∂u

∂n
= g(x, u) on Γ1,

u = C1 on Γ0,

(A.1)

where

• D is a bounded domain of RN with smooth boundary ∂D,

• Γ0,Γ1 ⊂ ∂D are disjoint, open, and smooth (N−1) dimensional surfaces

of ∂D,

• Γ0,Γ1 are compact manifolds with (N − 2) dimensional closed boundary

γ = Γ0 ∩ Γ1 such that ∂D = Γ0 ∪ γ ∪ Γ1,

• f : Ω× [0,∞) → R and g : Γ1 × [0,∞) → R are continuous,

• C1 is a nonnegative constant.

The result [10, Proposition A.1] can be slightly relaxed as follows:

Proposition A.1. Under the above conditions, assume that for every x ∈ D,

t �→ f(x, t)/t is decreasing in (0,∞), and for every x ∈ Γ1, t �→ g(x, t)/t is

nonincreasing in (0,∞). Let u, v ∈ H1(D) ∩ C(D) be nonnegative functions

satisfying u ≤ C1 ≤ v on Γ0, and

(A.2)

∫
D

∇u∇ϕ−
∫
D

f(x, u)ϕ−
∫
Γ1

g(x, u)ϕ ≤ 0

for all ϕ ∈ H1
Γ0
(D) such that ϕ ≥ 0,

(A.3)

∫
D

∇v∇ϕ −
∫
D

f(x, v)ϕ−
∫
Γ1

g(x, v)ϕ ≥ 0

for all ϕ ∈ H1
Γ0
(D) such that ϕ ≥ 0.

If v > 0 in D, then u ≤ v on D.

Remark A.2. (a) In [10, Proposition A.1] the case C1 = 0 has been consi-

dered.
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(b) Assume additionally that f, g are smooth enough. If a nonnegative func-

tion u ∈ C2(Ω) satisfies ⎧⎪⎪⎪⎨
⎪⎪⎪⎩

−∆u ≤ f(x, u) in D,

u ≤ C1 on Γ0,
∂u

∂n
≤ g(x, u) on Γ1,

then u satisfies (A.2). Similarly if the opposite inequalities hold then u satisfies

(A.3).

(c) Γ0 = ∅ (or alternatively Γ1 = ∅) is allowed.

Proof. Let θ : R → R, be a nonnegative nondecreasing smooth function such

that θ(t) = 0 for t ≤ 0 and θ(t) = 1 for t ≥ 1. For ε > 0 we set θε(t) = θ(t/ε).

Since u− v ≤ 0 on Γ0, we have vθε(u− v) ∈ H1
Γ0
(D), so that

(A.4)

∫
D

∇u∇(vθε(u− v))−
∫
D

f(x, u)vθε(u− v)−
∫
Γ1

g(x, u)vθε(u − v) ≤ 0.

Likewise, since uθε(u− v) ∈ H1
Γ0
(D), we have

(A.5)

∫
D

∇v∇(uθε(u− v))−
∫
D

f(x, v)uθε(u− v)−
∫
Γ1

g(x, v)uθε(u − v) ≥ 0.

Let Γ+
1 = {x ∈ Γ1 : u, v > 0}, and D+ = {x ∈ D : u > 0}. Since t �→ g(x, t)/t

is nonincreasing in (0,∞), we have g(x, 0) ≥ 0, which combined with (A.4) and

(A.5) yields∫
D

uθ′ε(u − v)∇v(∇u −∇v)−
∫
D

vθ′ε(u− v)∇u(∇u −∇v)

≥
∫
D+

uv

(
f(x, v)

v
− f(x, u)

u

)
θε(u− v) +

∫
Γ+
1

uv

(
g(x, v)

v
− g(x, u)

u

)
θε(u − v)

≥
∫
D+

uv

(
f(x, v)

v
− f(x, u)

u

)
θε(u− v).

From − ∫
D+ uθ

′
ε(u − v)|∇(u − v)|2 ≤ 0, it follows that

(A.6)

∫
D

(u − v)θ′ε(u− v)∇u∇(u − v)

≥
∫
D+

uv

(
f(x, v)

v
− f(x, u)

u

)
θε(u− v).

Now, we introduce γε(t) =
∫ t

0
sθ′ε(s) ds for t ∈ R. We have then 0 ≤ γε(t) ≤ ε,

t ∈ R. Note that ∇(γε(u − v)) = (u − v)θ′ε(u − v)∇(u − v). Hence, from (A.6)

we deduce that∫
D

∇u∇(γε(u− v)) ≥
∫
D+

uv

(
f(x, v)

v
− f(x, u)

u

)
θε(u − v).
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Now, since γε(u− v) ∈ H1
Γ0
(D) and γε(u− v) ≥ 0, we note that∫

D

∇u∇(γε(u − v))−
∫
D

f(x, u)γε(u− v)−
∫
Γ1

g(x, u)γε(u− v) ≤ 0,

and combining the two latter assertions, we get∫
D

f(x, u)γε(u − v) +

∫
Γ1

g(x, u)γε(u− v)

≥
∫
D+

uv

(
f(x, v)

v
− f(x, u)

u

)
θε(u− v).

Since γε(t) ≤ ε, there exists a constant C > 0 such that

Cε ≥
∫
D+

uv

(
f(x, v)

v
− f(x, u)

u

)
θε(u− v).(A.7)

Since t �→ f(x, t)/t is decreasing in (0,∞), we use Fatou’s lemma to deduce from

(A.7) that ∫
D+

lim inf
ε→0+

uv

(
f(x, v)

v
− f(x, u)

u

)
θε(u− v) ≤ 0.

Note that

lim
ε→0+

θε(u− v) =

⎧⎨
⎩
1 u > v,

0 u ≤ v,

so that ∫
D+∩{u>v}

uv

(
f(x, v)

v
− f(x, u)

u

)
≤ 0.

Using again that t �→ f(x, t)/t is decreasing in (0,∞), we conclude that |D+ ∩
{u > v}| = 0, and since u ≡ 0 < v in D \D+, we have u ≤ v almost everywhere

in D. By continuity, the desired conclusion follows. �
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[7] J. López-Gómez, M. Molina-Meyer and A. Tellini, The uniqueness of the linearly

stable positive solution for a class of superlinear indefinite problems with nonhomoge-

neous boundary conditions, J. Differential Equations 255 (2013), 503–523.



756 H. Ramos Quoirin — K. Umezu

[8] T. Ouyang, On the positive solutions of semilinear equations ∆u + λu − hup = 0 on

the compact manifolds, Trans. Amer. Math. Soc. 331 (1992), 503–527.

[9] P.H. Rabinowitz, Some global results for nonlinear eigenvalue problems, J. Functional

Analysis 7 (1971), 487–513.

[10] H. Ramos Quoirin and K. Umezu, Positive steady states of an indefinite equation with

a nonlinear boundary condition: existence, multiplicity and asymptotic profiles, Calc.

Var. Partial Differential Equations 55 (2016), no. 4, paper no. 102.

[11] , Bifurcation for a logistic elliptic equation with nonlinear boundary conditions:

A limiting case, J. Math. Anal. Appl. 428 (2015), 1265–1285.

[12] , On a concave-convex elliptic problem with a nonlinear boundary condition,

Ann. Mat. Pura Appl. 195 (2016), 1833–1863.

[13] , An indefinite concave-convex equation under a Neumann boundary condition I,

preprint. arXiv:1603.04940

[14] G.T. Whyburn, Topological Analysis, Second, revised edition, Princeton Mathematical

Series, Vol. 23, Princeton University Press, Princeton, 1964.

Manuscript received April 21, 2016

accepted July 18, 2016

Humbert Ramos Quoirin

Universidad de Santiago de Chile
Casilla 307, Correo 2
Santiago, CHILE

E-mail address: humberto.ramos@usach.cl

Kenichiro Umezu

Department of Mathematics
Faculty of Education
Ibaraki University

Mito 310-8512, JAPAN

E-mail address: kenichiro.umezu.math@vc.ibaraki.ac.jp

TMNA : Volume 49 – 2017 – N
o
2


