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ON GLOBAL INVERSE THEOREMS

Olivia Gutú

Abstract. Since the Hadamard Theorem, several metric and topological

conditions have emerged in the literature to date, yielding global inverse
theorems for functions in different settings. Relevant examples are the map-

pings between infinite-dimensional Banach–Finsler manifolds, which are the

focus of this work. Emphasis is given to the nonlinear Fredholm operators

of nonnegative index between Banach spaces. The results are based on
good local behavior of f at every x, namely, f is a local homeomorphism or

f is locally equivalent to a projection. The general structure includes a con-

dition that ensures a global property for the fibres of f , ideally expecting
to conclude that f is a global diffeomorphism or equivalent to a global pro-

jection. A review of these results and some relationships between different

criteria are shown. Also, a global version of the Graves Theorem is obtained
for a suitable submersion f with image in a Banach space: given r > 0 and

x0 in the domain of f we give a radius %(r) > 0, closely related to the

hypothesis of the Hadamard Theorem, such that B%(f(x0)) ⊂ f(Br(x0)).

1. Introduction

Let f : Rn → Rn be a differentiable mapping. Consider the nonlinear system

f(x) = y. In his seminal article [23] of 1906, Hadamard establishes an existence

and unicity condition for a nonlinear system f(x) = y in terms of

µ(x) = min
v 6=0

‖Jf(x)v‖2
‖v‖2

,
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where Jf(x) is the Jacobian matrix of f at x and ‖ · ‖2 is the Euclidean norm

in Rn. If n = 1, Hadamard points out that if the first derivative is positive at ev-

ery point x ∈ Rn then the nonlinear system has at most one solution, but its exis-

tence cannot always be assured unless
∫ a
−∞ f ′(x) dx =∞ and

∫∞
a
f ′(x) dx =∞.

For n > 1, Hadamard asserts that it is not enough to replace the derivative

f ′(x) in the above integrals by the Jacobian determinant at x, but the appropri-

ate condition for global inversion is∫ ∞
0

min
‖x‖=ρ

µ(x) dρ =∞,

referred to in this paper as the Hadamard integral condition, provided that

µ(x) > 0 for all x ∈ Rn. Hadamard also conjectures the “properness criterion”

established in the mid thirties by Banach and Mazur [6] and by Cacciopoli [11],

which asserts that a map between Banach spaces is a proper local homeomor-

phism if and only if f is a global one. The properness condition has been widely

reported and extended in the literature in different frameworks. The same can

be said of the Hadamard integral condition and similar metric criteria in settings

where a correct generalization of µ(x) can be established, sometimes devoted to

special cases. The properness criterion was relaxed to closedness by Browder [10]

in the context of topological spaces. Besides, the Hadamard Theorem was ex-

tended to the infinite-dimensional setting by Lévy [35], who considered the case

of smooth mappings between Hilbert spaces. In the late sixties, John [29] also

obtained an extension of the Hadamard integral condition for nonsmooth map-

pings f between Banach spaces in terms of the lower scalar Dini derivative of f .

For the proof, he used the prolongation of local inverses of f along lines. Soon

after, Plastock [47] introduced a limiting property for lines, called the condition

L, analogous to the continuation property used by Rheinboldt [54] in a more

abstract context. Plastock proved that a local homeomorphism f satisfies the

condition L if and only if it is a global homeomorphism. He also showed that

the properness, closedness, and the Hadamard integral condition all imply the

condition L. Since then, the condition L has proved to be quite useful in global

inversion theorems. In the same vein, Ioffe [26] extended the Hadamard Theo-

rem in terms of the so-called surjection constant of the mapping f making use

of the condition L. More recently, this approach was used to give necessary

and sufficient conditions for a map f to be a global homeomorphism for a large

class of metric spaces with nice local structure, which includes Banach–Finsler

manifolds [22]. As a consequence, an extension of the Hadamard Theorem is ob-

tained in terms of a metric version of µ(x), a kind of lower scalar Dini derivate.

In [19] an estimation of the domain of invertibility around a point is provided

for a local homeomorphism between length metric space, inspired by the afore-

mentioned work of John [29]. In finite-dimensional case, analogous results were
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obtained by Pourciau [49], [50] by means of the Clarke generalized Jacobian of

f , recently extended by Jaramillo et al. [27] for locally Lipschitz mappings be-

tween finite-dimensional Finsler manifolds. The above proofs rely somehow upon

a monodromy argument to ensure the “path lifting property” of the homotopy

theory, which finally leads us to conclude that f is a global homeomorphism or

more generally, a covering map.

Since the early nineties, some global inversion conditions that test the ef-

fectiveness of the monodromy argument have emerged. The crucial hypothesis

is a variant of the Palais–Smale condition of a suitable function in terms of f .

In this regard, Katriel [30] also considered the Ioffe surjection constant in or-

der to obtain global inversion theorems in certain metric spaces by methods of

critical point theory and based on an abstract mountain-pass theorem. The

Katriel’s technique has been used as an alternative tool to the monodromy ar-

gument to obtain global inverse function theorems in infinite-dimensional case;

see for instance [25]. For functions between Euclidean spaces of the same dimen-

sion, Nollet and Xavier [43] improved the Hadamard integral condition using the

Palais–Smale condition but with dynamical systems techniques. This work was

recently extended in [36] for finite-dimensional manifolds.

The monodromy argument also appears in the proof of the Ehresmann The-

orem (mid-fifties) [17] namely, if X and Y are finite-dimensional manifolds with

X paracompact and Y connected then a proper submersion (i.e. df(x) is onto for

all x ∈ X) f : X → Y is a fibre bundle. In this case, we can talk about a “hor-

izontal path lifting property”. Ehresmann’s technique was extended to Banach

manifolds by Earle and Eells [16] by means of a condition in terms of the norm of

a right inverse of df(x). In the late nineties, Rabier [53] provided a more readily

usable condition to ensure the validity of the Earle–Eells criterion. He introduced

the concept of strong submersion with uniformly split kernels for mappings be-

tween Banach–Finsler manifolds, in terms of the corresponding analogue of µ(x).

As Rabier pointed out in his previous work [52] the strong submersion condition

“interpolates” two well-known, but until that moment, unrelated hypotheses cor-

responding to the two extreme cases: Hadamard’s criterion when f : X → Y is

a local diffeomorphism and the Palais–Smale condition when Y = R. Similar

results can be found in [21].

The purposes of the current work are the following. First, to present a survey

of such results in a uniform framework including simpler proofs or adjustments

for known theorems. Second, to establish some relationships between different

known conditions. Finally, to present some new related results. All of this is

done in the context of smooth functions between Banach–Finsler manifolds since

these have tools to make the exposition more clear and intuitive, but are also
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general enough to include two examples of particular importance: Banach spaces

and Riemannian manifolds.

To this end, in Section 1 we introduce the terms surjectivity and injectivity

indicators of a function. The surjectivity indicator is the extension of µ(x) given

by Rabier [52], [53] for Banach–Finsler manifolds. The injectivity indicator is

proposed by the author in order to provide context for other global inversion con-

ditions found in the literature. Roughly speaking, if the surjectivity indicator is

positive then the function is locally as a projection and if the injectivity indica-

tor is positive then the map is locally as an embedding. Of course, if both are

positive then f is a local homeomorphism. A brief summary of local inversions

for nonlinear Fredholm operator is also presented, as they are natural prospects

in this context.

Section 2 is devoted to the study of the conditions for a local homeomor-

phism to be a global one; emphasizing the case where the spaces are Banach

spaces and Riemannian manifolds. In the first instance, the purely topological

characterizations of global homeomorphisms between Banach manifolds are re-

visited. A simple proof that the continuation property for minimal geodesics

characterizes the covering maps between Riemannian manifolds is given. Fur-

thermore, if f is a function with image in a Cartan–Hadamard manifold we show

that the domain where the inverse of f is defined is an open star shaped set.

The corresponding statements are given in Lemmas A.2 and A.3, respectively.

The rest of the section is devoted to the C1 case. Since for local diffeomorphisms

the surjection constant of Ioffe and the lower Dini derivative both coincide with

the indicators, the global inversion criteria mentioned above can be expanded or

adapted to this framework. We show that these results can be deduced from the

Earle–Eells criterion for a submersion to be a fibre bundle. For the case where

the submersion is a local diffeomorphism this condition characterizes global dif-

feomorphisms and coincides with the concept of strong submersion of Rabier

aforementioned, provided that the codomain is simply connected. A simplified

proof of this fact is presented, see Theorem A.5 and Lemma A.6. The limits of

the monodromy argument are also evidenced, which apparently are not adequate

in more refined criteria. Subsequently, the relationships between different condi-

tions are given, e.g., in the case of functions between Banach spaces, see Figure 2

and Lemma A.8. At the end of the second section, a charaterization of global

diffeomorphisms is presented in terms of a weighted version of an Earle–Eells

condition.

Section 3 deals with the study of the topological and metric conditions pro-

vided in Section 2, but for submersions between Banach manifolds. Finally, we

obtain a sort of global Graves Theorem in terms of a surjectivity indicator for
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mappings with uniformly split kernels (Theorem A.9). Most technical proofs are

presented in the appendix.

2. Preliminary definitions

2.1. Banach manifolds. Let X be a topological space. An atlas of class

Ck (k ≥ 1) on X is a collection of pairs (Wi, ϕi) (i ranging in some indexing

set) satisfying the following conditions: each Wi is a subset of X and the Wi

cover X; each ϕi is a homeomorphism of Wi onto an open subset ϕi(Wi) of some

Banach space Ei, ϕi(Wi ∩Wj) is open in Ei for any i, j, and

(∗) the overlap map ϕjϕ
−1
i : ϕi(Wi ∩Wj)→ ϕj(Wi ∩Wj) is of class Ck for

each pair of indices i, j.

Each pair (Wi, ϕi) is called a chart of the atlas. Suppose that ϕ : W → W ′ is

a homeomorphism onto an open subset of some Banach space E. The pair (W,ϕ)

is compatible with the atlas {(Wi, ϕi)} if each map ϕiϕ
−1 defined on a suitable

intersection as in (∗) is a Ck homeomorphism. Two atlases are compatible if each

chart of one is compatible with the other atlas. The relation of compatibility

between atlases is an equivalence relation. An equivalence class of atlases of

class Ck on X defines a structure of Ck manifold on X. If all the Banach spaces

Ei in some atlas are homeomorphic then we can find an equivalent atlas for

which they are all equal, say to a Banach space E. We then say that X is a Ck

manifold modeled in a Banach space E, so can be assumed that all charts have

image in E. If E is a real Banach space then X is said to be a real Ck manifold

modeled in E.

Let X be a manifold of class Ck modeled in a Banach space E and let x ∈ X.

Consider triples (W,ϕ,w) where (W,ϕ) is a chart at x and w is an element of E.

Two triples (W1, ϕ1, w1) and (W2, ϕ2, w2) are equivalent if dϕ2ϕ
−1
1 (ϕ1(x))w1 =

w2. An equivalence class of such triples is called a tangent vector of X at x. The

set of such tangent vectors is called the tangent space of X at x and is denoted

by TxX. Each chart (W,ϕ) at x determines a bijection of TxX onto E, namely,

the equivalence class of (W,ϕ,w) corresponds to the vector w. By means of such

a bijection it is possible to transport to TxX the vector space structure of E. Of

course, this structure is independent of the chart selected.

Let X and Y be two manifolds modeled in E and F , respectively. A map

f : X → Y is said to be of class Ck (k ≥ 1) if given x ∈ X there exists a chart

(W,ϕ) at x and a chart (U,ψ) at y = f(x) such that f(W ) ⊂ U and the function

ψfϕ−1 : ϕ(W ) → ψ(U) is of class Ck. The derivative of f at x is the unique

linear map df(x) : TxX → TyY having the following property. If v is a tangent

vector at x represented by w ∈ E in the chart (W,ϕ) then df(x)v is the tangent

vector at y represented by dψfϕ−1(ϕ(x))w ∈ F ; see Chapter II of [33] for more

details.
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2.2. Finsler metrics. Let X be a real Ck manifold modeled in a Banach

space (E, | · |). As usual, TX = {(x, v) : x ∈ X and v ∈ TxX} is the tangent

bundle of X. If (W,ϕ) is a chart of X, then there is a local trivialization of the

natural projection π : TX → X over W , namely a bijection TW = π−1(W ) →
W ×E which commutes with the projection on W . For every w ∈ E and x ∈W ,

there is a unique pair (x, v) ∈ TW where vx(w) = dϕ−1(ϕ(x))w is the tangent

vector at x represented by w in the chart (W,ϕ). A Finsler structure on TX is

a continuous map ‖ · ‖X : TX → [0,∞) such that:

(1) For every x ∈ X the map v 7→ ‖ · ‖x := ‖(x, v)‖X is an admissible norm

for the tangent space TxX. Namely, for every chart (W,ϕ) at x the map

‖vx( · )‖x is a norm equivalent to | · | on E.

(2) For every x0 ∈ X and k > 1 there exists a chart (W,ϕ) of X at x0
(depending on k) such that for every x ∈W and every w ∈ E

k−1‖vx0
(w)‖x0

≤ ‖vx(w)‖x ≤ k‖vx0
(w)‖x0

.

A Finsler manifold is a Banach manifold endowed with a Finsler structure on

its tangent bundle. This definition corresponds to Palais [44, p. 117]. The rela-

tionship of the above definition with alternative definitions of Finsler manifolds

in the literature is presented in Jiménez–Sevilla et al. [28]. Since all the results

mentioned here are valid for Finsler manifolds in the Palais sense we shall as-

sume that all Finsler manifolds are in the Palais sense. Although some results

can be applied to more general Finsler manifolds, for the purpose of this work

this point is not relevant.

Every paracompact manifold admits a Finsler structure. If in addition X is

modeled in a real separable Hilbert space (H, 〈 · , · 〉) then it admits a Riemannian

metric g [33, p. 175]. Given a chart (W,ϕ) by means of the local trivialization of

π we can transport the metric g to W ×H. In a local representation this means

that for each x ∈W we can identify the inner product gx on TxX with a strictly

positive operator Ax : H → H such that for every w ∈ H, gx(v, v) = 〈Axw,w〉
where v = vx(w). The metric g is “smooth” at x0 ∈ X in the sense that for

every ε > 1, there is a chart (W,ϕ) of x0 such that for every x ∈ W and

w ∈ H [44], gx(v, v) ≤ ε2gx0(v, v) and gx0(v, v) ≤ ε2gx(v, v). In particular, the

function ‖(x, v)‖2 = gx(v, v) defines a Finsler structure on TX. If X = (E, | · |)
is a Banach space then the identity chart can be considered and the function

‖(x, v)‖ = |v| defines trivially a Finsler structure on TX = E × E.

Let X be a C1 Finsler manifold. The length of a C1 path α : [a, b] → M is

defined as `(α) =
∫ b
a
‖α̇(t)‖ dt. If X is connected, then it is connected by C1

paths and we can define the associated Finsler metric as

dX(x, x′) = inf {`(α) : α is a C1 path connecting x to x′}.
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Thereby (X, d) is in particular a metric length space. The Finsler metric is con-

sistent with the topology given in X and is said to be complete if it is a complete

metric space with respect to the metric dX . From now on, unless otherwise

noted, we shall assume that all the manifolds are paracompact, at least C1, and

without boundary in order to simplify the arguments.

2.3. Injectivity and surjectivity indicators and Fredholm maps. Let

X and Y be Banach spaces and let T : X → Y be a bounded linear operator.

As it is known, T is one-to-one if

InjT := inf
|v|=1

|Tv| > 0,

and T is onto Y if and only if

SurT := inf
|v∗|=1

|T ∗v∗| > 0.

In this paper the non-negative numbers InjT and SurT are called injectivity

indicator and surjectivity indicator of T , respectively. By the Bounded Inverse

Theorem the operator T is a linear isomorphism if and only if both indicators

are positive. In this case ‖T−1‖ = ‖T−1∗‖ = ‖T ∗−1‖ so

InjT = SurT = ‖T−1‖−1.

Consider now the linear system T (x) = y. The dimension of the quotient space

CokerT = Y/RangeT provides a number showing the extent to which the above

system can fail to have a solution. Besides, the dimension of the KerT provides

a number of the extent to which the system can fail to have a unique solution

if it has any solution. Recall, T is a Fredholm operator if dim KerT < ∞ and

dim CokerT <∞. The index of the linear map T is the integer

IndexT = dim KerT − dim CokerT.

If T is a Fredholm operator then RangeT is closed in Y [1, p. 156]. Of course,

a desirable situation is when T is invertible; in this case dim KerT = 0 and

dim CokerT = 0 thus IndexT = 0.

Now, let f : X → Y be a C1 map between connected Banach manifolds.

Consider the nonlinear system f(x) = y. In [58] Smale introduced a nonlinear

version of Fredholm operators in order to establish a infinite-dimensional version

of Sard’s Theorem. The function f is a (nonlinear) Fredholm map if for each

x ∈ X the derivative df(x) : TxX → Tf(x)Y is a Fredholm operator. The index

of f is defined to be the index of df(x) for some x. Since X is connected the

definition does not depend on x. For example, a differentiable map f : Rn → Rm

is Fredholm with positive, negative, or zero index if n > m, n < m, or n = m,

respectively.

A point x ∈ X is called a regular point if df(x) is surjective and singular

or critical if it is not regular. An image of the critical point under f is called
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a critical value otherwise a regular value. Note that if f−1(y) = ∅ then y is

indeed a regular value.

Suppose that X and Y are endowed by a Finsler structure. Let x ∈ X and

y = f(x). The injectivity indicator of df(x) : TxX → TyY can be defined as

Inj df(x) = inf
‖v‖x=1

‖df(x)v‖y.

Here ‖ · ‖x represents the Finsler structure of TX restricted to TxX and ‖ · ‖y is

the Finsler structure of TY restricted to TyY . In the same way, the surjectivity

indicator of df(x) can be defined as

Sur df(x) = inf
‖v∗‖y=1

‖df(x)∗v∗‖x.

In this case ‖ · ‖x and ‖ · ‖y represent the dual norms on (TxX)∗ and (TyY )∗,

respectively. If f : X → Y is a C1 Fredholm map of index 0 then the following

statements are equivalent:

• f is a local diffeomorphism at x.

• Sur df(x) > 0.

• Inj df(x) > 0.

Furthermore, if one of these statements is true then

Sur df(x) = Inj df(x) = ‖df(x)−1‖−1.

Indeed, let T = df(x). Since X and Y are Finsler manifolds then (TxX, ‖·‖x) and

(TyY, ‖ · ‖y) are both Banach spaces and T : TxX → TyY is a linear Fredholm

map of index 0. If SurT > 0 then T is onto. Therefore T is injective, so

InjT > 0. In the same way we conclude that InjT > 0 implies SurT > 0. The

equivalences follow from the Inverse Mapping Theorem. Note that f is a local

diffeomorphism between connected manifolds if and only if it is a Fredholm map

of index 0 without critical points.

Invariance of domain property. The classical Brouwer Theorem on invariance

of domains states that if U ⊂ Rn is an open set and f : U → Rn is a continuous

injective map then f(U) is an open set in Rn. Consequently, a locally injective

mapping from Rn to Rn is a local homeomorphism. However, in general this

is no longer true for mappings between infinite-dimensional Banach spaces [32].

Nevertheless, an important consequence from the degree theory is the following:

Let f be a Fredholm map of index 0 between connected Banach manifolds. If

f is a locally injective map then it is an open map. In particular, f is a local

homeomorphism. So an “invariance-of-domain” property holds for these opera-

tors even in infinite dimensions [61]. This result is applicable even if there are

certain types of critical points.
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On the other hand, the “invariance of domain” property can be extended to

locally compact perturbations of nonlinear Fredholm maps of index 0. More pre-

cisely, if X and Y are Banach spaces, U is an open subset of X, f + k : U → Y is

a locally injective map where f is a Fredholm map of index 0 and k is continuous

locally compact function, then f + k is an open map [12]. A standard argument

of composition with charts is sufficient to check that this result holds if f + k is

defined on a connected smooth Banach manifold with image in a Banach space.

A point to be considered is that differentiability is not required for k. We re-

call that a map between two topological spaces is locally compact if any point

in its domain has a neighbourhood whose image has compact closure. There-

fore, the Schauder Theorem on invariance of domain for compact perturbation

of the identity is a special case of the property above [57]. See also [31], [39] and

references therein.

As might be expected, it should be noted that these theorems are only valid

for the index-zero case. Indeed, if f is a Fredholm map with negative index

then the image of f has empty interior. On the other hand, there are no locally

injective Fredholm maps with a positive index.

3. Global homeomorphism theorems

3.1. The path lifting property revisited. Keep in mind again the equa-

tion f(x) = y now with f : X → Y a local homeomorphism between topological

spaces. An important issue of algebraic topology is the “lifting problem”. Let

I = [0, 1] and let p : I → Y be a continuous path in Y such that p(0) ∈ f(X).

The lifting problem for f is to determine whether there is a continuous path

q : I → X, so-called lifting of p, such that f ◦ q = p. If it so, it is said that f lifts

the path p. Furthermore, f is said to have the path lifting property if

(C1) f lifts every continuous path in Y with starting point at f(X).

The path lifting property is directly related to the global behavior of a set

of solutions of f(x) = y for all y ∈ Y . For example, if Y is path-connected then

the path lifting property implies at once that f is onto, so the nonlinear system

always has a solution. In this vein, in the mid-fifties Browder [10] established

a remarkable result in the general context of Hausdorff topological spaces X and

Y with extra suitable local connectedness and separation conditions, including

paracompact Banach manifolds, which asserts that if a local homeomorphism

f : X → Y has the path lifting property then it is a covering projection, namely,

f is onto and for each point y ∈ Y there exists a neighbourhood V of y such

that f−1(V ) is the union of a disjoint family of open sets of X, each of which

is mapped homeomorphically onto V by f . The space X is called the covering

space and the space Y the base space. The converse of the Browder result is also

true, since every covering projection has the path lifting property; see Section 2.2
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of [59]. If f is a covering projection then the set of the solutions f−1(y) of the

nonlinear problem f(x) = y , that is, the fibre over y, is a discrete set and all

the fibres are homeomorphic if Y is path-connected [59, p. 73], so we can speak

of the fibre of f .

Via the path lifting property, Browder proved that a closed local homeomor-

phism is a covering map and each fibre of f is a finite set. This last statement

in italics is usually referred as the Browder Theorem. Recall that, a function

f : X → Y is said to be closed if

(C2) the image of any closed set of X is closed in Y .

The idea of the proof lies in the fact that if f is a local homeomorphism and p

is a path in Y beginning at f(x0) for some point x0 ∈ X:

• there is at most one lifting of p beginning at x0;

• there always exists a lifting of p locally.

If f is closed then the local lifting of p can be extended to whole interval I =

[0, 1], so f lifts the path p. Obviously not every covering map is a closed map.

However, Browder gives a characterization (Theorem 5 of [10]) of the covering

maps in terms of the following condition, called in the current paper the Browder

condition:

(C3) for every y ∈ Y there exists a neighbourhood V such that f is a closed

mapping on each component of f−1(V ) into V .

In the late sixties, the article of Rheinboldt [54] appeared in the literature

where a general theory is established for global implicit function theorems in

terms of the continuation property. The continuation property was influenced

in part by the so-called continuation method in numerical analysis. A local

mapping relation [54, p. 184], e.g., a continuous map, f : X → Y is said to have

the continuation property for a subset P if

(C4) for any p ∈ P and any local lifting q of p defined on [0, ε) ⊂ [0, 1] there

exists an increasing sequence tn → ε such that {q(tn)} converges in X

(in a topological sense).

As Rheinboldt pointed out, this definition represents a simple modification of

the path lifting property for paths in the set P . It is therefore not surprising

that in fact they are equivalent [54, p. 185]. In particular, the continuation prop-

erty guarantees the existence of the lifting defined on whole interval I = [0, 1].

Various applications to global implicit and inversion theorems are presented in

[54] essentially for normed linear spaces where P is taken as the set of all smooth

paths on Y . As discussed below, in this case much more can be said.

Relatively recently, Gutú and Jaramillo [22] presented an extension of some

well-known results in the framework of metric spaces where the continuation

property plays a central role. From Example 2.2 and Theorem 2.6 of [22] we
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can deduce that if Y is a connected Ck Banach manifold, equivalently Ck path-

connected [44, p. 118], then it is enough to consider the set P as the set of the

Ck paths in a connected Y . More precisely, let X and Y be Banach manifolds,

assume Y is connected of class Ck where 1 ≤ k ≤ ∞, if f : X → Y is a local

homeomorphism then following statements are equivalent:

• f has the continuation property for the set of all Ck paths in Y .

• f is a covering map.

In order to make a clear connection with later results and because the idea

is quite simple, we present below the sketch of the proof. The demonstration

is based on the ideas in [47], in turn based on the theory of covering spaces of

differential geometry.

Sketch of the Proof. Let y ∈ Y . There exists a Ck path p joining

some point in f(X) to y since Y is connected and of class Ck. Therefore, since

f is a local homeomorphism there exists a local lifting q of p. As f has the

continuation property for the Ck paths then the local lifting can be extended

to whole I = [0, 1] and f(q(1)) = y. So, f is onto. Let (Vy, ψ) be a Ck chart

centered at y, i.e., ψ(Vy) is an open ball in a Banach space centered at 0 = ψ(y).

For every z ∈ Vy there exists a line segment relative to ψ, pz(t) = ψ−1(tψ(z)),

which is a Ck path joining y to z. For any u ∈ f−1(y), as before, there exists

lifting qz of pz starting at u defined in whole I. The lifting is unique since f

is a local homeomorphism. The continuity of the map (t, z) 7→ pz(t) implies

that the sets Ou = {qz(1) : z ∈ Vy} form a disjoint family of open sets such

that f−1(Vy) =
⋃

u∈f−1(y)

Ou and each Ou is homeomorphic onto Vy by f . See

Remark A.1.

Suppose that X and Y are C1 Banach manifolds, not necessarily connected.

It is well known that if f is a closed mapping and f−1(y) is compact then f is a

proper map [34, p. 119]. Recall, a function between topological spaces f : X → Y

is said to be proper if

(C5) the preimage of each compact set in Y is compact in X.

On the other hand, in this context, every proper map f : X → Y is closed [45].

Besides, any constant map over R gives us a simple example of a non-proper

closed map. However, for connected manifolds, if f is a Fredholm closed map

and dimX = ∞ then f is also a proper map [58]. Moreover, if X and Y

are both infinite-dimensional then every continuous non-constant closed map is

proper [56]. Nevertheless, according to the Browder Theorem, regardless of the

dimension and connectedness of X, if Y is connected and f is a local homeomor-

phism then f is a closed map if and only if it is a proper map. In this case, f is

a covering projection with finite fibre. In order to close the circle, note that if f

is a covering projection with finite fibre then it is a closed map.
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By the above arguments, a local homeomorphism f is a covering map pro-

vided it is weakly proper map, namely

(C6) for every compact K ⊂ Y each component of f−1(K) is compact in X.

In fact, if it is so, we can also apply a standard monodromy argument to get

a global lifting from the local one. Clearly, condition (C6) does not characterize

the covering projections, for example f(t) = exp(2πit) is a covering map but it

is not weakly proper. �

Remark 3.1. It is well known that if a continuous map f is a covering

projection then it induces a monomorphism f? : π1(X) → π1(Y ) defined by

f?[ω] = [fω]. So a covering projection f is a homeomorphism if and only if

f?π1(X) = π1(Y ) [59, p. 77]. This occurs for example if Y is simply connected.

In this case, if df(x) is a linear isomorphism for all x ∈ X then f is a global

diffeomeomorphism onto Y . The reader can consult [3, p. 47] for a direct and el-

ementary proof, avoiding passing through the monomorphism f? of the so-called

Monodromy Theorem. This classical result relates to the claim that every proper

local homeomorphism f : X → Y between metric spaces is a global homeomor-

phism if X arcwise connected and Y simply connected.

Summing up, let 1 ≤ k ≤ ∞ and let X and Y be Banach manifolds, assume

Y is of class Ck and connected, if f : X → Y is a local homeomorphism then the

following conditions are equivalent to f being a covering projection:

• f satisfies the Browder condition.

• f has the path lifting property.

• f has the continuation property for the set of all Ck paths in Y .

Furthermore, the following conditions are equivalent to f being a covering pro-

jection with finite fibre:

• f is a closed map.

• f is a proper map.

Finally, f is a covering map provided that

• f is a weakly proper map.

If Y is simply connected then all conditions above are equivalent to f being

a global homeomorphism. The special cases are detailed in the next subsection.

Banach spaces, Riemannian and Cartan–Hadamard Finsler manifolds. Inde-

pendently of Rheinboldt [54], Plastock [47] introduced the condition L for local

homeomorphism f : X → Y between Banach spaces. The condition L is just the

continuation property for the subset P of all the lines lz(t) = y(1− t) + zt in Y .

Plastock sets that a local homeomorphism between Banach spaces is a global one

if and only if it satisfies condition L. The proof is a special case of the sketch of

the proof given above with (V, ψ) = (Br(y), idY − y) for some r > 0.
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Plastock’s result may even be improved, since it is enough to lift only the

line segments from a fixed point in the image of f . Indeed, following the ideas of

John [29], suppose that y0 = f(x) for some x ∈ X. If f is a local homeomorphism

then there exists a neighbourhood V of y0 and an inverse defined on V . This

local inverse can be continued, as far out as possible, by a monodromy process

determined by the uniqueness of the continuations. So, a global inverse f−1x (z) :=

qz(1) can be constructed on a maximal star Sy0 defined as the set of all z ∈ Y
for which there exists a lifting qz, starting at x, of the line pz joining y0 to z. As

John proved, the set Sy0 is open and the mapping f−1x is an inverse of f with

domain Sy0 . Therefore, f is a global homeomorphism if and only Sy0 = Y if and

only if f lifts the lines lz(t) = (1− t)y0 + tz for all z ∈ Y . In this vein, a map f

is said to be ray-proper at y0 if

(C7) the pre-image of the line joining y0 and z is compact for any z ∈ Y and

some y0 ∈ Y .

Note that a local homeomorphism ray-proper at some y0 ∈ f(X) clearly satisfies

condition (C4) for the set P of rays from y0. A continuous map f : X → Y

between Banach spaces is proper if and only if it is closed and ray-proper. Fur-

thermore, it not difficult to construct a ray-proper map which is not proper [4,

pp. 68–72]. But, if f is a local homeomorphism between Banach spaces, e.g.,

a locally injective Fredholm map of index 0, then the following conditions are

equivalent:

• f is ray-proper map at y0 ∈ f(X).

• f is a closed map.

• f is a proper map.

• f satisfies condition L.

• f has the continuation property for all lines from y0.

• f is a global homeomorphism.

Remark 3.2. Note that if f is a local diffeomorphism then the liftings of

the lines lw = f(x) + tw are given by the flow of the differential equation q̇(t) =

df(q(t))−1w, namely, the Ważewski equation, with the initial condition q(0) = x,

cf. [38].

We claim that the ideas of John can be used to obtain this result for Cartan–

Hadamard manifolds. Recall, in a traditional sense, a Cartan–Hadamard mani-

fold is a Riemannian manifold (Y, g) which is complete, simply connected and

with semi-negative curvature; see [33, p. 235] for a precise definition. Because Y

is complete, the exponential map expy is defined on all TyY for all y ∈ Y . By

the Cartan–Hadamard Theorem, the function expy : TyY → Y is a global diffeo-

morphism. The definition of semi-negative curvature and the Cartan–Hadamard

Theorem can both be extended for some finite and infinite-dimensional Finsler
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manifolds, namely Finsler manifolds with spray, according to the Neeb defini-

tion [42] which includes: Banach spaces, Riemannian manifolds, and the finite-

dimensional Finsler manifolds called Berwald spaces. In a Cartan–Hadamard

manifold every two points can be joined by a unique minimal geodesic [42]. That

is, every Cartan–Hadamard manifold is a uniquely geodesic space. Surprisingly,

not every Banach space is a Cartan–Hadamard manifold since a Banach space is

uniquely geodesic if and only if its unit ball is strictly convex; see Proposition 1.6

of [9]. For example, `1 or `∞ cannot be Cartan–Hadamard manifolds.

Let f : X → Y be a local homeomorphism. Assume that X is a Banach

manifold and Y is a Cartan–Hadamard Finsler manifold. Let y0 ∈ f(X) and let

pz be the unique minimizing geodesic segment joining y0 to z in Y . As before,

Sy0 is the star with vertex y0 defined as the set of all z ∈ Y for which there is

a lifting qz of pz such that qz(0) = x. Let f−1x (z) := qz(1). The set Sy0 is open

and the mapping f−1x is an inverse of f with domain Sy0 ; see Lemma A.2 in the

appendix. In particular, the following statements are equivalent:

• f has the continuation property for all minimal geodesics from y0.

• f is a global homeomorphism.

Finally, if (Y, g) is a Riemannian manifold then for every y ∈ Y there exists

r > 0 sufficiently small such that expy : Bg(0, r)→ Bg(y, r) is a diffeomorphism.

So if we proceed as before, but with the paths pz(t) = expy(t exp−1y (z)) we can

deduce the following fact. Let f : X → Y be a local homeomorphism between

Banach manifolds, assume Y is Riemannian and connected, thus the following

statements are equivalent:

• f has the continuation property for the set of minimal geodesics in Y .

• f is a covering map.

This fact can be generalized to manifolds admiting a definition of an exponential

map such that expy is a local diffeomorphism at 0 ∈ TyY , an unclear fact in the

infinite-dimensional Finsler setting [42, p. 120]. See proof of Lemma A.3 in the

appendix for details.

3.2. Metric conditions. Let X and Y be Banach spaces and let f : X → Y

be a global isometry, namely |f(x) − f(y)| = |x − y| for all x, y ∈ X. The

isometry f is a distance preserving map and evidently one-to-one. A pertinent

question is: Under which conditions f is onto? For example, if the isometry f

is a Fredholm map of index zero we may expect that f be onto, since in this

case f(X) is always open in Y . In this sense, Rheinboldt [54] proved that if X

is complete and f : X → Y is a continuous map such that f(X) is open in Y

and |f(u) − f(x)| ≥ α|u − x| for all x, u ∈ X and some α > 0 then f has the

continuation property for smooth paths. So, we can conclude that f is surjective.
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covering map

Browder condition

path-lifting property

(C4) Ckpaths (C4) minimal geodesics

covering map with finite fibre

proper

closed

homeomorphism

(C4) minimal geodesics from y0 weakly proper (C4) lines from y0

ray-proper

(C4) lines (condition L)

Ck Banach manifold

Riemannian

simply connected

Cartan–Hadamard Banach space

Figure 1. Equivalences and implications for a local homeomorphisms
f : X → Y between Banach manifolds, Y connected and also satisfying

the condition in the labeled arcs.

Suppose that X and Y are connected Finsler manifolds with Finsler distance

dX and dY , respectively. The Rheinboldt’s result invites us to consider the

following condition. We shall say that f is an expansive map if

(C8) X is complete and dY (f(u), f(x)) ≥ αdX(u, x) for all points x, u ∈ X
and for some α > 0.

Let f : X → Y be an expansive Fredholm map of index zero. We can repeat

the Rheinboldt technique: Clearly, f is injective and therefore a local homeo-

morphism, since it is a Fredholm map of index zero. We will check that f has

the continuation property for C1 paths. Let p be a C1 path in Y , let q be a lo-

cal lifting of p defined on [0, ε) ⊂ I, and let {tn} be a sequence converging to

ε. The sequence {q(tn)} is a Cauchy sequence because {p(tn)} converges and

dY (p(ti), p(tj)) ≥ αdX(q(ti), q(tj)) for all ti, tj ∈ {tn}. The completeness of X

implies that {q(tn)} converges in X. Therefore f is a covering map with a sin-

gleton fibre. So, f is a global homeomorphism. In other words: An expansive

Fredholm map of index zero is a global homeomorphism.

An illustrative example is presented below in order to introduce the relation-

ship between the expansive maps and the surjectivity and injectivity indicator.
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Example 3.3. Let X be a Hilbert space. A strongly monotone operator

f : X → X is a map such that

(C9) |〈f(u)− f(x), u− x〉| ≥ α|u− x|2 for all x, u ∈ X and for some α > 0.

Zarantonello [65] proved that a strongly monotone operator is a bijective home-

omorphism. This is a typical example of an expansive map. Let x ∈ X and let h

be a small enough positive number such that f(x+h) = f(x)+df(x)(h)+rx(h).

If h = εv then for some v ∈ X, |〈df(x)v, v〉|+o(1) ≥ α|v|2. Hence, |〈df(x)v, v〉| ≥
α|v|2 and |〈v, df(x)∗v〉| ≥ α|v|2 for all x, v ∈ X. Therefore Inj df(x) > α and

Sur df(x) > α for all x ∈ X.

Condition (C8) is quite strong, but the Rheinboldt technique invites us to

consider a “local expansive property” and the above example in turn leads us to

think about the surjectivity and injectivity indicators. In fact, if X and Y are

complete and connected Finsler manifolds and f : X → Y is a local diffeomor-

phism then there is the following relationship between the Finslerian distance

and the surjectivity and injectivity indicators:

D−x f := lim inf
u→x

dY (f(u), f(x))

dX(u, x)
= ‖df(x)−1‖−1 = Sur df(x) = Inj df(x).

The first equality was noted by John [29] for Banach spaces. For Riemannian and

Finsler manifolds the proof can be consulted in [22] and [27], respectively. So, for

local diffeomorphisms condition (C8) implies that both indicators are uniformly

bounded below on X. That is, the Hadamard–Levy condition is fulfilled:

(C10) X is complete and there is β > 0 such that ‖df(x)−1‖ ≤ β for all x ∈ X.

3.2.1. The Earle–Eells condition. Our goal now is to introduce a fairly gen-

eral condition in order to get a covering map in terms of the injectivity and

surjectivity indicators. In the rest of the section, the symbol µ(x) will be used

to denote any of the two indicators of df(x). For example, µ(x) > 0 means

Inj df(x) > 0 or Sur df(x) > 0. If this is the case and f is a Fredholm operator

of index zero then actually both indicators of df(x) are positive (if one indi-

cator is positive, so is the other) and f is indeed a local diffeomorphism and

µ(x) = ‖df(x)−1‖−1. It is important to note that we do not need the inverse of

df(x) to calculate µ(x) and that can be done via any of the two indicators.

Recall the following direct consequence of the chain rule: if f is a local

diffeomorphism and q is a C1 local lifting of a rectifiable path p in Y then

(3.1) `(q) · inf {µ(x) : x ∈ image of q} < `(p).

So, the sketch of the proof presented in Section 3.1 suggests that the following

condition be considered, called in this paper the Earle–Eells condition, in order

to get a covering map:
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(C11) X is complete and for every y ∈ Y there exists α > 0 and a neighbour-

hood V of y such that µ(x) ≥ α for all x ∈ f−1(V ).

Let f : X → Y be a Fredholm map of index zero that satisfies condition (C11).

Because µ(x) > 0 for all x ∈ X, as we pointed out before, the map f is a lo-

cal diffeomorphism. Condition (C11) implies that the length of any local lifting

of a line segment relative to a chart is rectifiable. So, the local lifting can be

extended to the whole interval I = [0, 1]; which leads to the conclusion that f

is a smooth covering map, i.e., f is onto and for each point y ∈ Y there exists

a neighbourhood V of y such that f−1(V ) is the union of a disjoint family of open

sets of X, each of which is mapped diffeomorphically onto V by f . Therefore, if

X and Y are connected Finsler manifolds and f : X → Y is a Fredholm map of

index zero then f is a smooth covering map provided f satisfies the Earle–Eells

condition. This result is a special case of Proposition C of [16]. Although Earle

and Eells request the surjectivity of f , this condition can be replaced by connect-

edness of Y . They also request extra and unnecessary smoothness requirements.

A simpler proof is presented in the appendix with recently presented ideas (The-

orem A.5). Furthermore, it is proven that every smooth covering map with

finite fibre satisfies the Earle–Eells condition; see Lemma A.6 in the appendix.

Specially we have: Let X and Y be connected Finsler manifolds. Assume X

is complete, Y is simply connected, and f : X → Y is a Fredholm map of in-

dex zero. Then the Earle–Eells condition is necessary and sufficient for f to be

a global diffeomorphism.

Remark 3.4. Length-path conditions. In his seminal paper [23], Hadamard

suggests that if his integral condition is satisfied then “a path of infinite length

drawn in X cannot have image in Y with finite length” and, in fact, this con-

sequence should be sufficient for the existence and uniqueness of the nonlinear

system f(x) = y whenever f is a local homeomorphism. Supported by this,

in 1920 Levy [35] proved the following for X = Y the space of square integrable

functions on [0, 1] and f a local homeomorphism of X into Y : Suppose that if an

open curve q in X is mapped homeomorphically by f on an open segment p, must

be of finite length; then f is a homeomorphism of X onto Y . As a consequence

he gives an extension of the Hadamard global inversion theorem in this setting.

In our context, we have the following. Let f : X → Y be a local diffeomor-

phism between Finsler manifolds. Assume Y is connected and X is complete.

Because the covering maps have the unique path lifting property, we can conclude

that f is a smooth covering map if and only if

(C12) every local lifting of a C1 path has finite length.

The Proposition 3.28 of [9] is a related result for certain length spaces that are

locally uniquely geodesic (which includes the Riemannian manifolds, but not all
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Banach spaces) such that `(q) ≤ `(f ◦ q) for all paths q in X. In our context, we

can extend this result for Finsler manifolds by means of the following condition:

(C13) X is complete and the length of every C1 path in X is not bigger than

the length of its image under f .

Clearly condition (C13) implies condition (C12). Indeed, if p is a C1 path starting

at f(X) and q is a local lifting of p by f then `(q) ≤ `(p) <∞.

3.2.2. Coercivity and the Hadamard integral condition. A map f : Rn → Rn

is proper if and only if it is norm-coercive; see Theorem 3.3 of [4], namely

|f(x)| → ∞ as |x| → ∞.

That is, for any % ≥ 0 there is ρ ≥ 0 such that |f(x)| > % if |x| > ρ. It is

easy to see that f is norm-coercive if and only if the pre-image f−1(B) of any

bounded subset B of Y is bounded by X. In particular, f : Rn → Rn is a norm-

coercive local homeomorphism if and only if f is a global homeomorphism. This

characterization supports the false but intuitive idea that the condition “must”

satisfy a continuous bijection between vector normed spaces. Nevertheless, for

a infinite-dimensional Banach space X, a homeomorphism f : X → X can be

constructed such that f maps X \ B into B where B is a ball in X [62]. So

this homeomorphism is not norm-coercive. To complete the picture, the reader

is referred to Example 3.12 of [4] for an infinite-dimensional example of a norm-

coercive but non-proper map.

For special cases there are some results along this line, for example every

locally injective norm-coercive compact perturbation of the identity is a global

homeomorphism [54]. In general, a local diffeomorphism f : X → Y between

Banach spaces is a global one provided it is norm-coercive and ‖df(x)−1‖ ≤ g(|x|)
for some continuous positive function g on R. Note that such a function g exists

if and only if sup|x|≤ρ ‖df(x)−1‖ <∞ for all ρ > 0. The last statement in italics

was proposed by Plastock and proven via the condition L [47]. See [64] for an

alternative proof. Another generalization for metric spaces but in terms of D−x f ,

which includes Finsler manifolds, can be found in [22].

From now and throughout this subsection we are going to suppose that X

and Y are both connected Finsler manifolds endowed with the Finsler metrics

dX and dY , respectively. So, a more than justified version in our setting can be

established via the injectivity or surjectivity indicator by means of the following

condition for some x0 ∈ X:

(P) X is complete and for any ρ > 0 there exists αρ > 0 such that µ(x) > αρ
if dX(x0, x) ≤ ρ.

Let f : X → Y be a Fredholm map of index zero. Clearly (P) implies that f

a local diffeomorphism. Furthermore, because the mapping x 7→ µ(x) is continu-

ous, if X is finite-dimensional then condition (P) is equivalent to f being a local
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diffeomorphism. Recall, a function f between connected Finsler manifolds is

coercive if f−1(B) is bounded provided B is bounded, that is, for some y0 ∈ Y
and x0 ∈ X, dY (f(x), y0) → ∞ as dX(x, x0) → ∞. We shall say that a map

f : X → Y satisfies the Plastock condition if

(C14) f is coercive and satisfies (P) for some x0 ∈ X.

If f satisfies the Plastock condition then it is a smooth covering map. This can be

seen as a direct consequence of the Earle–Eells condition since, for every y ∈ Y
we can consider a (small enough) bounded set V containing y and dominium of

a chart centered at the origin.

Note that (P) holds if and only if inf
dX(x0,x)≤ρ

µ(x) > 0 for all ρ > 0. Now, let

%(r) =

∫ r

0

inf
dX(x0,x)≤ρ

µ(x) dρ.

The function ρ 7→ inf
dX(x0,x)≤ρ

µ(x) is nonincreasing, therefore a sufficient (obvi-

ously not necessary) condition for (P) is

(C15) X is complete and lim
r→∞

%(r) =∞.

And this limit is nothing but the infinite-dimensional version of the Hadamard

integral condition. As may be expected and indeed pointed out below, for the

index zero case condition (C15) implies that f is a smooth covering map and Y

is complete. This is a consequence of the following remarkable fact. Let r > 0

be fixed and % = %(r). If f is a local diffeomorphism, since every rectifiable path

p in B%(f(x0)) with p(0) = f(x0) and `(p) < % can be lifted to a path in Br(x0)

then

(3.2) % > 0 implies B%(f(x0)) ⊂ f(Br(x0)).

This has been noted by John [29] for Banach spaces and generalized for length

spaces in terms of D−x f in [19]. A direct proof for Finsler manifolds can be

done in terms of µ(x) using the same arguments; see proof of Lemma A.7 in the

appendix. Let x0 be a solution solution of f(u) = y0 and suppose that % > 0 for

some r > 0. Note that (3.2) implies that if dY (y, y0) < % then there is a solution

x of f(u) = y such that dX(x, x0) < r.

Even more, if the mapping f : X → Y satisfies (C15) and Y is simply con-

nected then f is a global coercive diffeomorphism, hence f satisfies condition

(C14). Indeed, let B be a bounded set in Y . There is R > 0 such that

B ⊂ BR(f(x0)). Since lim
r→∞

%(r) = ∞ there is s > 0 such that R = %(s).

So, B ⊂ BR(f(x0)) ⊂ f(Bs(x0)) and therefore f−1(B) ⊂ Bs(x0). Summing

up, if f : X → Y is a Fredholm map of index zero between connected Finsler

manifolds satisfying (C15) then:

• f is a smooth covering map.

• Y is complete.
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• If Y is simply connected then f satisfies the Plastock condition, in par-

ticular f is a coercive global diffeomorphism.

Remark 3.5. Ray-coercive maps. A map f : X → Y between Banach spaces

is said to be ray-coercive at y0 if the pre-image of the line joining y0 and z is

bounded for any z ∈ Y and some y0 ∈ Y . A coercive map is ray-coercive,

but not vice versa; see Example 3.11 of [4]. Furthermore, every ray-proper

function is ray-coercive and the converse is true if X is finite-dimensional, see,

e.g., Example 3.14 of [4]. It is easy to conclude that a Fredholm map of index

zero f is a global diffeomorphism provided

(C16) f is ray-coercive at some y0 ∈ f(X) and satisfies (P).

Suppose that f is a Fredholm map of index 0 such that (P) holds for x0 = 0,

that is, for any ρ > 0 there exists αρ > 0 such that µ(x) > αρ if |x| ≤ ρ. Thus

f is a local diffeomorphism and if y0 ∈ f(X) then f is ray-coercive at y0 if and

only if f is ray-proper at y0. Actually, if f is ray-coercive at y0 ∈ f(X) and

satisfies (P) then any local lifting q of a ray starting at y0 is contained in a ball

Bρ(0) for some ρ > 0 hence q has finite length. So f is a global diffeomorphism.

Then f is a proper map, thus it is a ray-proper map at y0.

Remark 3.6. An interesting fact is that for a linear map T : X → Y the

properness and norm-coercivity of T are each equivalent to the existence and

boundedness of T−1 on Range T [4, pp. 67,73]. As a consequence, for linear

Fredholm maps of index 0 (since dT (x) = T for all x ∈ X) the following charac-

terization of a linear isomorphism can be concluded. Let T : X → Y be a linear

Fredholm map of index 0, then the following statements are equivalent:

• T is a proper map.

• T is norm-coercive.

• T satisfies the Hadamard integral condition.

• T is a linear isomorphism.

As already said in the introduction, Katriel [30] established an alternative

technique to the monodromy argument for global homeomorphism theorems for

maps between metric spaces. The principal idea is to show that mountain-pass

theorems can be used to prove new global inversion results as well as new proofs

of known theorems. Theorem 6.1 of [30] asserts that: A local homeomorphism

f : X → Y is a global homeomorphism provided that for all % > 0 and for some

y0 ∈ Y
inf {sur(f, x) : d(f(x), y0) < %} > 0,

where X and Y are complete path-connected metric spaces such that X remains

path-connected after the removal of any discrete set and Y is a “nice” space,

that is, for each y ∈ Y there is a continuous functional gy : Y → R satisfying
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a PS-condition (non-smooth version) and possessing a unique minimizer and

a discrete set of maximizers as the only critical points. Here, sur(f, x) is the

surjection constant of f at x, originally introduced by Ioffe [26] in order to

get a generalization of Plastock’s results (also via the condition L) for non-

differentiable maps between Banach spaces, namely

sur(f, x) = lim inf
r→0

1

r
sup {R ≥ 0 : BR(f(x)) ⊂ f(Br(x))}.

Fortunately, for a local diffeomorphism f : X → Y between connected and com-

plete Finsler manifolds we have

D−x f = sur(f, x) = µ(x).

See Remark 3.4 and Example 3.2 of [22] and Proposition 3.11 of [27]. Therefore,

in our setting, the Katriel condition can be established in terms of the injectivity

or surjectivity indicator and the Finsler distance, that is

(C17) X is complete and inf {µ(x) : dY (f(x), y0) < %} > 0 for all % > 0 for

some (then for all) y0 ∈ Y .

Note that if f is a Fredholm map of index zero then condition (C17) implies

that f is a local diffeomorphism. Furthermore, we can prove that condition

(C17) implies the continuation property for all C1 paths: Let p be a C1 path

in Y beginning at y0 and let q be a local lifting of p. Since the image of p is

compact, there is % > 0 such that dY (p(t), y0) < % for all t ∈ I. In particular,

dY (f(x), y0) < % for all x in the image of q. Therefore `(q) <∞. In other words,

if X and Y are connected Finsler manifolds and f : X → Y is a Fredholm map

of index zero then condition (C17) implies that f is a smooth covering map.

In comparison with the Katriel approach, it is worth mentioning that it is not

clear which Finsler manifolds Y are nice spaces. Actually, Katriel gives only two

examples: Banach spaces with gy(z) = |z − y| and infinite-dimensional Hilbert

manifolds with gy(z) = 1 − e‖π(z)−y‖y for z 6= −y and gy(−y) = 1, where the

map π : Y \ {−y} → TyY is the stereographic projection. Cartan–Hadamard

Finsler manifolds can be added to the list. Nevertheless, all these examples are

simply connected spaces, so at the moment an example has not been presented

to test the effectiveness of the monodromy argument. We shall return to this

point in the next subsection.

As Katriel notes: the Plastock condition implies the Katriel condition. In-

deed, since f is coercive, for every % > 0 there is ρ > 0 such that dY (f(x), y0) ≥ %
if dX(x, x0) ≥ ρ for some x0. Therefore,

inf {µ(x) : dY (f(x), y0) < %} ≥ inf {µ(x) : dX(x, x0) < ρ} ≥ αρ > 0.

See Theorem 6.2 of [30]. In short, if f : X → Y is a local diffeomorphism between

connected and complete Finsler manifolds and Y is simply connected then each

of the following statement implies the next:
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• f is an expansive map.

• f satisfies the Hadamard–Levy condition.

• f satisfies the Hadamard integral condition.

• f satisfies the Plastock condition, in particular f is a coercive map.

• f satisfies the Katriel condition.

• f satisfies the Earle–Eells condition.

3.2.3. The special case of uniform lower bound. The classical theorem in

Riemannian geometry proved by Ambrose [2] asserts the following. Let (X,h)

and (Y, g) be Riemannian manifolds of dimension n. If f : X → Y is a surjective

C∞ map such that

(C18) X is complete and f is a Riemannian local isometry, i.e., for every x ∈ X,

v, w ∈ TxX and y = f(x) it holds that gy(df(x)v, df(x)w) = hx(v, w),

then f is a smooth covering map, hence f is a Riemannian covering. If Y is

simply connected then f is indeed a Riemannian isometry. A simple calculation

shows that condition (C18) implies that Inj df(x) = 1 for all x ∈ X. Condition

(C18) makes sense also for infinite-dimensional Riemannian manifolds. Note that

for an infinite-dimensional version, we can substitute the hypothesis dimX =

dimY = n by requesting that f be a Fredholm map of index zero (the surjectivity

condition on f may be changed by the connectedness of Y ). Finally, by the chain

rule, if f is a Riemannian local isometry then it satisfies (C13).

Now, suppose that f : (X,h) → (Y, g) is a local diffeomorphism between

possibly infinite-dimensional Riemannian manifolds. Assume Y is connected and

X is complete. A typical step in the proof of the Cartan–Hadamard Theorem,

e.g., Theorem 6.9 of [33], uses the fact that, if a constant α > 0 exists such that

for all x ∈ X and v ∈ TxX such that ‖df(x)v‖g ≥ α‖v‖h then f is a covering

map. In the above inequalities

‖v‖2h = hx(v, v) and ‖df(x)v‖2g = gy(df(x)v, df(x)v).

In our notation, this means that if Inj df(x) > α for all x ∈ X then f is

a covering map. The Cartan–Hadamard Theorem follows for the particular case

f = expp : TpM →M

where M is a geodesically complete manifold of semi-negative curvature since,

in this case α = 1. The usual proof of the last statement in italics consists of

reducing the demonstration to the case where f is a local isometry and then the

Ambrose Theorem is used. Relatively recently, a similar result with an analogous

approach was given by Neeb [42] for Finsler manifolds (X, ‖ · ‖X) and (Y, ‖ · ‖Y )

(Y is a manifold with spray) through the inequality

‖Tfv‖Y ≥ α‖v‖X for all v ∈ TX,
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where Tf : TX → TY is the tangent map defined to be df(x) on each fibre of

TxX. Of course, Neeb’s condition implies that Inj df(x) > α for all x ∈ X.

Therefore Neeb’s result can be deduced from the above arguments using the

Hadamard–Levy condition in terms of the injectivity indicator. In this case:

• If X is connected then the Hadamard integral condition holds trivially,

regardless of x0. In particular, Y is complete and

Bαr(f(x)) ⊂ f(Br(x)) for all x ∈ X and r > 0.

• If Y is simply connected then f is a coercive global diffeomorphism.

3.3. Palais–Smale conditions. In the middle of the sixties, Palais and

Smale [46] introduced the condition (C) for functionals F : X → R where X is

a Riemannian manifold, possibly infinite-dimensional. Suppose for convenience

that X is a Hilbert space. A functional F satisfies the condition (C) if the closure

of any nonempty subset S of X on which f is bounded but on which |∇F | is

not bounded away from zero, contains a critical point of F . As usual ∇F (x) is

the gradient of F at x defined in terms of the Fréchet differential by dF (x)w =

〈∇F (x), w〉. The origin of the condition (C) is the study of the asymptotic

properties of the gradient flow of a C2 functional, namely the solutions x(t) of

the Cauchy problem [40]

ẋ = −∇F (x), x(0) = x0,

The function t 7→ F (x(t)) is nonincreasing. If x(t) is defined for all positive t and

lim
t→+∞

F (x(t)) is finite then there is a sequence {tn} such that ∇F (x(tn)) → 0.

As is also point out in [40]: “the question is then to find conditions upon F

under which this sequence of almost critical points of F provides a real one”.

The first work that the author found in the literature that established a rela-

tionship between the condition (C) and global inversion theorems corresponds to

Gordon [20]. The paper consists basically of an alternative proof of the fact that

a local diffeomorphism f : Rn → Rn is a global one if and only if it is a proper

map. The idea to show that f is onto provided it is proper is the following. Let

Fy(x) =
1

2
|f(x)− y|2.

Since Fy is also proper, it satisfies the condition (C) and the gradient flow exists

for all positive time. So a critical point x∗ of Fy exists as the limit of a sequence

{x(tn)} in the gradient flow of Fy such that f(x∗) = y. Gordon also used the

gradient flow of Fy to show that f is one-to-one. An alternative and very easy

proof of the injectivity of f can be found in the introduction to [30] by means of

the simplest mountain-pass theorem in Rn applying to Fy.

Note that in the generalizations of the mountain-pass theorems in nonlo-

cally compact settings it is usual to replace the norm-coercivity assumption by
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a generalization or variant of the Palais–Smale type condition. So, a suitable

Palais–Smale type condition for Fy must guarantee the bijection of f . This re-

flection was noted by Rabier [51] independently of Gordon and Katriel a year

before the latter.

Recall, a C1 functional F satisfies the PS-condition if any sequence {xn} in

X such that F (xn) is bounded and ‖∇F (xn)‖ → 0, called PS-sequence, contains

a convergent subsequence, whose limit is then a critical point of F . This is

a stronger condition of the condition (C); see Section 3 of [40], but has been

widely used in the context of Banach spaces, as well as in the following localized

form: a functional F satisfies the PSc-condition if any sequence {xn} in X such

that F (xn)→ c and ‖∇F (xn)‖ → 0, called PSc-sequence, contains a convergent

subsequence.

Recently, Idczak et al. [25] adapted the ideas of Katriel [30] to get a global

inversion theorem for a C1 map f : X → Y between Hilbert spaces by means of

the functional

Fy(x) =
1

2
|f(x)− y|2

as “an alternative” to the Plastock condition. Specifically, they proved that

a local diffeomorphism f is a global one, provided

(C19) Fy satisfies the PS-condition for all y ∈ Y .

See also [18] for some recent related results along this line. The connection

between Idczak’s result and the above conditions can be easily made by means

of the following fact: If f : X → Y is a Fredholm map of index 0 between Hilbert

spaces then the Katriel condition implies that Fy satisfies the PS-condition for

all y ∈ Y ; see Lemma A.8 in the appendix. On other hand, the functional

F0 = |f |2/2 is bounded below. By the Ekeland Variational Principle, if F0

satisfies the PS-condition then it is a coercive map. Therefore, so is f . In

summary, if f : X → Y is a Fredholm map of index 0 between Hilbert spaces

and satisfies (P) then the following statements are equivalent:

• Fy satisfies the PS-condition for all y ∈ Y .

• f is a coercive global diffeomorphism.

• f satisfies the Plastock condition.

• f satisfies the Katriel condition.

The author believes that condition (C19) and Lemma A.8 may be carried out

to the Banach spaces setting using the Clark subgradient for the functions Fy
with a suitable definition of the Palais–Smale sequence. Perhaps it can also be

extended to the Cartan–Hadamard Finsler manifolds. The appropriate adequa-

tion for Finsler manifolds is not clear in terms of the Finsler distance, since the

critical points of the distance function are involved.
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The proof of Lemma A.8 basically contains two ideas: the Katriel condition

implies that there are no PSc-sequences for Fy with c 6= 0 and every PS0-sequence

for Fy converges trivially to the minimum of Fy. Along this line, Rabier gives

a characterization of the global diffeomorphism between C1 Finsler manifolds in

terms of sort of “generalized PS-sequences”; see Theorem 5.3 of [53]. He considers

for a map f : X → Y between Finsler manifolds the following condition:

(C20) X is complete and f is a strong submersion, that is, there is no sequence

{xn} from X with f(xn)→ y ∈ Y and Sur df(xn)→ 0.

Rabier establishes that if f is a local diffeomorphism, Y is simply connected,

and X is complete then f is a strong submersion if and only if it is a global

diffeomorphism, arguing without more details, that it is enough to establish an

analogous version for Finsler manifolds of the Plastock’s global inversion theorem

via the condition L [53, Remark 4.2]. In the proof of Theorem A.5 and Lemma

A.6 sufficient arguments have already been given to justify this statement, since

if X is complete, the definition of a strong submersion is a simply rephrasing of

the condition that f satisfies the Earle–Eells condition. In other words, condition

(C11) is equivalent to condition (C20).

If X and Y are Hilbert spaces and f is a local diffeomorphism then condition

(C19) implies that f is a strong submersion, hence f lifts lines. It is important to

note that a direct proof of this fact has not been given (and at the moment the

author does not know how). Instead, using arguments of critical point theory, it

has been showed that condition (C19) implies that f is a global diffeomorphism.

But this is not an exception, for example Xavier and Nollet [43] proved that if

f : Rn → Rn is a local homeomorphism such that

(C21) fv(x) = 〈f(x), v〉 satisfies the PS-condition for all nonzero v ∈ Rn,

then it is bijective. Again, the monodromy argument does not seems to be

natural in this case. The proof of Xavier and Nollet is based on arguments

involving degree theory and cannot be extended in a general form to the infinite-

dimensional setting, only for restricted classes of maps. Note that if for all v 6= 0,

inf
x∈X
|df(x)∗v∗| > αv > 0

then fv satisfies trivially the PS-condition since |∇fv(x)| = |df(x)∗v∗|.
Also, with this technique Xavier and Nollet proved a significantly simpler

version of the Hadamard Theorem by means of integral conditions with param-

eter v: ∫ ∞
0

min
|x|=ρ

|∇fv(x)| dρ =∞, for all v 6= 0.

Some recent extensions of this kind of theorem for finite-dimensional manifolds

can be found in [36]. So, a pertinent question is whether we can replace all of
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the above metric conditions in terms of µ(x) by a family of metric conditions

with parameter v 6= 0 in terms of |df(x)∗v∗| in the finite-dimensional case.

(C3) (C1) homeomorphism (C6) closed

(C20) (C11) diffeomorphism (C4) lines proper

(C16)

(C19) coercive diffeomorphism ray-coercive ray-proper

(C17) (C14) (C15) (C10) (C8)

?

?

(P) (P)

?

?

?

X, Y Hilbert (P)

Figure 2. Implications and equivalences for a locally injective Fredholm

map f of index 0. The ? in the arc means that f must have no critical
points.

3.4. Weighted conditions. In the late sixties, Meyer extended condition

(C10) where ‖df(x)−1‖ is allowed to go to infinity at most linearly in ‖x‖; see

Theorem 1.1 of [41]. More precisely, he proved that a local diffeomorphism

f : Rn → Rn which has a locally Lipschitz continuous Fréchet derivative such that

‖df(x)−1‖ ≤ a‖x‖+b for all x ∈ Rn for some a, b > 0 is a global homeomorphism.

Note that the Meyer result can be deduced from the original Hadamard Theorem.

His criterion can be substituted by (aρ+ b)−1 ≤ inf
|x|=ρ

‖df(x)−1‖−1 for all ρ ≥ 0.

Since
∫∞
0
dρ/(aρ+ b) = ∞ therefore f satisfies the finite dimensional version

of the Hadamard integral condition, the infimum on the spheres instead of the

balls, so it is a global diffeomorphism.

For a function f : X → Y between Banach spaces, Rheinboldt gives an ex-

tension of Meyer’s result for compact perturbations of the identity, see Theo-

rem 3.12 of [54]. Furthermore, in the late eighties Ioffe actually proved a very

general statement in terms of the surjection constant of a continuous locally one-

to-one function f and a lower semicontinuous function η : [0,∞) → (0,∞): If η

is a weight, namely ∫ ∞
0

η(ρ) dρ =∞,

and sur(f, x) ≥ η(|x|) for all x ∈ X then f is a homeomorphism onto Y ; see

Theorem 2 of [26]. As we have already pointed out, if f is a local diffeomor-

phism sur(f, x) = ‖df(x)−1‖−1 = µ(x). As before, the Ioffe condition can be

rewritten as

η(ρ) ≤ inf
‖x‖=ρ

µ(x), for all ρ ≥ 0.
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This makes a connection with the relatively recent work of Li et al. [37] who

rediscovered this fact when η is a continuous or a nonincreasing weight. A definite

example is, of course, when f satisfies condition (C15) since in this case η(ρ) is the

nonincresing weight ρ 7→ inf
‖x‖≤ρ

µ(x). The Ioffe formulation can be established

for mappings between connected Finsler manifolds, replacing |x| by dX(x0, x)

for some arbitrary x0 ∈ X. We shall say that a map between connected Finsler

manifolds satisfies the Ioffe condition if

(C22) X is complete and there is a continuous weight η : [0,∞)→ (0,∞) such

that µ(x) ≥ η(dX(x0, x)) for all x ∈ X and some x0 ∈ X.

Actually, for mappings between connected Finsler manifolds, Rabier [53, Re-

mark 4.4] considers the weighted version of a strong submersion. So, we set the

condition

(C23) X is complete and f is a strong submersion with continuous weight, that

is, there exists a continuous weight η(ρ) = 1/ω(ρ) such that there is no

sequence {xn} in X with f(xn)→ y ∈ Y and

Sur df(xn)ω(dX(x0, xn))→ 0 for some x0 ∈ X.

In fact, in his previous work [52] Rabier considers the weight ω(ρ) = 1 + ρ for

functions between Banach spaces, motivated by Cerami’s generalization of the

Palais–Smale condition [13]. See also Section 8 in [39]. He asserts that the

Grönwall Lemma is a way to check that condition (C23) is sufficient for a local

diffeomorphism to be a covering map; see Remark 4.4 and Theorem 5.3 of [53].

Remark 3.7 (Change of metric). An illustrative proof of the fact that con-

dition (C23) carries over to a covering map is the following. In order to simplify

the exposition, assume that (X, | · |) is a Banach space. Let η(ρ) = 1/ω(ρ) be

a continuous weight. Consider the following weighted length of a path:

˜̀(α) =

∫ 1

0

η(|α(t)|)|α̇(t)| dt

and set d̃(x, x′) = inf {˜̀(α) : α is a C1 path connecting x with x′}. According

to Theorem 4.1 of [14] (see also Section 3 in [47]), d̃ is a metric such that (X, d̃)

is complete if and only if X is complete with the distance associated to the

given norm. If f : X → Y is a local diffeomorphism and q is a local lifting of

a rectifiable path p in Y then, by the chain rule,

(3.3) ˜̀(q) · inf {µ(x)ω(|x|) : x ∈ image of q} ≤ `(p).

Compare with (3.1). So, ˜̀(q) < ∞ provided the above infimum is positive.

Since (X, d̃) is also complete, the path q can be extended to the whole interval

I = [0, 1]. Therefore, we can carry on as in the proof of Theorem A.5 to conclude
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that the corresponding weighted version of the Earle–Eells condition, equivalent

to (C23), implies that f is a smooth covering map.

Furthermore, we can proceed stepwise as in the proof of Lemma 4.4 of [22]

to conclude that if f is a Fredholm map of index 0 between connected Finsler

manifolds then the infimum of µ(x) over the image of a local lifting q is positive

if and only the infimum of µ(x)ω(d(x0, x)) over the same set is positive for some

x0 ∈ X and nonincreasing weight η(ρ) = 1/ω(ρ). Therefore, the Earle–Eells

condition with nonincreasing weight:

(C24) X is complete and there exists a nonincreasing weight η(ρ) = 1/ω(ρ)

such that for every y ∈ Y there exists α > 0 and a neighbourhood V of y

such that µ(x)ω(d(x0, x)) ≥ α, for all x ∈ f−1(V ) and for some x0 ∈ X,

implies that f is a smooth covering map. We can deduce that f satisfies the

infinite version of Hadamard integral condition if and only if there exists a non-

incresing weight η such that µ(x) ≥ η(d(x0, x)) for every x ∈ X and some

x0 ∈ X.

Note that, if f is Fredholm map of index 0 that satisfies (C23) or (C24)

then the map f is actually a local diffeomorphism. Furthermore, the constant

map η(ρ) = 1 is both continuous and nonincreasing, so a consequence of Lemma

A.6 in the appendix is the following fact: Let X and Y be connected Finsler

manifolds. Assume that X is complete and Y is simply connected. If f : X → Y

is a Fredholm map of index 0 then the following statements are equivalent:

• f is a strong submersion.

• f is a strong submersion with continuous weight.

• f satisfies the Earle–Eells condition.

• f satisfies the Earle–Eells condition with nonincreasing weight.

• f is a global diffeomorphism.

This equivalence is no longer true if the space Y is not simply connected; see

Example 4.5 of [21].

4. Submersions as global projections

Let T : Rn → Rm be a linear map, where n ≥ m. Consider the linear system

T (x) = y with rank of T equal to m. An elementary linear algebra argument

shows that there is a change of basis Φ such that TΦ−1 = P where P : Rn →
Rm is a projection map. The nonlinear version of this fact for continuously

differentiable maps f : Rn → Rm such that df(x) has rank m for some x ∈ Rn is

a consequence of the classical Inverse Mapping Theorem [60, p. 43], in this case f

looks in a neighbourhood of x like a projection onto Rm. To be more precise and

broader, given a product of two open sets of Banach spacesW1×W2 and a Banach

space F , a mapping h : W1×W2 → F is said to be equivalent to a projection if h
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can be factored into an ordinary projection and a homeomorphism of W1 onto an

open subset of F . If f : E → F is a C1 map such that df(x) is onto and Ker df(x)

splits for some x ∈ X, e.g., if f : X → Y is a nonlinear Fredholm map of positive

index, then there exists an open subset W of x and a homeomorphism Φ: W →
W1×W2 such that the composite map f ◦Φ−1 is equivalent to a projection [33,

p. 19]. More generally, let f : X → Y a C1 map between C1 Banach manifolds.

A map f is said to be a split submersion if df(x) is onto and Ker df(x) splits

for all x ∈ X. If f is a split submersion then for every x ∈ X there is a chart

(W,ϕ) at x, a chart (V, ψ) at f(x), and a homeomorphism Φ: φ(W )→W1×W2

with W1 and W2 open in some Banach spaces such that the map ψfϕ−1 ◦ Φ−1

is equivalent to a projection [33, p. 27]. In particular, if f is surjective then each

fibre f−1(y) is a closed differentiable submanifold of X (f foliates X).

Remark 4.1. A Fredholm map with positive index without critical points

is, of course, a split submersion. Therefore, if X is connected and f is onto then

every y ∈ Y is a regular value and f−1(y) is a closed submanifold of X with

dim f−1(y) = dim Ker df(x) = Index f.

Nevertheless, if X is Riemannian then any map f : X → Y without critical points

is a split submersion even if it is not Fredholm.

In the same spirit as in previous sections we request global properties of f .

A particular case of split submersion is obtained when f is a local diffeomorphism

which, in a desired situation, is a covering map. A covering space is generalized

by the concept of fibre bundle. A map f is a fibre bundle if it is onto and there

exists a covering {V } of Y and a topological space F such that each f−1(V ) is

homeomorphic to V ×F by a map ΦV and f ◦Φ−1V is the projection on the first

factor. In particular, every fibre f−1(y) is homeomorphic to F . Furthermore,

if Y is contractible then f is a trivial fibre bundle with trivialization F × Y

homeomorphic to X [59, p. 102], so we can talk about a “global projection”.

The problem is: When is a split submersion a fibre bundle? This is an old

question whose first answer was given by the Ehresmann Theorem (1950) [17]: If

dimX = n, dimY = m, n ≥ m, and f : X → Y is a C∞ proper submersion then

it is a fibre bundle. Note that a mapping between finite-dimensional manifolds

is a submersion if and only if it is a Fredholm map without critical points with

Index f = n−m ≥ 0.

The proof of Ehresmann runs as follows: Let p be a smooth curve in Y be-

ginning at f(x0) for some x0 ∈ X. In the finite-dimensional context, a horizontal

lifting of p is a path q in X such that f ◦ q = p and its tangent vector field is

horizontal, namely q̇(t) ∈ Ker df(q(t))⊥. Since f is a submersion by a differential

equations argument (this will be explained shortly):

• there is at most one horizontal lifting of p beginning at x0;
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• a horizontal lifting of p always exist locally.

If the horizontal liftings can be defined in the whole I = [0, 1] as well, e.g., if

f is proper, then the set of horizontal subspaces {Ker df(x)⊥ : x ∈ X} is an

Ehresmann connection for f and the map f is a fibre bundle, as outlined below.

Note that f is an open map since it is a submersion. If f is proper then it is also

surjective.

At the beginning of the sixties, based on the ideas of Ehresmann, Her-

mann [24] established the following metric condition for a C∞ surjective submer-

sion f : X → Y between finite-dimensional Riemannian manifolds to be a fibre

bundle, cf. (C18):

(C25) X is complete and for all x ∈ X, y = f(x), the canonical isomorphism

d̂f(x) : TxX/Ker df(x) → TyY preserves the inner products defined by

the metrics on these spaces (Riemannian submersion).

By condition (C25) the horizontal lifting of a segment curve p in Y has the same

length. The usual process of continuation runs into no obstruction since the local

liftings always lie in a fixed and bounded, thus a compact region of X. Note that

the linear projection p(x, y) = x is a trivial example of a non-proper Fredholm

map of positive index satisfying the Hermann’s conditions for the Euclidean

metric in X = R2 and Y = R. See also [55] and [63] for some related results

published slightly after.

The properness condition, the Hermann condition, and the ideas in the Ehres-

mann proof, remain all in the same spirit as in the previous sections. Our goal

now is to connect all of the above conditions for split submersions between Ba-

nach or Finsler manifolds. To this end, in the next section we introduce the

ideas behind the Eells–Earle Theorem.

4.1. The Earle–Eells Theorem. The Ehresmann Theorem has been wide-

ly reported in the literature, but the works do not address extensions to the

infinite-dimensional setting. An important exception is an article by Earle and

Eells [16] published in the late sixties. They consider a split submersion map

f : X → Y between Finsler manifolds and a locally Lipschitz right inverse of df

namely, bundle maps s : f∗(TY )→ TX such that, for every x ∈ X,

• s(x) : Tf(x)Y → TxX is continuous and linear;

• for every charts (W,ϕ) at x and (U,ψ) at f(x) with U ⊂ f(W ), the map

dϕ(ϕ−1( · ))s(ϕ−1( · ))dψ(f(ϕ−1( · )))−1 is locally Lipschitz on ϕ(W );

• df(x)s(x) is the identity map on Tf(x)Y .

The symbol f∗(TY ) denotes the vector bundle over X obtained by pulling back

TY via f . The minimum smoothness required for all results in this section is

C1 with locally Lipschitz continuous derivative for the mapping f and C2 for the
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manifolds X and Y , so the tangent bundles TX and TY are C1 Banach space

bundles.

The Earle–Eells Theorem can be stated as follows. Let f : X → Y be a sur-

jective split submersion between Finsler manifolds (see Remark 4.2). Then f is

a fibre bundle provided

(C26) X is complete and there is a locally Lipschitz right inverse s of df such

that for each y ∈ Y there is a number α > 0 and a neighbourhood V of

y such that ‖s(x)‖−1 ≥ α for all x ∈ f−1(V ).

As shown in the sketch of the proof presented below, to get a fibre bundle it

is enough to lift the straight line segments pz joining z = f(x) to y relative

to a chart (Vy, ψ) centered at y where ψ(Vy) is an open ball centered at 0 =

ψ(y), for all x ∈ f−1(Vy). Also, the liftings qx must vary continuously and the

correspondence x 7→ qx must be well defined. So, for every w ∈ ψ(Vy) we can

consider the initial value problem

q̇(t) = ξ(q(t)), q(0) = x,

where ξ : X → TX is a vector field on X defined by ξ(x) = s(x)[dψ(f(x))]−1w.

If s is a locally Lipschitz right inverse of df then ξ is a locally Lipschitz vector

field on X. Therefore for each x in f−1(Vy) and w in ψ(Vy) the above equation

has a unique solution qx(t) in f−1(Vy) defined on an open interval J containing 0

[44, p. 116]. This solution defines a unique horizontal path relative to s which is

a local lifting of the path pz(t) = ψ−1(ψ(z) + tw) defined on a maximal domain

[0, ε). Recall, according to Earle and Eells, in an infinite-dimensional context

a path q in X is called horizontal relative to s if q̇(t) belongs to the image space

s(q(t))Tf(q(t))Y . In particular, for w = −ψ(z) we get a suitable local lifting

for pz.

If s is locally bounded over Y , as is required by condition (C26), then it

is easy to check that `(qx) < ∞ and by completeness of X the path qx can

be defined in whole I = [0, 1] [16, p. 27]. Actually, Earle and Eells reason by

contradiction: if ε < 1 then there is a Cauchy sequence {qx(tn)} converging

to some point in X and this implies that the domain of qx can be extended in

a smooth manner to an open interval in I containing [0, ε), thus contradicting

the maximality property of ε. This argument inevitably leads us to think of the

continuation property. We shall return to this point in the next subsection.

Sketch of the proof of Earle–Eells Theorem. Let y ∈ Y and let

(Vy, ψ) be a chart centered at y such that ψ(Vy) is an open ball in a Banach

space centered at 0 = ψ(y). For every z ∈ Vy there exists a unique straight

line segment pz relative to ψ joining z to y. For any x ∈ f−1(Vy) (f−1(Vy) 6= ∅
because f is surjective) consider the line path pf(x) in Vy and the horizontal

lift (relative to s) qx starting at x and ending in f−1(y). Then the mapping
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ΦV : f−1(Vy)→ Vy × f−1(y) defined by

ΦV (x) = (f(x), qx(1))

is the desired homeomorphism. The bijection of ΦV and the continuity of ΦV and

Φ−1V follows from the fact that pf(x) is a line segment relative to ψ and from the

continuity of the solutions of the corresponding differential equation with respect

to the initial conditions. For every z ∈ Vy there is a homeomorphism between

f−1(z) and f−1(y) obtained by mapping each u ∈ f−1(z) into the end-point of

the horizontal lifting of pz starting at u.

Remark 4.2. The connectedness of Y implies that f is onto. So far, the

idea has been to establish conditions to ensure that the horizontal liftings exist

globally once it has been tested or assumed that f is onto. Nevertheless, Rabier

proved with an elementary topological argument that the surjectivity condition

on f can be replace by the connectedness of Y ; see proof of Theorem 4.1 of [53],

cf. Remark A.1.

A split submersion f : X → Y has a locally Lipschitz right inverse s of df in

the following cases:

• If X and Y are Hilbert spaces then there is a canonical right inverse s.

Actually, if y = f(x) we can set s(x) : TyY 7→ Ker df(x)⊥ as the inverse

of df(x)|Ker df(x)⊥ given by an explicit formula df(x)∗[d(x)df(x)∗]−1. In

particular, if df is locally Lipschitz, so is s; see Lemma 2.5 of [48].

• If X and Y are Banach spaces and df is locally Lipschitz then a lo-

cally Lipschitz right inverse s can be constructed by means of a locally

Lipschitz partition of unity; see Lemma 2.6 of [48]. The same kind of

construction can be used to extend this result for X and Y Finsler man-

ifolds of class C2; see Lemma 3B of [16]. See also Proposition 2.1 of [53]

for an explicit construction when Y is a Banach space.

• If f is a local diffeomorphism then there is only one right inverse given

by s(x) = df(x)−1 and any local lifting of a C1 path is horizontal relative

to s. Besides, condition (C26) coincides with the Earle–Eells condition,

hence the name.

4.2. Topological conditions. Let f : X → Y be a split submersion be-

tween Banach manifolds with locally Lipschitz right inverse for df . Assume Y is

connected. On the one hand, a simple adjustment in the proof of the Earle–Eells

Theorem shows that if f has the continuation property for the set of all C1 paths

then f is a fibre bundle; see Theorem 2.3 of [21]. For example, a weakly proper

map has the continuation property for C1 paths. If Y is a Banach space, as

before, we can restrict the continuation property for lines (condition L). This

fact was basically noted by Plastock; see Theorem 2.9 of [48]. On the other hand,
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every fibre bundle has the path lifting property [59, pp. 92, 96]. Therefore, each

of the following statements implies the next:

• f has the continuation property for the set of C1 paths.

• f is a fibre bundle.

• f has the path lifting property.

We have pointed out before that, if f is a local diffeomorphism then all three

conditions are equivalent, but this cannot be extended to this context. For

example, consider the linear projection π(x, y) = x. The path p(t) = t in R has

local lift q(t) = (t, 1/(t− 1)) defined on [0, 1) but there is no sequence tn → 1

such that q(tn) converges in R. This also shows that the continuation property is

not appropriate in important situations. However, the good news is that you only

need to apply the monodromy argument to the horizontal liftings corresponding

to the line segments relative to a chart, as we exemplify in the next paragraph.

Note that no Finsler structure is needed here.

Now, suppose that f satisfies condition (C3) (Browder). Then for every

y ∈ Y we can choose a chart (Vy, ψ) centered at y such that f is a closed

mapping on each component of f−1(Vy) into Vy. The integral curves qx(t) of

the initial value problem defined on a maximal interval [0, ε) considered by Earle

and Eells lie in a connected component of f−1(Vy).

Let C be the closure of the image of qx. Since f(C) is closed, there exists

x∗ ∈ C such that f(x∗) = pz(ε). Therefore there is an increasing sequence {tn}
in [0, ε) convergent to some t∗ such that pz(t

∗) = pz(ε), so t∗ = ε. Then the

path qx can be extended outside [0, ε) contradicting its maximality. Therefore,

qx can be extended to I = [0, 1]. So, the Browder condition implies that f is

a fibre bundle. The above argument can be used to prove that if f is a closed

map then it is a fibre bundle.

If f : X → Y is a proper submersion map between connected Banach man-

ifolds then it is closed surjective map. Let x ∈ X and y = f(x) thus f−1(y) is

a compact submanifold of X, hence a finite-dimensional submanifold of X such

that Txf
−1(y) = Ker df(x). The connectedness of X implies that

dim Ker df(x) = k for all x ∈ X and for some integer k ≥ 0.

Therefore f is Fredholm of nonnegative index. Now, if f is a closed Fredholm

map of nonnegative index with locally Lipschitz right inverse for df then it is

a fibre bundle such that F is a compact submanifold of X of dimension Index f ;

see proof of Corollary 2.9 of [21]. Finally, every fibre bundle with compact fibre

is a proper map. So, if f : X → Y is a submersion between connected Banach

manifolds with locally Lipschitz right inverse for df then the following statements

are equivalent:

• f is a proper map.
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• f is a closed Fredholm map of nonnegative index.

• f is a fibre bundle with compact fibre F .

If X and Y are Banach spaces then a proper Fredholm map of positive index

with locally Lipschitz right inverse for df must have a singularity [8]; see also

Proposition 3.1 of [48]. In fact, if X and Y are contractible then f is a closed map

if and only if f is a proper map if and only if f is a homeomorphism; see proof

of Corollary 2.10 of [21]. This makes clear the limitations of the properness (or

closedness) condition, especially in infinite dimension where even Banach spheres

are contractible.

4.3. Metric conditions via surjectivity indicator. Let f : X → Y be

a split submersion between Finsler manifolds. In view of the metric conditions

stated before for local diffeomorphisms, it is natural to ask: What is the rela-

tionship between ‖s(x)‖ and the surjectivity and injectivity indicators for split

submersions? First, note that if df(x) has a nontrivial kernel then Inj df(x) = 0.

So the injectivity indicator of df(x), as expected, remains left out of the run-

ning. Suppose that T : X → Y is a surjective linear map between Banach spaces.

Consider the canonical isomorphism T̂ : X/KerT → Y . It holds that [21, Re-

mark 4.1]

SurT = Sur T̂ = Inj T̂ = ‖T̂−1‖−1.

Thus, the Riemannian condition (C25) means that Sur df(x) = 1 for all x ∈ X.

So, it would only seem logical to ask whether this condition, and more generally,

all metric conditions given before in terms of the surjectivity indicator, can be

carried on in order to get fibre bundles between Finsler manifolds: the answer is

yes, provided f has uniformly split kernels.

A map f : X → Y between Finsler manifolds is said to have uniformly split

kernels if there is a constant c > 0 such that for each x ∈ X there is a projection

Px ∈ L(TxX) with KerPx = Ker df(x) and ‖Px‖x ≤ c. This concept was intro-

duced by Rabier [53] in the late nineties. A map f has uniformly split kernels,

for example, if X is Riemannian, Y is finite-dimensional or if f is a Fredholm

submersion of nonnegative index; see Lemma 4.2 and Proposition 3.1 of [53].

For submersions with uniformly split kernels with a locally Lipschitz derivative

between C2 connected Finsler manifolds exist a locally Lipschitz right inverse s

of df and a constant c > 0 such that for every x ∈ X

(4.1) Sur df(x) ≤ c‖s(x)‖−1.

So, we can consider that for mappings with uniformly split kernels a cleaner

version of (C26), namely, for each y ∈ Y there is a number α > 0 and a neigh-

bourhood V of y such that Sur df(x) ≥ α for all x ∈ f−1(V ). But, as before, this

is only a different way to state condition (C20) when X is complete. This leads
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to the Rabier Theorem 4.1 of [53]: If f : X → Y is a strong submersion with uni-

formly split kernels and locally Lipschitz derivative between C2 connected Finsler

manifolds and X is complete then f is a fibre bundle. Actually, by the arguments

given above, we can replace the strong submersion condition in the last sentence

in italics by a strong submersion condition with continuous weight (condition

(C23)); see Remark 4.4 of [53] or even nonincreasing weight; see Lemma 3.1

of [21]. So, the global inversion conditions stated before in terms of µ(x) can be

carried on in this setting, replacing µ(x) by Sur df(x). For example, if f satis-

fies the Katriel, Ioffe, or Hadamard integral condition (see [21, Example 4.6] for

an example of a map satisfying the Hadamard integral condition but which is

not a strong submersion), the hypothesis in the Rabier Theorem can be weak-

ened and we can consider the submersion f : U → Y with U open subset of X

such that there is no sequence {xn} from U , converging to a point on ∂U , and

such that f(xn) converges to a point in Y , as he indeed pointed out. If Y is

contractible, there is a submanifold of F of X (the fibre of f) and a homeomor-

phism Φ: F × Y → X such that f(Φ(x, y)) = y for all x ∈ F and y ∈ Y . An

additional smoothness of Φ can be established if the Banach space model of X

admits a smooth enough partition of unity.

Finally, we propose an extension of property (3.2). Assume X is a complete

connected C2 Finsler manifold, F is a Banach space, and f : X → F is a sub-

mersion with uniformly split kernels with a locally Lipschitz derivative. For each

ρ ≥ 0 let

η(ρ) =
1

c
inf

dX(x0,x)≤ρ
Sur df(x),

where x0 ∈ X and c is the constant satisfying (4.1). Given r > 0 set % =∫ r
0
η(ρ) dρ. Theorem A.9 asserts that

% > 0 implies B%(f(x0)) ⊂ f(Br(x0)).

We have the following observations:

• Because f is a submersion, df(x0) is onto, so Sur df(x0) > 0. Also, the

function x 7→ Sur df(x) is continuous; see Remark 2.1 of [53]. Then

there is α′ > 0 and r > 0 such that Sur df(x) > α′ for all x ∈ Br(x0).

Therefore if α = α′/c then we have

Bαr(f(x0)) ⊂ f(Br(x0)).

This makes a connection with the conclusion of the Graves Theorem; see

for instance Theorem 1.2 of [15].

• The above inclusion implies that the Ioffe surjection constant of f at x0
is positive since sur(f, x0) ≥ α > 0.

• If lim
r→∞

%(r) = ∞, that is, if f satisfies the Hadamard integral condi-

tion, then there is a submanifold of F of X and a homeomorphism
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Φ: F × F → X such that for all y ∈ F the solutions of the equation

y = f(u) are of the form u = Φ(x, y) for each x ∈ F . Furthermore if

|y − f(x0)| ≤ %(r) then dX(u, x0) < r.

• If X is Riemannian then c = 1 [53, p. 656]. Suppose also that F is

a Hilbert space and f is a Riemannian submersion (condition (C18)).

Then η(ρ) = 1 for all ρ > 0 and %(r) = r. So Br(f(x0)) ⊂ f(Br(x0)) for

any x0 ∈ X. Actually, it is easy to see that f(Br(x0)) ⊂ Br(f(x0)) since

the canonical isomorphism d̂f(x) : TxX/Ker df(x) → TyY preserves the

inner products. Therefore

Br(f(x0)) = f(Br(x0)).

As expected, f is a submetry. Just to complete the picture, it remains to

say that, at least in the finite-dimensional context, every submetry be-

tween Riemannian manifold is a Riemannian submersion; see Theorem A

of [7].

I would like to thank the referee for the careful review of the previous versions

of this paper.

Appendix A. Proofs and extra remarks

Remark A.1. The connectedness of Y implies that f is onto: another proof

(inspired by the second half of the proof of Theorem 4.1 of [53]). Let f : X → Y

be a map between Banach manifolds. For every y ∈ Y , let Vy be a domain of

a chart of Y centered at y and Uy = f−1(Vy). Assume that Uy 6= ∅ and every

line segment relative to a chart can be lifted. Therefore f |Uy : Uy → Vy is onto.

Consider the set Y = {y ∈ Y : f−1(Vy) 6= ∅}. The set Y is not empty since,

in fact, the set f(X) is contained in Y . Furthermore Y is open since f |Uy is

onto for y ∈ Y . Now let y be in the boundary of Y such that Vy ∩ Y 6= ∅
and let z ∈ Vy ∩ Y . Then f |Uz

: Uz → Vz is onto. Thus, there is x ∈ Uz such

that f(x) = z. On the other hand, z ∈ Vy implies that x ∈ f−1(Vy) whereby

f−1(Vy) 6= ∅ and therefore y ∈ Y . So Y is also closed in Y . By connectedness of

Y we have that Y = Y hence f is onto. This reasoning is important because it

implies that we just need to lift the paths pz for z close to y ∈ f(X) when Y is

connected.

Lemma A.2. The set Sy0 is open and the mapping f−1x is an inverse of f

with the domain Sy0 .

Proof. Let y0 ∈ Y and let pz be the unique minimizing geodesic segment

joining y0 to z in Y (Corollary 1.12 of [42]). Let Sy0 be the star with vertex

y0 defined as the set of all z ∈ Y for which there is a lifting qz of pz such

that qz(0) = x. Let f−1x (z) := qz(1) for z ∈ Sy0 where qz is the lifting of pz.

Let dY be the Finsler distance of Y . For all u in the image of qz there is
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an open neighbourhood Uu and ru > 0 such that f |Uu : Uu → Bru(f(u)) is

a homeomorphism. Let V u ⊂ Uu be an open set such that f(V u) = Bru/2(f(u)).

For compactness and connectedness of the image of qz, there are u1, . . . , um

in the image of qz such that qz ⊂
m⋃
k=1

V uk . Furthermore, V ui ∩ V uj 6= ∅ if and

only if |i − j| ≤ 1. Also x ∈ V u1 and qz(1) ∈ V um . For k = 1, . . . ,m, let

Vk = V uk , Uk = Uuk , zk = f(uk), rk = ruk
, and Bk = Brk/2(zk). Therefore,

m⋃
k=1

Vk is an open covering of the image of qz and
m⋃
k=1

Bk is an open covering of pz.

Let sk : Brk → Uk be the inverse of f |Uk
. Let 0 = t0 < t1 < . . . < tm = 1 be

a partition of I such that for k = 1, . . . ,m, qz[tk−1, tk] ⊂ Vk. For j = 1, . . . ,m−1

let ũj = qz(tj) ∈ Vj∩Vj+1 = Ṽj . The set Ṽj is open hence f(Ṽj) is open in Y and

contains z̃j = pz(tj). Furthermore, f |Ṽj
: Ṽj → f(Ṽj) is a homeomorphism and

sj coincides exactly with sj+1 on f(Ṽj). Let δj > 0 such that Bδj (z̃j) ⊂ f(Ṽj)

and ε > 0 such that

0 < ε < dist

(
image pz; Y \

m⋃
k=1

Bk

)
,

and 0 < ε < min {r1, . . . , rm, δ1, . . . , δm}. Therefore, by continuity of (t, z) 7→
pz(t) (Theorem 2.6 of [22]) there is δ > 0 such that if w ∈ Bδ(z) and Bδ(z) ⊂
Brm(zm) then dY (pw(t), pz(t)) ≤ ε/2 for all t ∈ I. For j = 1, . . . ,m − 1, if

t ∈ [tj−1, tj ] then dY (pz(t), zj) < rj/2. Therefore,

dY (pw(t), zj) ≤ dY (pw(t), pz(t)) + dY (pz(t), zj) < rj .

So, pw[tj−1, tj ] ⊂ Brj (zj) where the local inverse sj is defined. On the other

hand, dY (pw(tj), z̃j) < ε/2 < δj thus pw(tj) ∈ Bδj (z̃j). Therefore, sj(pw(tj))

is equal to sj+1(pw(tj)). In conclusion, the path qw defined by sk ◦ pw in each

piece [tk−1, tk] for k = 1, . . . ,m is well defined and is a lifting of pw such that

qw(0) = x. Finally, Bδ(z) ⊂ Sy0 . Since f−1x coincides with sm in Bδ(z) then it

is continuous in z. �

Lemma A.3. Let f : X → Y be a local homeomorphism between Banach

manifolds. Assume Y is Riemannian and connected. If f has the continuation

property for the set of minimal geodesics in Y then f is a covering map.

Proof. Let X be a Banach manifold and (Y, g) be a Riemannian manifold.

For every y ∈ Y there exists r sufficiently small such that expy : Bg(0, r) →
Bg(y, r) is a diffeomorphism, where Bg(0, r) and Bg(y, r) are the open ball of

radius r centered at 0 in TyY and at y in Y , respectively. Then every z ∈
Bg(y, r) can be joined by a unique minimal geodesic pz in V , namely, expy(tv)

for v = exp−1y (z), [33, pp. 222–227] and the map (t, z) 7→ pz(t) is continuous. Let

Vy = Bg(y, r). As in Remark A.1, the connectedness of Y implies that the set

Y = {y ∈ Y : f−1(Vy) 6= ∅} is whole Y . Thus f is onto. Finally, by the second
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part of the proof of Theorem 2.6 of [22], the continuity of the map (t, z) 7→ pz(t)

implies that the sets Ou = {qz(1) : z ∈ V } with u ∈ f−1(y) form the desired

disjoint family of open sets. �

Remark A.4. If Y is finite-dimensional and complete we have a simpler proof

since, by the Hopf–Rinow Theorem, any two points can be joined by a minimal

geodesic. This argument can not be applied in general since the Hopf–Rinow

Theorem fails in an infinite dimension, even more, there exists a complete infinite-

dimensional Riemannian manifold and two points on there that cannot be joined

by any geodesic at all [5].

Theorem A.5. If X and Y are Finsler manifolds, Y is connected, and

f : X → Y is a Fredholm map of index zero then f is a smooth covering map

provided f satisfies the Earle–Eells condition.

Proof. Let y ∈ f(X). By (C11) there exist α > 0 and a neighbourhood

V of y such that Inj df(x) ≥ α for all x ∈ f−1(V ). Without loss of generality,

we can assume that V is the domain of a chart centered at y. Let p be a line

segment relative to this chart and let q be a local lifting of p defined on [0, ε)

starting at some point x0 ∈ f−1(V ). Since the image of the path q is contained

in f−1(V ) and f is a local diffeomorphism then ‖df(x)−1‖−1 = Inj df(x) ≥ α for

all x in the image of q. Therefore `(q) < α−1`(p) < ∞. So, for every sequence

{tn} in [0, ε) converging to ε it is easy to see that {q(tn)} is a Cauchy sequence

in X. So {q(tn)} converges in X; see Lemma 5.1 of [22]. Therefore q can be

extended to whole I = [0, 1]; see proof of Theorem 2.6 of [22]. We find that f

is a smooth covering map taking into account Remark A.1. The same argument

holds if we use the surjectivity indicator instead of the injectivity indicator. �

Lemma A.6. If f is a smooth covering map with finite fibre then it satisfies

the Earle–Eells condition.

Proof. For all y ∈ Y there exists W of y such that f−1(W ) is the union

of a disjoint family of open sets {Ox1
, . . . , Oxn

} of X, each of which is mapped

diffeomorphically onto W by f and f−1(y) = {x1, . . . , xn}. Since f is a local

diffeomorphism and x 7→ ‖df(x)−1‖ is continuous (see also Theorem 2.7 of [44])

for every i = 1, . . . , n there is a neighbourhood Ui ⊂ Oxi
of xi and αi > 0

such that µ(x) = ‖df(x)−1‖−1 ≥ αi for all x ∈ Ui. Let α = min {α1, . . . , αn}
and V =

n⋂
i=1

f(Ui). Let u ∈ f−1
( n⋂
i=1

f(Ui)
)

and let y = f(u) ∈ W . The

fibre of y is contained in the disjoint union of open sets
n⋃
i=1

Oxi
, then u is in

some Oxj . Suppose that u /∈ Uj thus f(u) /∈ f(Uj) since f is injective in Oxj .

Therefore, f(u) /∈
n⋂
i=1

f(Ui) and we get a contradiction. So, f−1(V ) ⊂ Uj and

µ(x) ≥ αj ≥ α for all x ∈ f−1(V ). �
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Lemma A.7. Let f : X → Y be a Fredholm map of index zero between con-

nected Finsler manifolds satisfying (C15). Then:

(a) f is a smooth covering map,

(b) Y is complete.

Proof. Let f be a Fredholm map of index zero satisfying the Hadamard

integral condition. For the first two statements we can proceed as in the proof of

Corollary 7 of [19]. Only a sketch is given. If p is a rectifiable path in Y starting

at f(x0) there exists r > 0 such that `(p) < %(r). So p can be lifted. Since every

point can be joined to f(x0) by a rectifiable path then every rectifiable path in

Y can be lifted. Thus f is a smooth covering map.

Now, let {yn} be a Cauchy sequence in Y . Let σn be a path from yn to yn+1

and σ0 a path from f(x0) to y1. Without loss of generality we can suppose that

`(σn) < 2n. Now, for each n ≥ 1 consider the path pn which is the concatenation

of σ0, . . . , σn. Then `(pn) < dY (f(x0), y1) + 2. Let r > 0 such that

%(r) > dY (f(x0), y1) + 2.

Then `(pn) < %. Each pn can be lifted to a path qn contained in the ball with

radius r centered at x0 such that qn(0) = x0. Let α = inf
dX(x0,x)≤r

µ(x) > 0. If γn

is the restriction of qn such that f(γn) = σn, by the chain rule `(γn) ≤ α−1`(σn).

If xn = γn(0) for n ≥ 1 then dX(xn, xn+1) ≤ α−12−n. Thus {xn} is a Cauchy

sequence in X and is therefore convergent, so {yn} is also convergent. �

Lemma A.8. Let f : X → Y be a Fredholm map of index 0 between Hilbert

spaces. Then the Katriel condition implies that Fy satisfies the PS-condition for

all y ∈ Y .

Proof. It is well known that the PS-condition is equivalent to the PSc-

condition for any real c. Since Fy is a non-negative function, it is enough to

prove that for all y ∈ Y , Fy satisfies the PSc-condition for any real c ≥ 0. We

shall prove first that there are no PSc-sequences for Fy with c > 0. Actually,

suppose that there is a PSc-sequence {xn} for Fy with c > 0. Then there

exists % > 0 such that Fy(xn) < %. Since f satisfies the Katriel condition then

inf {Sur df(x) : Fy(x) < %} > 0. So Sur df(xn) ≥ α for all n and some α > 0.

Therefore

|f(xn)− y| < α−1|∇Fy(xn)| = α−1|df(xn)∗(f(xn)− y)|.

Thus Fy(xn) → 0, so we get a contradiction. Finally, it is easy to see that

every PS0-sequence for Fy converges trivially. If {xn} is a PS0-sequence then

f(xn)→ y. Since the Katriel condition implies that f is a global diffeomorphism

then xn → f−1y. �
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Theorem A.9. Let X be a C2 complete and connected Finsler manifold, let

F be a Banach space, and let f : X → F be a submersion with uniformly split

kernels and a locally Lipschitz derivative. Let c be the constant satisfying (4.1)

and x0 ∈ X. For each ρ > 0 let

η(ρ) =
1

c
inf

dX(x0,x)≤ρ
Sur df(x).

Given r > 0 set %(r) =
∫ r
0
η(ρ) dρ. If % = %(r) > 0 then B%(f(x0)) ⊂ f(Br(x0)).

Proof. Let s be a locally Lipschitz right inverse of df satisfying (4.1). For

w ∈ F the mapping sw( · ) = s( · )w is a locally Lipschitz section. Therefore for

every x ∈ X there is a unique semi-flow q(t, x, w) characterized by

∂q

∂t
(t, x, w) = s(q(t, x, w))w, q(0, x, w) = x

and defined over a maximal interval J(x,w) = (a(x,w), b(x,w)) ⊂ R containing 0

[44, p. 116]. The continuous dependence upon parameters x and w implies that

the set

Ω =
⋃

(x,w)∈X×F

(a(x,w), b(x,w))× {(x,w)}

is open in R×X × F and q : Ω→ X is continuous. Furthermore, we have that

f(q(t, x, w)) = f(x) + tw for all t ∈ J(x,w),

since ∂(f ◦ q)(t, x, w)/∂t = df(q(t, x, w))s(q(t, x, w))w = w.

Claim. Retain the hypothesis of Theorem A.9. Let 0 < |w| < % = %(r).

Then:

(a) dX(q(t, x0, w), x0) < r for all t ∈ [0, 1).

(b) b(x0, w) > 1.

Proof of Claim. Case η(r) > 0. Suppose that (a) is not true. Let q(t) =

q(t, x0, x) and

δ = inf {t ∈ [0, 1) : dX(q(t), x0) ≥ r} < 1.

Note that dX(q(δ), x0) = r. Let ξ(ρ) = max {dX(q(t), x0) : t ∈ [0, ρ]}. The

function ξ is continuous and nondecreasing and for every ρ ∈ (0, δ] we have that

0 < ξ(ρ) ≤ r and then 0 < η(ξ(ρ)) <∞. We claim that, if 0 ≤ ρ′ < ρ ≤ δ, then

ξ(ρ)− ξ(ρ′) ≤ |w|(ρ− ρ
′)

η(ξ(ρ))
.

If ξ(ρ′) = ξ(ρ) this inequality is evident. Suppose now that ξ(ρ′) < ξ(ρ), there

exists some ρ∗ ∈ (ρ′, ρ] such that ξ(ρ) = dX(q(ρ∗), x0). By (4.1) for fixed t ∈
[ρ′, ρ∗] we have

Sur df(q(t))‖q̇(t)‖ ≤ c‖s(q(t))‖−1‖q̇(t)‖ = c‖s(q(t))‖−1‖s(q(t))w‖ ≤ c|w|.
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So,

inf
[ρ′,ρ∗]

Sur df(q(t))

∫ ρ∗

ρ′
‖q̇(t)‖ dt ≤ c

∫ ρ∗

ρ′
|w| dt.

Then,

(A.1) d(q(ρ′), q(ρ∗)) inf
[ρ′,ρ∗]

1

c
Sur df(q(t)) ≤ |w|(ρ∗ − ρ′).

Therefore

d(q(ρ′), q(ρ∗)) · η(ξ(ρ∗)) ≤ |w|(ρ∗ − ρ′)
and

ξ(ρ) = dX(q(ρ∗), x0) ≤ d(q(ρ′), x0) +
|w|(ρ∗ − ρ)

η(ξ(ρ∗))
≤ ξ(ρ′) +

|w|(ρ′ − ρ)

η(ξ(ρ))
.

This establishes the claim.

Now, for each partition 0 = ρ0 < ρ1 < . . . < ρn = ξ(δ), we can find 0 = τ0 <

τ1 < . . . < τn = δ such that ρi = ξ(τi) for each i = 0, . . . , n. Then,

n∑
i=1

η(ρi)(ρi−ρi−1) =

n∑
i=1

η(ξ(τi))(ξ(τi)−ξ(τi−1)) ≤
n∑
i=1

|w|(τi−τi−1) = δ|w| < %.

Therefore ∫ dX(q(δ),x0)

0

η(ρ) dρ ≤
∫ ξ(δ)

0

η(ρ) dρ <

∫ r

0

η(ρ) dρ.

So dX(q(δ), x0) < r, which is a contradiction.

Now suppose by contradiction that b(x0, w)≤1. By (a), for all t∈ [0, b(x0, w)),

0 < η(r) <
1

c
Sur df(q(t, x0, w)).

Now, if {tn} is an increasing sequence in [0, b(x0, w)) convergent to b(x0, w), by

(A.1) we obtain that, for m ≥ n,

dX(q(tn), q(tm)) ≤ |w|(tm − tn)

η(r)
.

Therefore, {q(tn)} is a Cauchy sequence and then is convergent by completeness

of X and the definition of the Finsler metric in a Finsler manifold. So

x = lim
t→b(x0,w)−

q(t, x0, w) ∈ X.

Therefore q(t, x0, w) could then be extended to values t > b(x0, w) contradicting

the maximality of J(x,w).

We consider now the case η(r) = 0. Then r ≥ r0 = sup {ρ > 0 : η(ρ) > 0}
and we have that

% =

∫ r

0

η(ρ) dρ =

∫ r0

0

η(ρ) dρ.

If 0 < |w| < % we can choose r′ and %′ such that η(r′) > 0, 0 < |w| < ρ′ < ρ and

%(r′) = %′. Then by the previous case we obtain that dX(q(t, x0, w), x0) < r′ < r,

for all t ∈ [0, 1) and b(x0, w) > 1.
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Let y ∈ B%(f(x0)). Then there is w with |w| < % such that y = f(x0) + w.

By the above arguments the path p(t) = f(x0) + tw can be lifted to a path

q(t, x0, w) in Br(x0). In particular, y = f(q(1, x0, w)) ∈ f(Br(x0)). �
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[21] O. Gutú and J.A. Jaramillo, Fibrations on Banach manifolds, Pacific J. Math. 215

(2004), 313–329.



On Global Inverse Theorems 443

[22] , Global homeomorphism and covering projections on metric spaces, Math. Ann.

338 (2007), 75–95.

[23] J. Hadamard, Sur les transformations ponctuelles, Bull. Soc. Math. France 34 (1906),

71–84.

[24] R. Hermann, A sufficient condition that a mapping of Riemannian manifolds be a fibre

bundle, Proc. Amer. Math. Soc. 11 (1960), 236–242.

[25] D. Idczak, A. Skowron and S. Walczak, On the diffeomorphism between Banach and

Hilbert spaces, Adv. Nonlinear Stud. 12 (2012), 89–100.

[26] A.D. Ioffe, Global surjection and global inverse mapping theorems in Banach spaces,

Ann. N. Y. Acad. Sci. 491 (1987), 181–188.

[27] J.A. Jaramillo, O. Madiedo and L. Sánchez-González, Global inversion of nonsmooth
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