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Saut and Teman [19] proved that, if ¢ € C* and g(0) = 0 then for a generic
smooth bounded domain {2 the equation

Au=g(u)in
© =0 on 9Q

has only isolated solutions and each of these solutions is non-degenerate (that
is, the linearization is invertible). They also allow g to depend on z €  but for
simplicity we avoid this. In this short paper, we show that the result remains true
even if g’ has some discontinuities. Note that non-differentiable nonlinearities
frequently occur as limit problems or in singular perturbations of more regular
nonlinearities (even analytic nonlinearities). Some examples of this appear in [6]
and [10]. They also occur in plasma problems.

The main application of our techniques is to the open set problem for jumping
nonlinearities. The problem is as follows. If 2 is a smooth bounded domain in
R™, we consider A_; = {(a,d) € R?* : —Au = aut + du~ has a non-trivial
solution in W12(Q)}.

The main question then is whether A_; can contain an open set. While a
good deal is known on the structure of A_ (see [2], [5], [7], [10], and [11], where
further references can be found), it is not even known if there are any domains
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Q with dim ) > 1 while A_; does not contain an open set. If dimQ =1, A_;
can easily be calculated explicitly and A_; does not contain an open set. (In
fact if dimQ = 1, analyticity arguments can be used to show that A_; does not
contain an open set when —A is replaced by a rather more general second order
differential operator.) Here we use genericity arguments to show that for a dense
set of s ( in appropriate topology) A_; does not contain an open set. By our
comments above, these are the first examples where dimQ > 1 and where A_;
is known not to contain an open set. We also make some other remarks on the
open set problem.

In §1, we obtain the genericity result while in §2 we discuss the open set
problem. We discuss the genericity in some detail because there are a number
of minor errors in [19].

I should like to thank Professor Micheletti for some interesting correspon-
dence on §2 and Dr. Yihong Du for some interesting discussions on §1.

1. Genericity under Domain Perturbation

In this section, we prove our main genericity result. We consider the problem
Au = g(u) in Q,

1
) © = 0 on 99.

Here g is locally Lipschitz on R, C! except at @ and g(0) = 0. We prove that
for most domains £, all the nontrivial solutions of (1) are non-degenerate. We
prove this by modifying the arguments in Saut and Teman [19]. Suppose that
Qo is a fixed domain with smooth boundary, p > n, o € (0,1) and Q is an
open neighbourhood of Q. It is easy to see that there is a ¢, > 0 such that if
0 € C3*(Q)" and ||0||2,« < Cn, then (I +6) maps Qo in a 1-1 way onto a C3
manifold with boundary (I + 6)(892). We will only consider sets of this form.
Let T =148, Q=T(Q), I =T(8%). For future reference note that 2 = g
if @ = 0 on 8Qp. In this case we have not changed the domain at all. This will
be useful later.
Define

X ={ueW2P(Qp) : u =0 on o},

U = x\{0},

Y = C3(Q),
V=1{0€C*(Q)": |6lza < ca},
Z = LP(y).

We will define a map F : U x V — Z and apply Sard’s theorem. The main new
observation in the proof is encapsuled in the following simple lemma. Note that
strict diffentiability is defined in Cartan [3].
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LEMMA 1. Assume that F: U XV — Z is continuous and is strictly differ-
entiable at (u,v) whenever F(u,v) = 0. Moreover assume that zero is g regular
value of F and the kernel of F'(u, v) is complemented. Then F~1(0) is ¢ C!
manifold.

PROOF. If (ug,vp) € U x V and F(uo, vg) = 0, then since F’(uo,vo) is onto
and F'is strictly differentiable at (g, vg), a simple contraction mapping argument
shows that there is a neighbourhood W of (ug,v0) n U x V, a complement M
to N = N(F'(ug, vp)) and a function r from a neighbourhood § of zero in N to
M such that r(0) = 0 and

{(u,v) € W: F(u,v) = 0} = {(ug,v0) + 5 +7(s) : s € S}.

Moreover, by the strict differentiability of F, one easily sees that, given € > 0,
there is a § > 0 such that |[r(s2) — r(s1)|| < €|ls2 — 51| if 81,52 € S, and [Is1]l,
||s2[l < 6. This implies that /(0) exists and is zero and that I~ (s)]] < € whenever
llsll <6 and r is differentiable at s. Thus r’ will be continuous at 0 if we prove
that r is differentiable at every s with ||s|| < 6. We know that for every z
near (ug,vp), where F'(z) = 0, F” (z) exists. Since F(z) — F’ (20, vo)(z — o)
satisfies a small Lipschitz condition near (ug,vg) (by the strict differentiability),
it follows that ||F'(x) — F”(ug,vo)|| is small whenever z is near (uo,v0) and
F(z) = 0. Since F'(uy, vp) is onto, and N is complemented, it follows easily by a
Liapounov-Schmidt type argument that N(F'(z)) = {s+ L =(8) : s € N}, where
L, is linear and ||L;|| is small if z is near (uo,vp) and F(z) = 0. Now M must
be a complement to N(F’(x)) for all z near (ug,vo) with F(z) = 0. Since F is
strictly differentiable at any such = we see that, as before, the zeros of F near
z are of the form z + z + a(z), where z € N(F'(z)), a(z) € M, a(0) = 0, and
a satisfies a small Lipschitz condition near zero. In the following argument, we
assume for simplicity that (up,ve) = 0. Now

(2) s+7(s) =z + 2z +a(z2).
But N(F'(z)) = {w+ Lo(w) :wE N }. Hence our equation becomes
s =Q(z+w+ Lyw + a(w + L (w))), where 2 = w + L, (w),

= Qz + w, since Lyw, a(z2) € M,
= T(z).

Here @Q is the projection onto N parallel to M. By (2),

r(8) = (I — Q)z + 2z +a(z))
= -Q)z+w+ Ly(w) + a(w + Lyw))
= = Q)(s +T7Y(s) + Lo(T7's) + a(T~1(s) + LT~ (s))).
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It is clear that the right hand side is differentiable at Qz (since T is continuous
and affine and a is differentiable at zero). Hence r is differentiable at Qz and
our claim follows. O

REMARK.
1) We do need to check carefully that the two parametrizations are differentiably
related especially because we are in infinite dimensions.

2) Essentially, the lemma implies that strict differentiability is sufficient to jus-
tify the argument in [19]. Note that our argument implies that locally near
(10, o)

{z €U xV: F(z) =0} = {(uo,v0) + s + ()},

where r is CL.

We now return to the Saut-Teman argument. We define FF: U x V — Z by
F(@,0) = —Azi4(T%) + g(4())-

This needs some explanation. Here z is the generic point of (),  the generic
point of £, = T%, A, denotes the Laplacian in x coordinates and 7' = I +6.
The point of F is that F(ii,0) = 0 if and only if %o T~ is a solution of (1) on
Q) = T(Qy) satisfying the boundary conditions on 9. As in [19], we see that

(3) F(u,0) = — divg{(det T")(T")*(*T") ! grad; u} + det T" - g(u).

(This is most easily derived from the Laplacian written in weak form. Note that
we have corrected a misprint in [19].) To apply our lemma we need to prove that
F is strictly differentiable. For the first term, this is straightforward but tedious.
It is easiest to first expand the divergence. (In fact, one easily sees that the first
term is C!.) Similar arguments appear in [16] and [19]. Note that the second
term is the product of a smooth function of # and g(u), which is independent of
# and hence we need only prove the differentiability of g(u) in u. It suffices to
prove that any non-trivial solution u of the equation F'(u,#) = 0 only takes the
value @ on a set of zero measure because we can then use the argument in [9].
Note that © = uo T~! is a solution of (1) on (I + 0)p. If 9 equals @ on a set
of positive measure A then by Stampacchia [20], A9 = 0 ae on A . Thus, by the
equation g(@) = 0. Then ¥ — @ is a solution of a linear equation —Ah = c(z)h,
where ¢(z) = (9(z) — @)~ 1g(9(z)) if 9(z) # @) with ¢ bounded. (Here we use
that g is locally Lipschitz.) Hence by Aronszajn et al.[l], #(z) = @ on Q. This
is only possible if @ = 0 and © is the trivial solution. Hence we have proved
the strict differentiability. For future reference, note that we also have the strict
differentiability at zero if @ # 0.

As the next step, we need to prove that zero is a regular value of F. Here we
follow [19] but correct some errors. Firstly as in [19], we see that we need only
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check the ontoness at F' at a point (u°,0), where F(u°,0) = 0. This simplifies
the calculations. As in [19],

F,(u%,0)v = —Av + ¢’ (u%)w.

(Note that, by our comments above u%(z) = @ only on a set of measure zero and
hence ¢’(u®) makes sense.) Moreover,

n
Fy(u®,0)¢ = = Y ((div¢)ul, ), + div(((¢) + ¢')VU®) + g(u®) div .
i=1
Here we have corrected some minor errors in the calculations in [19]. (We
discuss below why the calculations in [19] cannot be quite correct. This was also
realized by Henry [13].) As in [19, p. 312-313], to prove that F'(u?,0) is onto,
we must prove that, if
@ —Aw + ¢'(u®)w = 0 on Ny,
w = 0 on 9%,

0

(where u° is as before) and if

(Fﬂl(uo, O)C: ’ll)) =0

for all ¢ € C3*(Q)", then w = 0. As in [19], we can use that u° is a solution
of (1) to simplify the formula for Fj(u® 0)¢. The only point to note is that the
seventh line on p. 313 should have a minus sign in front of the first term. We
find that

Fy(u®,0)¢ = div({(~Au® + g(u))) = ¢ - V(g(u")) + A(C - Va?).

(The changes come from the earlier errors in [19].) There is one minor point
here. We can use standard regularity theory to ensure that 40 ¢ W3P(Q) and
hence all the terms make sense. It is here that it is convenient to use C3 for V
rather than C%. Since u? is a solution of (1), the first term vanishes and hence

Fg(u®,0)¢ = —¢ - V(g(u) + A(¢ - Vu°).

Thus, by a simple integration by parts using that w = 0 on 89, we see that

(Fi(u®,0)¢,w) = [ —Co'(w®)Velw + ¢ - VulAw — ¢- vuo 2
(5) 2 8% on
0 Ow
= - C -Vu a s
80 an

since w is a solution of (4). At this stage, we realize that the formula for
(Fg(u®,0)¢,w) in [19] must be in error. If ¢ = 0 on 89y, the boundary of
o is not changed (at least infinitesimally and not at all if the correct small vari-
ation is chosen) and the change in 6 corresponds to looking at the same problem
on the same domain {2 under different coordinates. We would not expect this
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to yield transversality. (The original formula in [19] would give transversality
for the variations which fix 8€.)
By (5), we see that, if (Fj(u°,0)¢, w) = 0 for every ¢ € C3*(Q)", then

i
(6) Vuoﬁ =0 on 8.

Now w satisfies a linear equation and w = 0 on 8. Thus by a result of
Aronszajn et al. (cf Landis [14]), either w = 0 or {x € 8% : dw/dn(z) # 0}
is dense in 8. Thus, if w does not vanish identically, it follows from (6) that
{x € 89 : Vul(z) = 0} is dense in 8. Hence by continuity, Vu® = 0 on 8.
Since g(0) = 0, u? satisfies a linear elliptic equation with bounded coefficients.
As before, results of Aronszajn et al. and Landis imply that u® = 0 on Q.
This contradicts our assumptions. Hence w = 0 on 2 and F’(u°,0) is onto as
claimed.

We now complete the proof. We can argue as in Lemma A.1 of [19] to
check that N(F'(up,v0)) is complemented when F(ug,vo) = 0. Hence we can
now apply Lemma 1 to check that F~1(0) is a C' manifold modeled locally on
N(F'(ug,vp)) (where F(ug,vo) = 0). As in the appendix to [19], it follows easily
that 7 = T, |p-1(0) is @ C* Fredholm mapping of index zero of F~1(0) to ¥’
and that 0 is a regular value of F(-,v) if and only if vy is a regular value of 7.
Here 7, is the natural projection of U x V onto the second factor. Moreover,
by the argument on p. 311 of [19], 7 is proper when u is restricted to any set
{u: € < ||u| £ R}. Hence 7 is o-proper in the sense of [18] and hence we can
apply Sard’s theorem as in [19]. We need to use the version of Sard’s theorem
in [18]. (Note that 7 is o-proper and not necessarily proper.) Hence we see that
for a dense set if v’s in V, 0 is a regular value of 7 and hence of F(-,v). Hence
we have established the following theorem.

THEOREM 1. There is a dense subset B of V such that if 0 € B and 2 =
(I + 6)(R), then every non-zero solution of (1) on Q is non-degenerate (and
hence isolated).

REMARKS.

1) By the result in [18] and the o-properness, B is in fact a countable inter-
section of dense open sets in V. This will be useful in §2. Note that our
parametrization of domains is not 1-1 but if we choose a good local 1-1
parametrization of domains it is easy to see that density still holds.

2) If a # 0, ¢ is differentiable at zero. In this case it is easy to prove that zero
is not an eigenvalue of —A + ¢'(0)I (for Dirichlet boundary conditions on £2)
for a dense open set of §’s in V (where Q = (I + 6)(Q)). Hence, if @ # 0
we can improve the theorem to show that for a dense set of 8’s in V every
solution of (1) is non-degenerate.
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3) If @ # 0, but g has right and left limits at zero, it is possible to use some of
the ideas in §2 to show that for a dense open set of #'s, zero is an isolated
solution of (1) (and hence for a dense set of 8’s every solution is isolated).

4) As in [13], the condition that g(0) = 0 can be removed with some care. We
have not included this here because all the applications we have in mind
have g(0) = 0. Note that we only used g(0) = 0 to ensure that there are no
solutions u of (1) on @ with du/8n = 0 on 6. The idea here is to construct
F similarly to the way we constructed F before, except that we replace X by

{u EWP(Q) :u= z— =0on 390}

One shows that for fixed 4, F' is an injective semi-Fredholm map of index
—oo and that, if F'(u®,0) = 0, then there exists ¢ such that Fy(u®,0)¢ ¢
R(E,(u?,0)). It follows that for most small 8, the equatlon F(u°0) =0 has
no solution near u®. Here we use that for « near u°,

I1F(,0) — F(u°, 0)]|p 2 Kllu — u®l,p.

The result follows easily from this. A similar idea appears to be used in
[13]. Our methods could also be used if g depends suitably on z € Q and
9(z,0) = 0 (or if g(z,0) does not vanish identically on ).

5) Because of the (small) errors in [19], the argument in [8, p. 320-321] also
needs some minor corrections. However, the results are correct.

6) If g is C?, it is easy to modify the argument of Saut and Teman to prove
that zero is a regular value of the mapping F on (X\{0}) x V x R, where
F(@,0,)) = —Ai(T3) — Ag(@(z)). Hence, by a result of Crandall and
Rabinowitz [4], for most domains §2 the solutions of

—Au = Ag(u) in Q,
u =0 on 919,

form a smooth curve in (X\{0}) x R. It is unclear if this is still true if g is only
C? but our techniques imply that the result is true if g is C!, ¢ is locally
Lipschitz and g’ is differentiable except at one point. Such a nonlinearity
occurs naturally in [9] (when a = d in the notation there).

2. The Open Set Problem for Jumping Nonlinearities

In this section, we show how to adapt the methods of §1 to show that for
‘most’ smooth domains Q, A_; = {(a,d) € R? : —Au = au™ + du— has a non-
trivial solution in W12()} has empty interior in R2. Note that, as in [5), it is
easy to prove that A_; is closed in R%2. As we mentioned in the introduction,
these are the first cases when dimQ > 1 and A_; is shown to have empty interior.
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More precisely, following the notation of §1, we prove the following theorem.

THEOREM 2. For a dense subset Z of V, A_y has empty interior when
Q = (I + 0)(Qo) provided that 6 € Z.

First note that, if there is a non-trivial solution u of

—Au = au™ +du” in Qp,

u = 0 on 00y,

then there is one with ||ul]l = 1. Hence it suffices to look at our problem on
the surface T = {u € W2P(£p) : u = 0 on 8, [|ullz = 1}. Since [|u|l3 is a
continuous polynomial, it is easy to see that T' is a smooth (unbounded) surface
in {u € W2P(p) : u = 0 on 8Q}. Here we choose p > n. We define the
mapping F(u, ) as in §1 (for g(y) = —ay™ — by~) and we define F to be a map
of UxV xR? — Z (with U, V as there) by also considering it to be a function of a
and d. Then F is strictly differentiable at any point (u?, 6y, ao,do) € U xV x RZ,
with F'(u°, 89, ag, do) = 0. To prove this, we see as in §1 that it suffices to assume
that 6 = 0. By (3), F' is the sum of two terms. The first term is independent of
e and d and hence is strictly differentiable by the arguments of §1. The second
term is, except for a smooth factor det 7/, —au* — du™, which is independent of
6. As in §1, this is strictly differentiable in u (when F = 0). Since it is smooth
in a and d, it follows easily that it is strictly differentiable in (u, a,d) and hence
our claim follows.

For fixed d, we consider the map Flp. vy px {4y~ We will prove that F'(z) is
onto whenever F'(z) = 0 (when F is considered restricted to T xV x Rx {d}.
We then argue much as in §1 to deduce for most § € V, the map

(h,7) — —Ah— (axu>o + dXu<o)h — Tut
is onto Z (where h € X) when u # 0, u € X, and —Au = aut + du™ on
Q = (I + 6)(Qp). The result will follow easily from this.

To prove this formally, first note that the map —Ah — (@xu>0 + dxu<0)h
is Fredholm of index zero considered as a map on X into Z and hence it is
Fredholm of index —1 when considered as a map of T,,(T') into Z (by Lemma
V.1.5 in Goldberg [12]). Here T,,(T’) is the tangent space to T' at u. We use that
T,,(T) is of codimension 1 in X. Hence, by the same result, the map

(h,7) — —Ah — (@xu>0 + dxu<o)h — Tut

is Fredholm of index zero considered as a mapping of T, (T) x R to Z. Hence we
are back to the situation in §1. If we prove that F'(u,0,a,d) maps T, (T)x Y x
Rx {d} onto Z whenever F(u,0,a,d) = 0, we can use the same argument as in §1
to prove our claim. Note that here we are using the map (u,6,a) — F(u,0,a,d).
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Note also that we easily obtain the o-properness because as in [19] it is easy to
use standard regularity theory to prove that

{(u,8,0) : F(u,6,0,d) = 0:0 € K, ¢ < [[ulzp < 7Y, Ja| <}

is compact in X for every € > 0 if K is compact in Y. Hence it remains to
prove the ontoness condition on F”. First note that £ is positive homogeneous
in u when 6, a,d are fixed. Hence F”,(u, 0, a,d)u = 0 whenever F(u,0, a,d) =0.
Since u is clearly not in T}, (T), we see that R(E”) is the same whether considered
as a map of T,,(T) x Y x R x {0} into Z or as a map of X x ¥ x R x {0}
into Z. Thus it suffices to prove that F” maps X X ¥ x R x {0} onto Z.
A sufficient condition for this is to prove that F” maps X x Y x {0} x {0}
onto Z. This follows by the argument in §1. Hence there is a dense subset
T; of V which is a countable intersection of open sets such that, if § ¢ T4,
(hy7) — F’(u,0,a,d)h + F!(u,0,a,d)r is onto Z whenever F(u,0,aq, d)=0.In
other words, if 6 € Ty, T = I + 8 and Q = (I + )2, then the map

(h,7) = —Ah — (axu>0 + dXu<0)h — Tut

maps To,(T') x R onto Z whenever u € T, a € R and —Au = au* + du—. Note
that the construction of V is independent of d. Choose a countable dense subset
{dn}3Z; of R. Then To,, = (2, T4, is dense in V' by the Baire category theory
since each Ty, is a countable intersection of dense open sets. On the other hand,
we will prove in a moment that,

(N if 8 € Ty, {a: (a,d) € A_,} is countable.

Hence we see that if 6 € T, {a : (a,d) € A_.} is countable for every n. This
implies that A_; does not contain an open set because if (ag,dp) € int A_;, then
A_; N (R x {d}) would contain an open vertical segment for all d close to dy. In
particular, since {dy} is dense in R, A_1 N (R x {d,}) would contain a vertical
line segment for some n. This contradicts our countability claim (7) above.

Hence our result is proved if we prove (7) for # € T. It suffices to prove that,
if 6 € Ty, then S = {(a,u) € Rx T : —Au—aut —du~ =0 in Q} consists of
isolated points in Rx W'#(Q) if p > n. This suffices because standard regularity
theory implies that S, = {(a,u) € S : |a| < n} is bounded in R x W2?() and
hence is compact in R x W1?(Q). Thus by the isolatedness, S, is finite and
hence § = |J,_, Sn is countable.

To prove our isolatedness claim, we first note that it follows easily from stan-
dard regularity theory that it suffices to prove isolatedness in R x W2?(Q). The
required result follows from a simple contraction mapping theorem argument.
The details appear in Pope [17, Theorem 3.3.1]. (If (ag,u0) € S one shows
as before that the map (a,u) » —Awu — aut — du~ is strictly differentiable at
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(a0, u0) and the derivative maps R x Ty, (T') bijectively onto L?(£2). Hence the
result follows from the contraction mapping theorem.) This completes the proof.

1)

2)

REMARKS.

A similar, but easier, argument implies that if a and d are fixed then, for
most 2, (a,d) ¢ A_;. This shows that an assumption in [9] holds for generic
Q. Indeed Dr. Yihong Du has noted that this can be used to give a slightly
shorter proof of Theorem 2. The argument above has the advantage that it
gives more information on the structure of A_; for “generic” 2.

Some of our ideas have other uses. It can be proved that if W C R? is open
and if —A — (axu>0 + dXu<o)l has at most a two-dimensional kernel (for
Dirichlet boundary conditions) whenever (a,d) € W, u € W2P(Q)NW12(Q),
and

{z € Q:u(z) =0}

has zero measure, then A_; W does not contain an open set. This shows that
the difficulties in the open set problem are caused by multiple eigenvalues.
Micheletti [15] already had results close to, but slightly weaker than, this.
The idea is to use the strict differentiability and ideas similar to that in the
above proof to locally reduce our problem to one for a mapping of R! to
R! and then use Sard’s theorem and Pope’s result. More precisely, one can
show that, if ug is a solution of —Au = aut + du~ vanishing on 852, then,
for fixed d greater than A; the set of possible solutions W nearby on T' x R2
is contained in {(u(s),a(s),d)}, where u and a are C' in s and s € R. One
proves by differentiating the original equation in s that a’(so) = 0 whenever
(u(s0),a(so),d) is non-isolated in W and thus by Sard’s theorem applied to
a(s) the set

{a: —Au = au’ +du~ has a nontrivial solution u near uy with a near a(0)}

has measure zero. It follows easitly that W N {R x {d}) N A_; has measure
zero and hence A_; N W has measure zero. In particular, A_; N W contains
no open set. This proof does not seem to generalize to a larger dimensional
kernel because a seems to be only C! and we are then unable to apply Sard’s
theorem. If a large symmetry group acts on £, one can sometimes permit
even larger kernels effectively by factoring out the symmetry in some way. For
example, one can prove that, if  is a ball in R™ and if o < § are successive
eigenvalues of —A such that one of them is simple and the symmetry group
O(n) acts transitively on the sphere in the eigenspace of the other eigenvalue,
then

{(a,d) : a0 < a,d < B, (a,d) € A_1}



GENERIC DOMAIN DEPENDENCE 149

contains no open set where

and

ag=sup{A:A€0(-A),A<a, A< g}

fo =inf{A: X € a(-A), A > a, A > F}.

3) One possible way one might try to construct an example where A_; contains
an open set would be to start with a case where —Au = au™ + du™ has a
smooth manifold of solutions for fixed a and d due to symmetries of Q and
then try to perturb Q so that it is less symmetric but for which we still have
a nearby manifold M of solutions of our equation but such that a and d vary
on M.
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