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Dedicated to the memory of Karol Borsuk

1. Introduction
The existence of weak radially symmetric solutions for the problem
uy — Au+ g(u) = f(¢,z), (t,x) eR x B2,
u(t,z) =0, (t,7) e Rx §771,
u(t + T, z) = u(t, z), (t,z) e R x BZ,

has been recently considered by Smiley [11], using the alternative method. Here,

n 52
a= (i=1 a_xzz)’
B; ={z €R", ||z < a}

and
n 1/2

Si'={z€R", |zl =a}, with |z = (3 a?)

i=1
In [11] the nonlinear term g is required to be Lipschitz continuous and strictly

monotone. The ratio a/T is a rational number, and some restrictions are im-
posed on the Lipschitz and monotonicity constants. Those restrictions are not
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sharp, even in the special case n = 1, T' = 2x, 2a = w7, which corresponds to the
problem of a periodically forced semilinear vibrating string with an additionnal
symmetry with respect to the mid-point of the string. In this situation however,
sharp existence conditions are known (see e.g. [3] and its references) and a nat-
ural question is the possibility of extending those sharp existence conditions to
the case where n > 1.

In doing so we have realized that the spectral properties of the linear wave
operator with periodic-Dirichlet boundary conditions on the ball depended upon
the parity of space dimension 7, a feature overlooked in [11].

Indeed, in contrast to the case of odd n, this operator has a compact resol-
vent when 7 is even, and hence the nonlinear problem can be approached by
techniques of nonlinear functional analysis relying upon compactness.

In particular the combination of sharp estimates for the inverse of the linear
part and the Banach fixed point theorem can be replaced by the use of usual
Leray-Schauder’s degree argument.

As a consequence, when 7 is even, the monotonicity condition upon g can
be dropped and we can deal with a more general nonlinear term g(¢,z,u) for
which the nonresonance conditions need only to hold asymptotically and in a
non-uniform way with respect to ¢ and z. In the case of n odd, we use an
existence theorem in [7] (for n = 1 or n = 3), and a recent existence result of
the authors in [3] (for n > 5) to improve the results of Smiley [11] by providing
sharp conditions on the monotonicity constants of g(¢,z, ), which insure the
existence and uniqueness of the solution.

With the assumption of radial symmetry, the above problem can be written
in the more general form, with r = ||z||,

U=t~ (= Dur + gt W) =0, (6r) €)0,T[x]0,al,
(1)  wu(t,a)=0, t€]0,TY,
uw(0,7) — u(T,7) = u(0,7) —ue(T,7) =0, 7 €]0,al.
By a solution of (1) we mean, as in [11], a weak solution in the following sense.
Let D denote the class of radially symmetric functions ¢ € C°°(R x B?, R), which

are T—periodic in time for each z € B, and have compact support in B} for
each t e R.

Let H denote the space of functions v : [0,T] x BF — R, which are radially
‘symmetric and belong to L2([0, 7] x B?). Equipped with the usual L2-norm and
inner product (-,-), H is a Hilbert space. We say that u € H is a weak solution
of (1) provided that

T a
/0 /0 uldee — brr — L (n.— 1)by) + gty u)g] ™~ drdt = 0,

for every ¢ € D.
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To summarize the main results of the problem (1), which we state for T = 2r
and 2a =, let us recall that the spectrum of the associated linear problem
Ut — Upr — (0 — 1) up — Au =0, (t,r) €]0, 2n[x]0, Z[,
u(t, %) =0, t E]Ov 27r[a
u(0,7) — u(2m,r) = us(0,7) — ue(2m,7) = 0, r€]0, %[
is made of isolated eigenvalues, which accumulate only at +o00 and —oo.

Let A < u be two consecutive eigenvalues, a+ and S+ be in L*(J), with
J =]0, 2x[x]0, %[, and such that

A S a+(t7 ‘T') S ﬂ+(t1 r) S M,
A<a_(t,r) < B(t,r)<p,

a.e. on J, with
f, (a4 = X)) + (a= = A)(v7)?] >0, for all v € ker(L — AI)\{0},

and

/J (= B )@*)? + (= )] >0, for all w € ker(L ~ uI)\ {0},

where L denotes the abstract realization in H of the radial symmetric wave
operator with periodic-Dirichlet conditions on J, and

ut = il +w), = d(lul - ).
Then, when n is even, the existence of a weak solution for (1) is insured when
ay(t,r) < liminfu~'g(t,r,u) < limsupu~lg(t,r,u) < B+(t, 1),
u—+00 u——+00

a_(t,r) < liminfu~'g(t,r,u) < limsupu~lg(t,r,u) < B_ (t,r)
u——00 U—>—00 BN
hold uniformly a.e. in (¢,r) € J (Theorem 1). For n =1 or.n = 3, the existence
holds when g satisfies the jumping nonlinearities above with A and p nonzero
and sign A - g(t, 7, -) is nondecreasing (Theorem 2) although, for n odd (n > 5),
the existence of an unique weak solution for (1) holds when g satisfies

g(t7 7 U) - g(t’ 7y ’U)
u—v

A< P < < B < p,

a.e. in (¢,7) € J and all u,v € R, with By and 8, two real constants.
The same arguments can be used to prove the existence of weak solution
u € L%(S' x S™) for the equation

ug — Apu = g(t, x,u), te S, ze s,
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where S™ is the n-dimensional sphere, A,, denotes the Laplace operator on 5%,
and g(t,x,u) is a continuous real function defined on 81 x 8™ xR.

Indeed, the spectral properties of the linear spherical wave operator depend
upon the parity of the space dimension n. If n is odd, the results are similar
to those in the case » = 1, but if n is even the corresponding linear operator is
Fredholm of index zero and has a compact resolvent.

The existence of nontrivial solutions of the equation above has been consid-
ered by Chang-Hong [4] and Benci-Fortunato [2] using variational methods.

We say that u € L?(S* x §™) is a weak solution of the spherical wave equation
above, provided that

f w(s — And) — gt 7, W) = 0,
Slx8n

for every ¢ € C?(S* x S™).
We recall in the Appendix the statements of the abstract existence theorems
we use.

2. The linear eigenvalue problem
Let us first reproduce, for the reader’s convenience, some interesting results
of [11] on
¢tt —¢1'1‘ - %(n_ 1)¢1‘ = A¢s (t,’!‘) E]O1T[X]O’a[1
(2)  ¢(ta)=0, t €10,77,
#(0,7) — ¢(T, r)= ¢:(0,7) — #:(T,7) =0, r E]O,a['

By a classical method of separation of variables, we set ¢(t,r) = 7(t)p(r) and
derive that p must satisfy the equations

(3) 2"+ (n—rp +r2up=0, 0<r<a,

4) pla) =0, p bounded on [0,a],

where p2 = X + k2 for any integer ¥ > 0, the corresponding functions 74 being
linear combinations of cos(2ktn/T) and sin(2ktw/T). The change of variables
Y(r) = r®=D/2p(r) transforms (3) (4) into

(5)  r2 e+ [ - (252)y =0, O0<r<a,

®)  $@=0, ¥(r)=0, (r*=572) as r - 0%

For the Bessel equation of order » = (n — 2)/2, this is the classical eigenvalue
problem. Let J,(z) denote the Bessel function of the first kind of order v =
(n—2)/2 (cf. [1], [12]). Then y = J,(z) satisfies

o2y + oy + (22 -y =0, T >0,
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and J,(z) = 0(z¥) as z — 0. It is well know that J,, has an infinite sequence of
distinct positive zeros (z,,; );°°=1 tending to infinity. The eigenvalues from problem
(2) are seen to be p2 ; = (an,j/a)? where an,; is the j™ positive zero of J, with
v=(n-—2) /2.

The corresponding eigenfuctions are %, j(r) = J,(an ;r/a). Hence problem
(2) has eigenvalues and eigenfunctions

5= (20) - (57"

cos(2ktr/T) } p(2-n)/2 Jn—zy/2(0m i 7/a),

© )
Gt 7) = {sin(2kt7r/T)

for £k > 0 and j > 1. It is clear that for each n > 1, the sequence (,\;‘,k) is
unbounded from above and below.

Notice that for n = 1, the problem is equivalent to the periodic-Dirichlet
problem on [0,T] x [—a,a] with an additional constraint of symmetry at the
mid-point 0 of [—a, a]. Such a problem has been widely considered when T = 21
and a = 3 and we shall consider this case for arbitary values of n.

To motivate our results for n even, we first consider the more simple case
where n = 2. Then the a3 ; are the zeros of Jo(z). In particular it is known (ct.
(1], [12]) that

(8) (G—Pr<az; <(G-—3)m, for all j > 1.
We have the following result.

LEMMA 1. Suppose that n = 2,T = 2m, and 2a = 7. Then the eigenvalues
AZi (421, k > 0) have finite multiplicity.

ProoF. If A is an eigenvalue,

203 \ 2
/\=(ﬂ) ~ K G=1,k2>0)

™

and

2a ; 2ay
|A| = | a2:.7 _ k‘ J a2y.7 +k|,
T T
from (8) we see that |23 j/7 — k| is minimum for k = 2j. Thus,
1

202]' . 1
—— < -2 <—=;
2 e J 4

80 |2az,;/m—2j| > } and |A| > }[2a /7 + k|. We deduce that there are only
finitely many pairs (4,k), ( > 1, k > 0), which satisfy the last inequality and
complete the proof. a
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REMARK 1. (see [11]). If n =2, T = 27 and 2a = =, we find that,

2\? kr\? 2\*(m !
M= () Jobs= (5) [ 2 (2) )ews 2 ppons

for all j > 1, k > 0, where a1 denote the first positive zero of Jy(z), and hence
0 is not an eigenvalue in this case. When n is an arbitrary even integer, we have
the same result as in the case n = 2.

LEMMA 2. Suppose thatn > 2, T' = 2w, and 2a = w. Then the eigenvalues
AZ ks (4 =1, k 2 0) have finite multiplicity.

PROOF. It is known from classical arguments [12] that for large j we have
the asymptotic expansion

(4?-1) (@2-1)(28°-31)
_ 8b,; 384b3 ; '

Ty = byj —

where b,; = (j + v — 1)7, and =z,; is the j® positive zero of J,(z) with
v =(n—2)/2. If we put €,,; = (2/7)(bs,; — ,,5), then, ¢, ; — 0 when j — +00

(see [11]). Let jo be so large that |e, ;| < 6 for j > jo with & €]0,1/2[. Hence
. 1 6 2$y,j 24 1 6
(9) 2j+v—3— <_7r_< j+v—s5+

and consequently, |2z, ;/7 — k| is minimum for k£ = 2j +v — 1 or for k = 2j + v
(which are integers since n is even) and its minimum value is larger or equal
to (1/2—6) > 0. Thus if A = (2z, /7 — k)(2zy /7 + k), we deduce that
[Ab->(1/2 = 6)|2z,,;/2m + k| and there exist only finitely many pairs (j, k),
(4 > jo, k = 0), which satisfy the last inequality.

Now if j < jo and A is an eigenvalue, we easily deduce that k? = (2z, ;/7)2—A
and there exist a finite number of &, which sa,tiéfy this equality since there is a

finite number of zeros of J,,(z) for j < jo. ]
Let us finally notice that when n is odd, there may be eigenvalues with infinite
multiplicity. In particular, for n = 1 and » = —1/2 the positive zeros of

J_y12(z) = Y% cosz

are given by ay,; = (2j — 1)n/2, j € N*. For n = 3 and v = 1/2 the positive
zeros of

Jijo(z) = ™Y 2ging
are given by as,; = jm, j € N*. Thus, for T = 27 and 2a = 7 we have

AL =(2i-1)2—k  and A}, =45° -2,

which shows that, in both cases, 0 is an eigenvalue of infinite multiplicity.
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3. Preliminary lemmas for the linear problem

Let T' = 2w, 2a = 7, and the eigenfunctions in this case

n cos(kt) _"
¢j,k(t’ ’I‘) = { sin(kt) }7‘(2 )/2']("—2)/2(2anwj/7r)v

for k € N, j € N*. Each u € H can be writen as the Fourier series

e~ Z k05 k(2 7),
kEN, jEN"
where u;x = (u, 4} ). We define the abstract realization L in H of the radial
symmetric wave operator with the periodic-Dirichlet conditions on J as follows.
Let
domL={ueH; Y [(20m;/m) -k |ujs|* < oo},
kEN, jEN
and
L:domL—H, u—Lu= Y. [(2an;/7)—k*|ujscis.
kEN, jEN*
Then L is a self-adjoint operator in H, with spectrum

o(L)={A} = (2an,j/7)® — k%, k€N, j € N*}

made of isolated eigenvalues. We denote by K its right inverse.

Let H; (resp H;) be the space spanned by the eigenfunctions of L associated
with the eigenvalues smaller or equal to A (resp. larger or equal to u). For each
u € H, define the subsets J+ of J by

Je(u) ={(t,7) € J; u(t,r) >0},
J_(u) ={(t,7) € J; u(t,r) <0},

and denote by xj, the corresponding characteristic functions. If p, € L>(J)
and p_ € L*°(J), define the operator A, : H — L®(J) by

(10) Ap(u) = P+ X7, (u) + P-XJ_(w)

and the operator B, : H — H by

(11) By(u)(t, ) = (Ap(u))(t, r)u(t, r) = [Ap(u)u](t, 7).
If u; € Hy, uy € Hy, we have for all u € dom L

(Lu — Bp(u), uz — u1) = (L(uz + u1) — Ap(u)(uz + u3),us — uy)

(12)
= (Luz — Ap(u)uz, uz) — (Lur — Ap(u)uy,u;)

and for every A > 0, B,(Au) = ABp(u), so that B, is positive homogeneous.
Moreover, if S is a vector space of ker L, and Ps the corresponding orthogonal
projector, we shall denote by Ns the mapping defined on Hs = S & Im L by
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Ng = QgN, with Qg = Ps + Q. The first lemma for linear problem goes as
follows.

LEMMA 3. Let ax and B+ be elements of L>°(J) such that

(13) AL a+(t7 T) < ﬂ+(t! T) < 1y
(14) A<a(tr) <B-(t,7) <

a.e. on J, and such that

(15) /[(a.,_ — N2+ (e =N (@T)H >0, Vv € ker(L — AI)\{0},
J

and

(16) fJ (4= Be) W) + (= B)(w )] >0,  Vuw € ker(L — uD)\{0}.

Then, for each subspace S C ker L, there exists € > 0, and § > 0 such that for
all real measurable functions py and p_ on J with

a+(t’ T) —€e< p+(t1 T) < ﬂ+(t1 T) + ¢,

a_(t,r) —e<p_(t,r) < P_(t,r)+e¢
a.e. on J and for all u € dom L N Hg, one has |Lu — By, s(u)| > bjul.

Proor. If it is not the case, we can find § C ker L, a sequence (¢™) in
dom L N Hs with |4™| = 1 and sequences (p7) (p™) in L(J) with

(17) a+(t, ’I‘) - l/m < pT(ta 7') < ﬂ+(t,’f‘) + 1/ma
(18) a_(t,r)—1/m < p™(t,7) < B_(t,r) +1/m,

a.e. on J and

(19) |Lu™ — Bpm s(u™)| < 1/m (m=1,2,...),
that is,
(20) Lu™ — Bpm s(u™) = f™

with |f™| < 1/m and |[u™| =1, (m=1,2,...).

Writing u™ = u* + «J* with u* € H;, u3' € Ha, we have ui® € domLnN
HiNHs and «J* € dom LNH;NHg form = 1,2,..., and, taking inner product
with (20), we have

(Lu™ = Bym s(u™),ug' —ut*) = (f™,ug’ —ul"),
i.e. as Qs is self-adjoint and u3* — u® € Hs,

(Lu™ — Bpm (u™), ug* — u") = (f™,u3" — u7"),
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or by (12),
(1) (Lug' — AP (u™)ug',ug’) — (LuT* — A7 (u™)ul, uT") = (™, u® — ul).

Now let ' < A < u < p' (with X, X and p, ¢’ two pairs of consecutive
eigenvalues) and H; = H,eH; (i =1,2), where H, (resp. I-Ig) is spanned by the
eigenfunctions assciated with eigenvalues smaller or equal to A\’ (resp. larger or
equal to ¢') and H (resp. Ha) is the finite dimensional space spanned by the
eigenfunctions assciated with the eigenvalue A (resp. u). We will write,

ut=al+a, areH,ateH, (i=1,2).

Using the fact that
A=1/m < Apm(u™)(t,r) < p+1/m (m=1,2,...),
we have

(g — Apm (W™ uf') — (Lul® — Apm (™)™, u")
> (Lug — (u+ 1/m)u, uff) — (Luf® — (A — 1/m)ul, u]?)
= (L — (u+ 1/m)a, @) + (Laf’ — (u + 1/m)a, &)
— (L — (A= 1/m)ap, @) — (La§ — (A — 1/m)al, a)
= (L — piaf, @) — (L8 — AP, &) — 1/m

= E A7 el l® — plull ) — Z (A% klufsl? — Al %] — 1/m
X zu ey

> (4~ W' + (A = X)|af* ~ 1/m.
From this relation and (21) we get
0 < (' =maF P+A=-X)aT? < (1/m)+ fmlluF | £ 2/m, (m=1,2,...)
and hence
(22) " — 0, 4y —0, if m — oo.

On other hand, as |7*| < 1, [a]*| < 1, and H; and H; are finite dimensional,
we can assume, going if necessary to a subsequence, that there exists %; € H;
and @ip € Hy such that

(23) 'l_tT — U, ‘l_l,;n — Ug,
when m — oo. Thus u* — @1, uJ* — @ for m — oo, so that

(24) |ﬁ1|2 + I’uzlz =1.



122 A K. BEN-NAOUM AND J. MAWHIN

On other hand,

(25)  1/m 2 (fm,uz’ —u7’)
= (Lu™ — Bpm (u™),u3" — u1")
= (L' — Apm (W™ )u3", ug") — (Lui" — Apm (u™)ul", u7")
= (Lig' — Apm (u™)i3", ig") + (1 — Apm (w™)u3’, 45")
— 2(Apm (u™)uz", 43") — (LAT" — Apm (u™)al", a7")
+ ((Apm (u™) = N)ar®, 47°) + 2(Apm (u™)ar", 47"),
where m =1,2,.... By (19) it follows that
Apn (P S C, AW S C, LA < O,

forsome C >0,i=1,2and allm=1,2,....
Going if necessary to a subsequence, we can assume that there exists p; and
p— such that

ot (t,r) <pi(tr) < B4(tr), a-(t,r) <p-(t,7) < B-(t7)

and
(26) o —ps, T —p,
as m — o0, and that
(27 u™ — 4= Uy + Us
a.e. on J as m — oo. Consequently
(28) XIs(um) = XJ1(a)
a.e. on J as m — oco. Moreover, we have
(29)

| [P am ) = P )|

<| [0 - poxrw@? | +| [ #200m @) ~ X0 (@)
< I/J(Pl' — P+)X7s (a) (%)? | +C/J Xt (um) = Xau (@] (W:)°
+0 [ @) - @

for i=1,2 and all k=1,2....
Consequently, letting m — oo in (25) and using (26) to (29) we obtain

0> /J(# ~ P+ XJ, (@) — P-XJ_())(@2)® + /J(P+XJ+(«a) +p-x7_@ — N(@)* > 0.
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Each integral being nonegative, this gives
(30) ‘/J.(M — P+ X7, (@) — P-XJ_(a))(82)? =0,
(31) _/;(P+XJ+(1-.) +P-X7_@) — A)(@1)? =0.
Therefore, if J; = {(t,r) € J, @;(t,7) # 0} (i = 1,2), we have

(32) B=DPiXi (@) T P-Xi_(a)  ae. onJa,
(33) A=piXs @) +P-Xs_(@m  ae onlJi,

and hence J1NJy = 0. If J; =@, then & = @, and (44) becomes
J=pa@? + - oy =o,

which implies
02 [ (u= P+ (u—p-)(a ),

and hence #; = 0 by assumption (16), so that @ = 0, a contradiction with (24).

If we now assume J; # @, then on J; we have (32) (33) and hence by (30) and
the fact that the integrand functions in (30) and (31) are nonegative, we get

[ =@y =,
J1
so that @2 =0 a.e. on J;. Consequently, by (31),
0 =/J (P+Xi. @) +P-X_(a) — A)(@1)? =/J (P+ X7y @) +P-X1_(ay) — A)(it1)?
1 1
= [ s = N@D? + - - V@) = [ @ =@ + o - Ny
1

> [(ar = N@? + (a- - M@
so that #; = 0 by assumption (15), a contradiction with J; # 0. O
LEMMA 4. Under the assumptions of Lemma 3, one has
|Dis(Ls — By,s, B(M))| =1,

for every finite dimensional vector subspace S C ker L, every open ball B(vy) in
Hg and every py and p_ satisfying the conditions of Lemma 3.

PROOF. It is immediate that the mapping B, 5 is Lg-completely continuous
in Hg. It then follows from Lemma 3 and the homotopy invariance of degree
that for each 4 > 0 one has

-DLs (LS - Bp,S’B('Y)) = DLS (LS - Bﬂrs’ B('Y))
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Let b €], u[; then, for every s € [0,1] and a.e. (¢,7) € J, one has
A < (1 - 3)b+ sﬂ:i:(ta 7') < Hy

and for every v € ker(L — AI)\{0} we get
R O
—(1- )= /J 24 /J (B = N(@H)? + (B — M) > 0.
Similary, we have
[ = (1= 0= sB)w)? 4 = (1= 9+ 8w ) >0,

for every s € [0,1] and every w € ker (L — uI)\{0}.
Hence, by Lemma 3 applied with the common values (1—s)b+s8+ for oy, 0+
and py, we see that equation

Ly~ [(1 — s)bu + sBg s(u)] =0

has in dom L N Hg only the zero solution, which implies that for each 6 > 0 one
has
Dps(Ls — Bg,s, B(7)) = Dis(Ls — bls, B(v)) = £1.

4. The nonlinear problem in the case of even dimension

Now let J = [0,27] x [0,7/2] and let g : 7 x R — R be a function such that
g(+, -,u) is measurable on J for each u € R, g(¢t,r, -) is continuous on R for a.e.
(t,r) € J. Moreover, assume that for each p > 0, there exists h, € H such that

(34) lg(t, 7, u)| < hy(t;T)

when (t,7) € J and |u| < p. We shall say that g satisfies the Caratheodory
conditions for H.
Consider weak radially symmetric solutions of the semilinear wave problem
Ugt — Upr — 25 u, — g(t,7,u) =0, (t,7) €10,2x[x 10, 7/2[,
(35) wu(t,x/2)=0, t €]0,2x[,
u(0,7) — u(2m,7) = u(0,7) —us(2m,7) =0, r €0, m/2.

The function u € H is a weak solution of this problem, provided

2r  pw/2 _
/0 /0 [(Bee — Grr — n;r—l¢r) + g(t,r u)glr™1dr dt = 0,

for every ¢ € D. Then we have the following existence result.
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THEOREM 1. Let n be an even integer, T = 2w, 2a = =, and let A < L be
two consecutive eigenvalues of (2). Assume that g satisfies (34) and that the
inegualities
(36)  au(t,r) < liminfu~lg(t,r,u) < limsupu~lg(t, r,u) < B (¢, 1),

u—++00 u—+4oco
(37) a_(t,r) < liminf u~lg(t,r,u) < limsupu~'g(t,r, u) < B_(t,r)
U—=—00 u——00

hold uniformly a.e. in (t,r) € J, where oy and B+ are functions in L>(J) such
that

(38) A S C!+(tv ‘f‘) S ﬂ+(t! T) S Ky

(39) A<a_(t,r) < B-(t,7) < .

Moreover, assume that
(40) /, s — N2+ (@ - N )] >0, Vo€ ker(L — AD\{0},

and

@) [l W+ (=@ >0, Vo €kex(L - uD\{o).
Then problem (35) has at least one weak solution.

REMARK 2. Conditions of the form (36) to (39) (with ay = a_ = o and
B+ = B = 3) were first introduced for elliptic Dirichlet problems in [10], and for
semilinear wave equations in one-dimensional space variable in [9]. An abstract
treatment is given in [5].

REMARK 3. If @y =a- = a and B, = f_ = §3, then (40) and (41) respec-
tively become

/ (@—A)0w? >0, forall v € ker(L — AI)\{0}
J

and
/(u —Bw? >0, for all w € ker(L — pI)\{0},
J

which is equivalent to a(t,z) > A (resp. B(t,z) < u) on a subset of J of positive
measure.

PROOF OF THEOREM 1. We now return to the periodic-Dirichlet problem on
J for the semilinear radial symmetric wave problem (35) and following Mawhin-
Ward [8], proceed to the proof of Theorem 1 stated above. Let § = ker L, which
is finite dimensional from Lemma 2 and § > 0, € > 0 be given by Lemma 3. By
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(36) (37) we can find p > 0 such that, for a.e. (t,r) € J and all u with |u| > p,
we have

oy (t,r) —e <ulg(t,r,u) < Be(t,7) +¢ ifu>p,
a_(t,r) —e <u lg(t,r,u) < B_(t,7) +¢ if u < —p.
This implies by (34) that
lg(t, 7, w)| < (c+ e)lul + hy(t; 7),

for a.e (t,7) € J and allu € R, with ¢ = g if A > 0 and [A| if 4 < 0. Consequently
the mapping N defined on H by

N(’U-)(t, 7') = g(t’ L u(t’ T))

will map H continuously into itself and take bounded sets into bounded sets.
Moreover, the weak radial symmetric solutions of the periodic-Dirichlet problem
on J will be the solutions in dom L of the abstract equation in H

(42) Lu— Nu=0.

Clearly, from Lemma 2, L is a Fredholm operator of index zero and N is L-
compact.
Define the nonlinear operator B, : H — H by

Bo(u) =ayut —a_u.
It follows from Lemma 4 that
|Dz(L — Ba, B(7))| =1

for every 4 > 0. According to the Theorem A in the Appendix, equation (42)
will have a solution if the set of possible solutions of the family of equations

(43) Lu— (1 — 8)Ba(u) — sN(u) =0, s €10,1],

is a priori bounded independently of s.
Define f, on J x Ry and f_ on J x R_ by

fotr) = u”lg(t,r, u) if u > p;
H (1-2)p~lg(t,r,p) + Bug(t,ru)  E0Su<p,
f-(t ) = 'u'_lg(ta T, u) ifu<—p
IR 1+ E)(_p-_l)g(ta r,p) — 1_“"'-"_I.Q(ti ru) f02u>—p,
P P
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and eon J x R by
e(t,r,0) = g(t,7,0),
e(t’ Ty U) = g(t7 7 U) - f+(t1 T, u)u ifu> 0,
e(t,r,u) = g(t,r,u) — f—(t,r,u)u  fu<O.
Then e satisfies the Carathéodory conditions for H and
(44) le(t, r, u)| < 2h,(t,7)
for a.e. (¢,7) € J and all u € R. Notice that
ar(t,r)—e < fi(t,r,u) < By (t,7) +¢, onJ xRy,
and
a_(t,r)—e< f-(t,ru) < B-(t, 1) +¢, onJxR_,.
Moreover, for every u € H,
glt.r,ult,r)) = falt,ru® (@ r))ut (& r) = F- (b, u™ (8, 7))u™ (¢, ) +elt, 7, ult, 7).
Define C¢ : H — L*°(J) by
C,f(u)(t, T) = f+(ta T, u+(ta T))XJ+(u) + f— (t: U (ti T))XJ_(u)v
and Dy : H — H by
Ds(u)(t,r) = [Cr(w)(t, r)]ult, r) = (Cr(u)u)(t, 1),
so that
D.f(u)(t’ 7‘) = f+(t, Ty u+(t’ T))u+(t7 "') - f_(t, ru” (¢, "'))u_ (t7 r),

and hence
E:H- H,
Nu = Dg(u) + E(u) = Cy(u)u + E(u), where
u_)e('a ',U(‘, ))
Thus equation (41) can be written as
Lu — (1 —38)By(u) + sDs(u) — sE(u) =0
or
(45) Lu —[(1 - 8)Aa(u) + sCy(u)lu — sE(u) =0, s €[0,1].
Let u be a possible solution of (43) (and then of (45)) for some s € [0,1]. We
have

(1 = 8)Aa(u)(t,r) + 8C(u)(t,7) = [(1 = S)as (t,7) + £ (8,7, u™ (2, 7) X0, (u)
+ [(1 - S)Cl.. (t7 T) +sf- (t, L (t’ T)]XJ_ (u)
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o (t,r) — € < (1= 8oy (t, ) + sfaltr,ut (8,7)) < Baltyr) +e

a_(t,r)—e<(1—8)a-(t,r)+sf-(t,r,u” (t,7)) < B_(t,7) +e
Consequently, Lemma 3 and

pi(t,r) = (1 — 8)ax(t,r) + sfelt,r,ut(t, 1))
imply, together with (44) and (45), that
8lul < |Lu—[(1 — s)Aa(u) + sCf(w)]u| = [sE(u)| < 2|h,|,

ie. |u| <267 YA, O

REMARK 4. Since all properties on L are satisfied for (—L), Theorem 1 holds
true for the radially symmetric periodic-Dirichlet problem

Utt — Upr — %(n - l)u'r + g(t) L 'U') =0, (ta 7') € ]Oa 21I’[ X ]0, 77/2[,
u(t,7/2) =0, t €]0, 2= |,
u(0,7) — u(2m,7) = us(0,7) — w(2m,7) =0, r€)0,7/2,
if A < u denote now the eigenvalues of the negative of the radial symmetric wave
operator with the periodic-Dirichlet boundary conditions on ]0,2x[x]0, 7/2[.

COROLLARY 1. Let g : J x R — R satisfy the Carathéodory conditions for
H and be such that

(46) a(t, T) < 9(t7r7u) _g(t1 T’U) < ﬂ(t, 7‘)

u—v
forae (t,r)eJandadlu#veR, witha_=a; =aandf_ =01 =P asin
Theorem 1. Then the periodic-Dirichlet problem (35) has a unique weak radially

symmetric solution .

Proor. It follows from (46) that conditions (36) (37) hold. Thus the ex-
istence follows from Theorem 1. If, now u and v are solutions, then letting
w = u—v, w will be a weak solution of the radially symmetric periodic-Dirichlet
problem for equation

(47) Wy — Wyr — 2 (n — Dw, — [g(t,7,v +w) — g(t,7,v)] =0.
Setting
fruy < { VG R =gl w
) - a(t,r) if w=0,

we see that (47) can be written as

(48) Wit — Wpp — 7 (n = Dwy = ft,r,w)w =0
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with

a(t’ 'I‘) < f(ta"') ’UJ) < .B(t’ T)
for a.e. (t,7) € J and all w € R. Consequently, by Lemma 3, we easily see from
(48) that w =0, i.e. u=v. O

5. The nonlinear problem in the case of odd dimension

With the notations of section 4, we shall now study problem (35) when the
space dimension 7 is odd. Then the zero eigenvalue of the linear part may have
infinite multiplicity and a Leray-Schauder type approach is excluded. Using
instead an existence theorem of [7] we shall be able to prove in the case n = 1 or
n = 3 (for which the nonzero eigenvalues all have finite multiplicity) an existence
theorem when g satisfies nonuniform nonresonance conditions.

THEOREM 2. Letn =1 orn = 3,T = 27,2a = 7, and let X < u be two
consecutive nonzero eigenvalues of (2).
Assume that g satisfies (34), sign A - g(¢,7, -) is nondecreasing and that the
inequalities
o_(t,r) < liminfu~'g(t,r,u) <limsupu~'g(t,r,u) < B_(¢,7),
u——oa uU——00
o4 (t,7) < liminf u=g(t,r,u) <limsupu~'g(t,r,u) < B, (t,7)
w—+o00 u—+00
hold uniformly a.e. in (t,r) € J where ax and Bi are functions in L°(J)

satisfying
A<ao(t,r) <B(tr) <p

A < a+(t7 T) < ﬂ.,.(t,'i") < K

Moreover, assume that
/[(a.,. =@+ (a- =)@ )Y >0, Jor all v € ker(L — AT)\{0},
J

and

J =B + (=@ V1> 0, for allw e kex(L — wi)\(o}.
Then the radial symmetric periodic-Dirichlet problem (35) has ot least one weak
solution.

PRrROOF. The proof is also based on the two Lemmas 3 and 4. Let § > 0 and
€ > 0 be given by Lemma 3. We can find p > 0 such that for a.e. (¢,7) € J,

ar(t,r) —e <ulg(t,ru) < Bi(t,7) +e¢, ifu > p,
a_(t,r) —e<ulg(t,r,u) < B_(t,7) +¢, if u<—p.
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This implies by (34) that
lg(t,7,u)| < (C + €)lul + Ay (2, 7)

for ae. ((,7) € Jand all u € R, with C = pif A > 0 and |A| if o < 0.
Consequently, the mapping N defined on H by

(Nu) (ta 'I') = g(ta 7, u(t’ 'I‘))

will map H continuously into itself and takes bounded sets into bounded sets.
Moreover, the weak solutions of the radially symmetric periodic-Dirichlet prob-
lem (35) will be the solutions in dom L of the abstract equation in H

(49) Lu— Nu=0.

Without loss of generality, we can assume from now that A > 0. Our assumption
on g implies that N is monotone in H. As the right inverse K of L is compact,
we see that KQN is compact on bounded sets on H. The (nonlinear) operator

B, defined by

+

By(u) = aju’ —a_u”

is continuous, takes bounded sets into bounded sets and is such that
(Ba(u) — Ba(v),u —v) 2 Alu—vf%,

for all u,v € H as is easily checked. Thus KQB, is compact on bounded sets
and B, is strongly monotone. It follows from Lemma 4, that

|Drs(Ls = Ba,s, B(7))| =1

for every v > 0 and every finite dimensional vector subspace S of ker L. Accord-
ing to the Theorem B in the Appendix, equation (49) will have a solution if the
set of possible solutions of the family of equations

Lu — (1 — 8)By(u) — sN(u) =0, s €1[0,1],
is a priori bounded independently of s, which can be obtained as in Theorem 1.
O

REMARK 5. If A < p denote now the eigenvalues of the negative of the radial
symmetric operator with the periodic-Dirichlet boundary conditions on .J, then
Theorem 2 holds true for the problem in Remark 3. In particular, with the
notation of Smiley [11] and g(t,r,u) of the form g(u) — h(t,r), the conditions

lg(x) — 9(v)| < Brlu—ol, (g(u) — g(v))(u = v) > Folu —vf?,

with 0 < By < B1, and % < 3Fg if n = 1 and A7 < 50 if n = 3, are replaced,
for the existence, by g continuous and

0< fp < llirflinfu_lg(u) < limsupu~'g(u) < 41,
U|—00

[u|—o0
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with 8y <3ifn=1and f; <5if n=3.

COROLLARY 2. Let g : J x R — R satisfy the Carathéodory conditions for
H and be such that

(50) att,r) < L0901 ¢ gy

forae (t,r)€Jandallu#veJ, witha_ =o, =a and B_ =B, =3 as in
Theorem 2. Then the problem (35) has a unique solution.

Proor. It follows from (50), that conditions (36) (37) holds witha_ = @, =
o and B = B4 = B, and that sign A-g(%,, -) is nondecreasing for a.e. (t,r) € J.
Thus the existence follows from Theorem 2. Following the proof of Corollary 1
and using Lemma 3, we easily obtain the uniqueness. O

REMARK 6. Corollary 2 also holds for the problem in Remark 3, and in
particular, with Smiley’s notations [11] and g(t,r,u) of the form g(u) — h(¢,r),
uniqueness will hold when

0< s LU0
u-—v

with 8; < 3ifn=1and B <5 if n = 3. In contrast to Smiley’s one, our
existence and uniqueness conditions are sharp.

We consider finally the problem (35), with a/T a rational number, and n > 5
and odd. Let By and B; be two real constants, and g satisfy

g(ta 7, u) — g(t, 7, u)
<
A< P < P

(51) S ,31 < H,

for all u # v € R and a.e. (t,7) € J. We can suppose that A > 0 (see Remark 7
below). It is clear, that a solution of the abstract equation in H

(52) Lu—Nu=0

will be a solution of problem (35).
Let Ly = —L + AT and N) = N — Al. Then, equation (52) is equivalent to

(53) Lyu+ Nyu=0.
From (51) we have
Bo(La)u — v* < (Nau— Nav,u — v) < Bi(Ly)|u —v|?,

with
Bo(Lxr) = Po— A >0,
Bi(Ln)=P—A<p—A
On the other hand, if we remark that

dy (Ly) =dist(0,0(LA)NRy ) =pu—A
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and

Bi(La)=PL—A<p—A
we can conclude, from Theorem C in the Appendix, that there exists a unique
solution of equation (53) (hence of problem (35)), under the sole hypothesis (51),
which improves the results of Smiley [11].

REMARK 7. If the hypothesis (51) holds with 2 < 0, we consider the equation
(54) Lyu+ N,u=0
with L, = L — pI and N, = —N — pl and proceed as in the previous case.

REMARK 8. Under the hypothesis (51), the result holds true for the problem
in Remark 3. It suffices to consider the equation (53) with Ly = L + AI and
Ny = N = M if (A > 0) and the equation (54) with L, = —L — pl and N, =
—N + pl if (p <0).

6. The periodic problem on spheres

Now, let M = S x §™ and let g : M x R — R be a function satisfying the
Carathéodory conditions for L?(M, R).
We consider the weak solutions of the semilinear spherical wave equation

(55) g — Apu = g(t, z,u), te Stz eS™
Then u € L?(S! x 8%) is a weak solution of (55) provided that

/ (s — And) — gt 7, W) = O,
Slxgn

for every ¢ € C%(S* x S™).

In the study of problem (55), we need to know the spectrum of the spherical
wave operator. Let us reproduce some known results in [4] or [2].

It is well known, that the spherical wave operator (6/0t%>—A,,) is symmetric,
with domain C2(M) and such that, if

u(t, z) = Z a’f:’:mYl,m(a’)eiﬁa i? =1,

idm
then,
(/082 — Ap)u(t,z) = Y [l +n—1) — §%|ajimYime?,
ahm
where Y} () are spherical harmonic functions of degree !, { =0,1,2,..., m =

1, 2, ey hl, hl = C::+l - C’r?+l—2'
Then (82/6t% — A,) can be extended to be a self adjoint operator A with
domain

domA = {u € L*(M,R): Y {1+[i(1+n—1) =" Hajpm|* < +oo},

g,lm
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and spectrum
o(A)={Il+n—-1)—j% (1,j) eNx Z}.
We will use the following result proved in [4].

LEMMA 5. For each b € R,
dim ker(A + bI) < +oo,
except if n is odd and b = (3(n — 1))2.

PRrROOF. We have to prove the finiteness of the number of solutions pairs
(1,7) of the Diophantine equation

0=Il+n—-1)—5%+b
=+ 3= - iDI+3n-D+]j]) - E(n—-1))%+5,

but this follows from the fact that when [ + 1(n — 1) — |j| # 0, the right hand
side of (56) tends to +oo as I — +oo or |j| — +oo. a

Consequently, if n is even, o(A) is made of isolated eigenvalues with finite
multiplicity and hence A has compact resolvent, although if n is odd, —( 1(n~1))?
is an eigenvalue of A having infinite multiplicity and ¢(A4)\{—(3(n—1))2} is made
of isolated eigenvalues with finite multiplicity.

Let us finally notice that from Lemma 5, analogues of the Lemmas 3 and 4
hold true for L defined by L = A + bI, where b is given by

(56)

; 0, for even n;
B (3(n~1))%, for odd n.

So we can give the two following existence theorems for the spherical wave equa-
tion (55).

THEOREM 3. Let n be an even integer, and let A < u be two consecutive
eigenvalues of A. Assume that g satisfies (34) and that the inequalities

a+(t, I) < lim inf u_lg(ty z, u) S limsup 'u'_lg(t’ z, U) < :d+(t$ Z‘),
u—+00 u—+o0o

o_(t,z) < liminf u™'g(t,z,u) < limsupug(t,z,u) < B-(t,z)
U—r—0o0

U——00

hold uniformly a.e. in (t,z) € M, where ar and B+ are functions in L>(M)
such that

AL a+(t,x) < ,3+(t,.’17) < I

A<a_(t,z) < B-_(t,z) < p

Moreover, assume that

/ e = V@) + (@ =N ) >0, for all v € ker(L — AT\ {0},
M
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and
_/M[(u B (W) + (= Bo)w )] >0, for all w € ker(L — pT)\{0}.

Then the equation (55) has at least one weak solution.
THEOREM 4. Let n an odd integer-and A < p be two consecutive eigenvalues
of A different of —(3(n — 1)), Assume that g satisfies (34),
sign(A + (3(n —1))?) - (9(t, 2, ) + (5(n — 1))’I)
is nondecreasing and that the inequelities

a_(t,z) < liminf u~'g(t,z,u) < limsupu~1g(t, z,u) < f-(t, z),
wU—r—00

U=-=—00

a4 (t, ) < liminfu~g(t, z,u) < limsupu™'g(t,z,u) < B4(t,2),
u—+00 u—+00

hold uniformly a.e. in (t,z) € M where ay and B+ are functions in L™°(M)
satisfying
A<a_(t,z) <P-_(t,z) < p

A< ai(t,z) < Bi(t2) S o

Moreover, assume that

/M[(a+ ) 4 (e = N@ )2 >0, for all v € ker(L — AD\{0}
and

[ = 8@+ (s B0 >0, for altw € ker(l~ wD\(0).

Then the equation (55) has ot least one weak solution.

As in the previous problem, results about the uniqueness of the solution,
which are similar to Corollaries 1 and 2 can be obtained in both cases.

7. Appendix

We state here for the reader’s convenience, the three abstract existence the-
orems used in the paper. This requires some definitions and notations of [5]
6].

Let X,Z be real vectors normed spaces, L : dom L. C X — Z a linear
Fredholm operator of index zero, B(y) C X, an open ball of center 0 and radius
v, and N : B(y) — Z a (possibly) nonlinear L-compact operator. The first two
results are continuation theorems of the Leray-Schauder type.
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THEOREM A. Assume that there erist a number v > 0 and a L-compact
operator M : X — Z such that

(i) for every (u,s) € (domL N 8B(v))N10,1[

Lu—(1—8)Mu—sNu #0,

(ii) 0 g (L — M)(dom L n 8B(y)),

(iii) Dr(L — M, B(y)) #0.
Then the equation

Lu—Nu=0

has at least one solution in dom L N B(y).

Now, let H be a real Hilbert space, with inner product (-, -) and corresponding
norm |- |. Let L :dom L C H — H be a self-adjoint operator with closed range.
If Ry (resp. RY) denotes the set of negative (resp. positive) real numbers, we

shall set
dy =dist(0,0(L) NRy),

with the convention dy = +oo0 if o(L)\{0} C R{.
Denote by K the right inverse of L defined by
K =[L|domLNImL]™!:ImL — ImL,

and by Q the orthogonal projection onto Im L.
Recall that if N : H — H is a nonlinear operator, then N is said to be
monotone (resp. strongly monotone) on H, if, for all u,v in H, one has

(Nu—Nv,u—v)>0 (resp. (Nu— Nv,u—v) > clu—v|% ¢>0),

and demicontinuous on H if uy — u = Nuy — Nu, where — denotes the weak

convergence in H.

THEOREM B. Let L a self adjoint operator (with right inverse K) and N :
H — H be a monotone demicontinuous operator. Assume that there ezist a
demicontinuous sirongly monotone operator M : H — H and a number v > 0
such that the following conditions are satisfied :

(i) KQN and KQM are compact on the closed ball B(v) of center 0 and
radius «v in H.
(ii) M(B(y)) is bounded.
(iii) (Vs €[0,1[) (Vu € dom L N 8B(y)):

Ly —(1-8)Mu—sNu#0.
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(iv) For each finite dimensional subspace S of ker L such that
0 ¢ (Ls — Ms)(dom LN 6B(y) N Hs),
the coincidence degree of Ls — Mg,
Drs(Ls — Ms, B(v) N Hs)

18 NONzZero.

Then the equation Lu — Nu = 0 has at least one solution u € dom L N B(~).

The last theorem is based upon fixed point theory for non-expansive or con-

tractive mappings.

THEOREM C. Assume thet N : H — H is a gradient, that 0 < dj < oo, and
that there exist positive constanis By, B1,71,01 such that the assumplions
(i) Bolu —v|?> £ (Nu— Nv,u—v) < Bi|lu—v|?,
(i) |Nu—(dg/2)ul < 7ilul + 61,
are satisfied for all u,v € H.
If dy is finite and the following conditions
(i) py < dy,
(iv) m <dy /2,
hold, then the equation
Lu+ Nu=f
has at least one solution for each f € H.
If condition (i) holds together with the inequality

,Bl < d(?a
then the above equation has, for each f € H, a unique solution.

See [5], [6] for Theorem A, [5], [7], Theorem B and [3], for Theorem C.
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