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NONLINEAR INTEGRAL INCLUSIONS
OF HAMMERSTEIN TYPE
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Dedicated to Professor Ky Fan

1. Integral inclusions of Hammerstein type

Let Ω be a bounded domain in Euclidean space, k : Ω×Ω → RN×N a matrix-
valued kernel function, and f : Ω×RN → CpCv(RN ) a (multivalued) nonlinear
function, where CpCv(RN ) denotes the system of all nonempty compact convex
subsets of RN . Consider the linear integral operator

(1) Ky(s) =
∫

Ω

k(s, t)y(t) dt

generated by k, and the (multivalued) superposition operator (see e.g. [3])

(2) Nfx(t) = {y(t) : y measurable selection of f( · , x( · ))}

generated by f . The present paper is concerned with the integral inclusion of
Hammerstein type

(3) x ∈ KNfx.
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Evidently, if the nonlinearity f is singlevalued, i.e. f(t, u) = {g(t, u)} for some
function g : Ω× RN → RN which generates a (singlevalued) superposition ope-
rator

(4) Ngx(t) = g(t, x(t)),

the inclusion (3) reduces to the classical integral equation (system) of Hammer-
stein type

(5) x(s) =
∫

Ω

k(s, t)g
(
t, x(t)

)
dt.

There exist various motivations for studying inclusions of type (3); let us mention
some of them.

First of all, when investigating boundary value problems in physics, mecha-
nics, or control theory which define the state x of a system by an acting force h,

one is led to equations of the form

(6) Lx = h,

where L is a linear operator on an appropriate function space. Now, if the force
h is perturbed, i.e. is subject to both the state x and an “undetermined noise”,
(6) has to be replaced by the equation with multivalued right-hand side

(7) Lx ∈ Nx,

where N is some multivalued nonlinear operator (for example, the operator (2)).
In many cases L is some differential operator which admits a Green function on
a space determined by suitable boundary conditions. In this case the problem
(7) may be written in the form (3) by putting K = L−1.

The second motivation is related to “nonsmooth” calculus of variations (see
e.g. the monograph [16]). Suppose that we are interested in minimizing the
energy functional

(8) Ψx =
∫

Ω

{h(x(s))− g(s, x(s))} ds,

where h denotes the kinetic energy of the system, and g is a potential energy
generating a (singlevalued) superposition operator (4). Assume further that the
function (8) is not differentiable in the usual sense, due to some lack of regularity
of the operator (4), but admits a generalized gradient or subgradient in the sense,
for instance, of Clarke’s generalized gradient, Aubin’s contingent cone, Ioffe’s fan,
etc. (see e.g. [6, 8, 16, 18, 19]). Consequently, the problem of minimizing (8) leads
to the study of boundary value problems for the “Euler–Lagrange inclusion”

(9) Lx ∈ ∂Ngx,
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where ∂Ng is one of the generalized gradients or subgradients mentioned above.
The problem (9) in turn is in various function spaces equivalent to the Hammer-
stein inclusion (3).

Finally, we mention another typical situation where the inclusion (3) arises
quite naturally. Suppose that g : Ω × RN → RN is a (singlevalued) function
which, however, is so “badly behaved” that one cannot apply the usual solvability
criteria to the Hammerstein equation (5). In nonlinear multivalued analysis it
is then a standard device to pass from g to another nonlinearity f which is
usually multivalued and has “nicer” properties. A useful choice is often the
convexification

(10) g�(t, u) =
⋂
ε>0

co{g(t, v) : |v − u| ≤ ε}

of the function g(t, · ) and, similarly, the convexification

(11) N�
g x =

⋂
ε>0

co{Ngz : ‖z − x‖ ≤ ε}

of the operator (4). As was shown in [5] (see also [28, Theorem 27.1]), the
equality

(12) Ng� = N�
g

holds in many function spaces, i.e. the operator generated by the convexification
of g coincides with the convexification of the operator generated by g. Thus,
putting f(t, u) = g�(t, u) one arrives again at the Hammerstein inclusion (3).
Moreover, it is then possible to apply classical fixed point principles for multival-
ued operators to (3), since the operator Nf = N�

g has nicer properties than the
operator Ng (for example, Nf is always closed and “often” upper semicontinu-
ous). An example of an application, where these properties of the convexification
are useful, may be found in [21].

The aim of this paper is to prove a fairly general solvability theorem for the
Hammerstein inclusion (3), and to illustrate this theorem by means of three ap-
plications, namely boundary value problems for elliptic differential inclusions (i.e.
elliptic equations with multivalued right hand side), forced periodic oscillations
in nonlinear control problems with “noise”, and critical points of nonsmooth en-
ergy functionals. We remark that some existence theorems have been given in
several papers in the last 20 years. These existence theorems are mainly based on
fixed point principles of Nadler [31], Kakutani [24], and Bohnenblust–Karlin [10]
which may be considered as “multivalued analogues” of the classical fixed point
principles of Banach–Caccioppoli, Brouwer, and Schauder, respectively. More
sophisticated results have been obtained in [17], where eigenvalue problems for
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(3) are studied by means of a topological characteristic (called “genus”) for mul-
tivalued operators. In what follows, we shall apply (a multivalued variant of)
the classical Leray–Schauder continuation principle to derive an existence theo-
rem for (3). More precisely, we shall prove the existence of solutions in so-called
ideal spaces of vector functions which embrace various classes of measurable vec-
tor functions arising in applications. The interested reader may find applications
of the Hammerstein inclusion (3) to specific problems in mechanics and physics
in [15, 21, 22, 32].

2. A multivalued continuation principle

Given a Banach space X, we write as before CpCv(X) for the family of all
nonempty compact convex subsets of X. Recall that a (multivalued) operator
A : X → CpCv(X) is called compact if A(U) =

⋃
{Ax : x ∈ U} is precompact for

every bounded U ⊂ X. The following is a multivalued analogue to the well-known
Leray–Schauder continuation principle for nonlinear compact operators.

Theorem 1. Let X be a Banach space and A : X → CpCv(X) a compact
upper semicontinuous operator. Suppose that there exists an r > 0 such that the
a priori estimate

(13) x ∈ λAx (0 < λ ≤ 1) ⇒ ‖x‖ ≤ r

holds. Then the inclusion x ∈ Ax has at least one solution in the ball {x : ‖x‖
≤ r}.

Proof. Let U be any open ball around zero of radius R > r. Then the
multivalued vectorfield Φ defined by Φx = x − Ax is nondegenerate on ∂U , by
(13). Consequently, the rotation γ(Φ; ∂U) of Φ on ∂U satisfies γ(Φ; ∂U) = 1 (see
e.g. [12, Theorem 2.3.44]), and thus the operator A has a fixed point. �

We remark that Theorem 1 is also true for more general operators such as
condensing or limit-compact multivalued operators (see e.g. [11, 18]). The crucial
point in applying Theorem 1 is of course the verification of the a priori estimate
(13). Roughly speaking, the a priori estimate (13) may often be verified if the
operator A grows so “rapidly” that one cannot find invariant balls for A. Thus,
the Leray–Schauder continuation principle applies to operators of fast growth in
rather the same way as the Schauder fixed point principle does to operators of
slow growth (see also the remark at the end of Section 3 below).

To apply Theorem 1 to the Hammerstein operator A = KNf , suitable
choices for X are the space C of continuous functions, the Hölder spaces Cα,
the Lebesgue spaces Lp, the Orlicz spaces LΦ, or, more generally, ideal spaces
of vector functions. Recall [37] that a Banach space X of measurable vector
functions x : Ω → RN is called an ideal space if x ∈ X and α ∈ L∞(Ω, R) implies
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that αx ∈ X and ‖αx‖X ≤ ‖α‖L∞‖x‖X . In the scalar case N = 1, ideal spaces
are just Banach lattices with monotone norm (see e.g. [30, 35, 36]). In the vector
case N > 1, the theory of ideal spaces is more involved and requires tools from
Convex Analysis. A prominent example of an ideal space is the Orlicz space
LΦ = LΦ(Ω, RN ) with the Luxemburg norm

(14) ‖x‖LΦ = inf
{

k : k > 0,

∫
Ω

Φ[x(s)/k] ds ≤ 1
}

,

where Φ is a given Young function (see e.g. [33, 38]).
Let X be an ideal space with the property that there exists a sequence

x1, x2, . . . in X such that the linear hull of {x1(s), x2(s), . . . } is dense in RN for
almost all s ∈ Ω. Consider the set X ′ of all measurable functions x′ : Ω → RN

for which the pairing

(15) 〈x, x′〉 =
∫

Ω

(x(s), x′(s)) ds

is finite, where ( · , · ) is the usual scalar product in RN . Equipped with the
natural norm

(16) ‖x′‖X′ = sup{〈x, x′〉 : ‖x‖X ≤ 1},

this set is then also an ideal space, called the associate space of X. The space
X ′ coincides with the dual space X∗ of X if and only if all elements x ∈ X have
absolutely continuous norms; in this case the ideal space X is called regular. For
example, if X is the Orlicz space LΦ generated by the Young function Φ, then
X ′ is the Orlicz space LΦ′ generated by the associate Young function

Φ′(v) = inf {(u, v)− Φ(u) : u ∈ RN};

moreover, the space LΦ is regular if and only if Φ satisfies the ∆2 condition [33].

3. The main theorem

Let Y be an ideal space which contains the Lebesgue space L2(Ω, RN ). Fol-
lowing M. A. Krasnosel’skĭı [26], we call a linear operator K : Y → Y ′ positive
if

(17) 〈Ky,Ky〉 ≤ µ〈y, Ky〉 (y ∈ Y )

for some µ > 0; the smallest µ with this property will be denoted by µ(K;Y )
in the sequel. By B(K;Y ) we denote the family of all ideal spaces X such that
K(Y ) ⊆ X and

(18) ‖Ky‖2X ≤ δ〈y, Ky〉 (y ∈ Y )

for some δ > 0. Examples of spaces X ∈ B(K;Y ) will be given below.
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Theorem 2. Let k : Ω × Ω → RN×N be a matrix function, f : Ω × RN →
CpCv(RN ) a multivalued nonlinearity, and X and Y two ideal spaces over Ω
with the following properties:

(a) The (singlevalued) operator (1) acts from Y into X, the (multivalued)
operator (2) acts from X into Y , and the composition KNf : X →
CpCv(X) is upper semicontinuous and compact.

(b) The operator K is positive, and X ∈ B(K;Y ).
(c) The function f satisfies the unilateral estimate

(19) sup
v∈f(t,u)

(u, v) ≤ a|u|2 + b(t)

for some a ≥ 0 and b ∈ L1(Ω, R).

Then the Hammerstein inclusion (3) has at least one solution in X if
aµ(K;Y ) < 1.

Proof. We apply Theorem 1 to the operator A = KNf in X. To this end,
suppose that x ∈ λKNfx for some λ ∈ (0, 1] and x ∈ X, i.e. x = λKy for some
y ∈ Nfx. By (c) this implies that

(20) 〈x, y〉 ≤ a〈x, x〉+ ‖b‖L1 .

By the positivity condition (17) we have in turn

(21) 〈x, x〉 = λ2〈Ky,Ky〉 ≤ λ2µ(K;Y )〈y, Ky〉 = λµ(K;Y )〈y, x〉.

Combining (20) and (21) yields

〈x, y〉 ≤ ‖b‖L1

1− aµ(K;Y )
< ∞.

Now, the hypothesis X ∈ B(K;Y ) implies that

(22) δ(K) = sup{‖Ky‖2X : y ∈ Y, 〈y, Ky〉 ≤ 1 } < ∞.

We conclude that the a priori estimate (13) holds with

r =
(

δ(K)‖b‖L1

1− aµ(K;Y )

)1/2

,

and the assertion follows from the hypothesis (a) on the operator A = KNf . �

We make some remarks on condition (17). In the Russian literature, this
condition is usually attributed to M. A. Krasnosel’skĭı (see [26], where also a
special variant of Theorem 2 for singlevalued f in Lebesgue spaces is given).
However, essentially the same condition, as well as the condition (18), had been
introduced 3 years before Krasnosel’skĭı by P. Hess [23]. In [23] it is also proved
that every angle-bounded operator in the sense of H. Amann [1] is positive in
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the sense of (17). The first papers where these conditions are discussed in the
setting of general ideal spaces seem to be [39, 40].

The question arises how to verify the hypotheses (a)–(c) of Theorem 2. A
natural growth condition on f under which the upper semicontinuity of the
function f(t, · ) implies the upper semicontinuity of the operator Nf between
Lebesgue spaces can be found in [13]. We give a more general set of sufficient
conditions; for the proof and the terminology see [4].

Proposition. Let f : Ω × RN → CpCv(RN ) be a superpositionally mea-
surable function, and assume that the corresponding superposition operator (2)
acts between two ideal spaces X and Y . Suppose that one of the following three
conditions is satisfied:

(α) f is a Carathéodory function, and the space Y is regular.
(β) f(t, · ) is upper semicontinuous for almost all t ∈ Ω, and Nf maps

U-bounded sets in X into U-bounded sets in Y .
(γ) f(t, · ) has closed graph in RN × RN , and both spaces X and Y are

regular.

Then the superposition operator Nf generated by f is upper semicontinuous
between X and Y .

Condition (b) of Theorem 2 holds, for example, if K maps Y into Y ′ and
is normal (in particular, self-adjoint) and positive definite in L2(Ω, RN ). In this
case one may put

µ = ‖K‖, δ = ‖K1/2‖2

in (17) and (18), respectively.
Condition (c) of Theorem 2 is a multivalued version of the classical one-sided

estimate
uf(t, u) ≤ a|u|2 + b(t)

for a singlevalued scalar function f : Ω × R → R. The meaning of our estimate
(19) may be illustrated by a comparison with analogous hypotheses in fixed point
principles for multivalued operators. In fact, to apply the fixed point principle
of Bohnenblust–Karlin, say, one has to guarantee the existence of an invariant
ball for the operator A = KNf . Introducing the growth function

ϕ(r) = sup{‖y‖ : y ∈ Nfx, ‖x‖ ≤ r}

of the multivalued superposition operator (2), the existence of an invariant ball
for A = KNf means that ϕ(‖K‖r) ≤ r for some r > 0; this condition is obviously
more restrictive than the growth condition (19).

We point out that the hypotheses (a)–(c) of Theorem 2, as well as the hy-
potheses (α)–(γ) of the above proposition are easily verified if X and Y are
Orlicz spaces (in particular, Lebesgue spaces).
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4. First application: Multivalued elliptic systems

Let Ω be a bounded domain in Euclidean space with smooth boundary ∂Ω,

f : Ω × RN → CpCv(RN ) a Carathéodory function, and L a uniformly elliptic
linear differential operator of order 2k in divergence form, i.e.

(23) Lx(s) =
∑

|α|,|β|≤k

Dα(aαβ(s)Dβ)x(s) (s ∈ Ω)

with matrixvalued smooth coefficient functions aαβ : Ω → RN×N . Consider the
system

(24) Lx(s) ∈ f(s, x(s)) (s ∈ Ω),

subject to the Dirichlet boundary condition

(25) Dγx(s) = 0 (s ∈ ∂Ω, |γ| ≤ k).

Suppose that the linear problem

Lx(s) = y(s) (s ∈ Ω)

with boundary condition (25) has a unique generalized solution x = Ky, where
the (integral) operator K maps the Sobolev space H−k = H−k(Ω, RN ) into the
Sobolev space Hk

0 = Hk
0 (Ω, RN ) and is bounded. Sufficient conditions for the

existence and boundedness of the operator K may be found in a vast literature
on linear elliptic operators (see e.g. [20, 29]). For our purpose, the classical
G̊arding inequality

(26) 〈Lx, x〉 ≥ α‖x‖2Hk
0

(x ∈ Hk
0 )

is sufficient. Define an ideal space Z by

(27) Z =


L2N/(N−2k) if N > 2k,

LΦ if N = 2k,

L∞ if N < 2k;

here LΦ is the Orlicz space generated by the Young function Φ(u) = e|u|
2 − 1

(u ∈ RN ). By classical imbedding theorems of Sobolev, Pokhozhaev and Trudin-
ger (see e.g. [20]), the operator K acts then also between the ideal spaces Y = Z ′

and Y ′ = Z. Moreover, if X ⊇ Z is any ideal space with the property that the
unit ball of Z is an absolutely bounded subset of X (for example, X = Lp with
1 ≤ p < 2N/(N − 2k) for N > 2k and 1 ≤ p < ∞ for N ≤ 2k), then Hk

0

is compactly imbedded in X, and hence K is compact and self-adjoint as an
operator from X ′ into X. From the continuity of the imbeddings Hk

0 ⊆ L2 and
Hk

0 ⊆ Z ⊆ X it follows that
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‖x‖Hk
0
≥ cmax{‖x‖L2 , ‖x‖X} (x ∈ Hk

0 )

for some constant c > 0. Combining this with G̊arding’s inequality (26) we get

〈Lx, x〉 ≥ αc2 max{‖x‖2L2
, ‖x‖2X} (x ∈ Hk

0 ),

which shows that the operator K = L−1 is positive in the sense of (17), and that
X ∈ B(K;Y ) in the sense of (18).

Finally, the inequality (19) leads here to the condition

sup
{ N∑

j=1

ujvj : vj ∈ fj(s, u1, . . . , uN )
}
≤ a

N∑
j=1

u2
j + b(s) (b ∈ L1(Ω, R)).

If this is satisfied, we may apply Theorem 2 and get an existence result for the
elliptic system (24) with boundary condition (25). The simplest example is, of
course, the case k = 1 and L = −∆.

We remark that the papers [14] and [34] contain existence results for the
scalar equation

−∆x(s) = g(s, x(s)) (s ∈ Ω),

where the discontinuous nonlinearity g is supposed to satisfy the growth condi-
tion

(28) lim sup
u→±∞

g(s, u)
u

< ∞

uniformly with respect to s ∈ Ω. Putting f(s, u) = g�(s, u) (see (10)), it is clear
that the growth condition (28) for g implies the growth condition (19) for f ,
but not vice versa. Thus, the existence results in [14] and [34] follow from our
Theorem 2 by putting f = g�.

5. Second application: Forced oscillations in control systems

Let f : R × RN → CpCv(RN ) be a Carathéodory function which is 2π-
periodic in the first argument. For j = 1, . . . , N consider the polynomials

(29) Lj(ξ) = ξpj + aj
pj−1ξ

pj−1 + . . . + aj
2ξ

2 + aj
1ξ + aj

0

and

(30) Mj(ξ) = ξqj + bj
qj−1ξ

qj−1 + . . . + bj
2ξ

2 + bj
1ξ + bj

0,

where deg Lj = pj > qj = deg Mj . We are interested in finding 2π-periodic
solutions (so-called forced periodic oscillations) in the nonlinear control system
with multivalued right-hand side (so-called nonlinearity with indetermined noise)
described by
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(31) Lj

(
d

ds

)
xj(s) ∈ Mj

(
d

ds

)
fj(s, x1(s), . . . , xN (s)) (j = 1, . . . , N).

Let

α(Lj ,Mj) = inf
k

Re[Lj(−ik)Mj(ik)]
|Mj(ik)|2

,

where the infimum is taken over all indices k such that Mj(ik) 6= 0; moreover,
fix numbers αj ∈ (−∞, α(Lj ,Mj)). By [27, Theorem 26.1], the numbers ik are
then not roots of the equations Lj(z) = αjMj(z) (j = 1, . . . , N); consequently,
the system (31) is equivalent to the system

(32)
[
Lj

(
d

ds

)
− αjMj

(
d

ds

)]
xj(s) ∈ Mj

(
d

ds

)
f̃j(αj ; s, x1(s), . . . , xN (s)),

where

(33) f̃j (αj ; t, u) = fj(t, u)− αjuj .

The system (32) in turn is equivalent to the Hammerstein inclusion

(34) xj(s) ∈
∫ 2π

0

hj(αj ; s− t) f̃j [αj ; t, x(t)] dt,

where hj(αj ; · ) is the so-called impulse-frequency characteristic of the nonlinear
link fj with respect to the transfer function

(35) W (αj ; z) =
Mj(z)

Lj(z)− αjMj(z)
.

The linear integral operator Kj defined by the characteristic hj(aj ; · ) is, in
general, not self-adjoint, but normal. Moreover, Kj is bounded as an operator
from Y = Lp([0, 2π], RN ) into Y ′ = Lp/(p−1) if 1 ≤ p ≤ 2 and even compact if
p > 1. In [25] it is shown that the operator K = (K1, . . . ,KN ) : Y N → (Y ′)N

is positive in the sense of (17) and satisfies Y ′ ∈ B(K;Y ) if the additional
condition

deg Pj > 2 deg Mj (j = 1, . . . , N)

holds, where Pj(z) = Re[Lj(−iz)Mj(iz)]. Finally, the inequality (19) leads here
to the condition

sup
{ N∑

j=1

ujvj : vj ∈ fj(s, u1, . . . , uN )
}
≤

N∑
j=1

aju
2
j +b(s) (b ∈ L1([0, 2π], R))

with aj < α(Lj ,Mj). If this is satisfied, we may apply Theorem 2 and get an
existence result for forced 2π-periodic oscillations in the control system (31).

We remark that the inequality (19) is satisfied, for example, in control sys-
tems with a simple circuit governed by one (singlevalued) nonlinear link g and
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some set U of admissible controls u. Here (31) reduces to the single integral
inclusion

L

(
d

ds

)
x(s) ∈ M

(
d

ds

)
f(s, x(s)),

where f(s, x(s)) = {g(x(s)) + u(s) : u ∈ U} satisfies

sup
u∈U

|x(s)| |g(x(s)) + u(s)| ≤ a|x(s)|2 + b(s)

(see [27, Section 26]), and hence (19). A detailed discussion of the control system
(31) for singlevalued f may be found in the recent book [9].

6. Third application: Critical points
of non-smooth energy functionals

Let L : Hk
0 → H−k be again a uniformly elliptic operator (23) which satisfies

G̊arding’s inequality (26). Suppose that g : Ω × RN → R is a (singlevalued)
Carathéodory function such that g(s, · ) is locally Lipschitz for almost all s ∈ Ω.
Finally, we assume that the corresponding superposition operator (4) is bounded
from the ideal space Z defined in (27) into L(Ω, R). Under these assumptions,
the energy functional

(36) Ψx =
1
2
〈Lx, x〉 −

∫
Ω

g(s, x(s)) ds

is correctly defined on the space Hk
0 = Hk

0 (Ω, RN ). Moreover, the functional

(37) Γx =
∫

Ω

g(s, x(s)) ds

is locally Lipschitz both from Z into R and from Hk
0 into R. By [16, Theorem

2.1.2], the generalized gradient ∂Γx of the functional (37) acts both from Z

into Cv(Z ′) and from Hk
0 into Cv(H−k), and hence the same is true for the

generalized gradient

(38) ∂Ψx = Lx− ∂Γx

of the functional (36). A critical point of (36) is, by definition, any element
x ∈ Hk

0 such that 0 ∈ ∂Ψx; by (38), this may be written equivalently as

(39) Lx ∈ ∂Γx.

To reduce (39) to the form (24), we have to find a multivalued Carathéodory
function f : Ω × RN → CpCv(RN ) such that ∂Γx = Nfx. This problem was
solved in [7] (see also [16, Theorem 2.7.3 and Theorem 2.7.5]). In fact, if we
put f(s, u) = ∂ug(s, u) (the generalized gradient of the function g(s, · )) we al-
ways have ∂Γx ⊆ Nfx, and equality holds if g(s, · ) is “regular” in the sense of
[16]; in particular, ∂Γx = Nfx if the function g(s, · ) is convex for almost all
s ∈ Ω.
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Combining the previous assumptions and the assumptions made in Section 4,
we get an existence result for critical points of the energy functional (36) by
means of Theorem 2. The crucial condition (19) in Theorem 2 is here nothing
else than the coercivity of the functional Ψ (see again [16]).

We remark that other existence results for critical points of (36) have been
obtained by means of “nonsmooth variants” of classical minimax principles
(e.g., mountain pass lemmas) in [14], and of classical dual variational princi-
ples in [2].
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Nguyêñ Hôǹg Thái

Instytut Matematyki

Uniwersytet Szczeciński
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