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1. Introduction

In the last two decades, the classical Arrow and Debreu result [3] on the
existence of Walrasian equilibria has been generalized in many directions. Mas-
Colell [35] has first shown that the existence of an equilibrium can be established
without assuming preferences to be total or transitive. Next, by using an ex-
istence theorem of maximal elements, Gale and Mas-Colell [20] gave a proof of
the existence of a competitive equilibrium without ordered preferences. By using
Kakutani’s fixed point theorem, Shafer and Sonnenschein [43] proved a power-
ful result on the “Arrow and Debreu Lemma” for abstract economies in which
preferences may not be total or transitive but have open graphs. Meanwhile,
Borglin and Keiding [8] proved a new existence theorem for a compact abstract
economy with KF -majorized preference correspondences. Following their ideas,
there have been a number of generalizations of the existence of equilibria for
compact abstract economies (see e.g. Aliprantis et al. [1], Border [7], Chang [11],
Debreu [13], Ding et al. [15]–[16], Flam [18], Florenzano [19], Hildenbrand and
Sonnenschein [25], Kajii [27], Keiding [28], Mehta and Tarafdar [37], Shafer [42],
Khan and Yannelis [29], Mas-Colell and Zame [36], Tian [53], Tan and Yuan
[48]–[49], Tarafdar [51], Tarafdar and Mehta [52], Tulcea [54]–[55] etc.). These
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theorems generalized most known equilibrium existence theorems on compact
generalized games due to Borglin and Keiding [8], Shafer and Sonnenschein [43],
Toussaint [54] and Yannelis and Prabhakar [58].

On the other hand, Debreu discussed the uncertainty of behavior of an eco-
nomic activity in Chapter 7 of his book [12]. Since then, a series of papers con-
cerning the uncertainty of behavior of economic actions have been published. For
example, Hildenbrand [23] considered an economy in which the preferences are
random correspondences; Bewley [6] studied the existence of equilibrium in ab-
stract economies with a measure space of agents and with an infinite-dimensional
strategy space; Kim et al. [30] also proved the existence of equilibria in abstract
economies with a measure space of agents and with an infinite-dimensional strat-
egy space by random fixed point theorems.

In this paper, the existence theorems of non-compact random equilibria in
which the preference correspondences are L-majorized and constraint correspon-
dences are upper semicontinuous are first obtained. As applications, we give
the existence theorems for non-compact random quasi-variational inequalities,
which in turn imply several existence theorems for non-compact generalized ran-
dom quasi-variational inequalities. These results not only generalize the results
of Tan [50] and Zhang [59], but also are the stochastic versions of corresponding
results in the literature (see e.g. [1]–[13], [16]–[22], [25]–[33], [35]–[46], [47]–[49],
[51]–[56] and [58]).

2. Preliminaries

The set of all real numbers is denoted by R and the set of natural numbers
is denoted by N. If X is a set, we shall denote by 2X the family of all subsets of
X. Let A be a subset of a topological space X. We shall denote by intX(A) the
interior of A in X and by clX(A) the closure of A in X. If A is a subset of a vector
space, we shall denote by coA the convex hull of A. If A is a non-empty subset
of a topological vector space E and S, T : A → 2E are correspondences, then
coT, T ∩ S : A → 2E are the correspondences defined by (coT )(x) = coT (x)
and (T ∩ S)(x) = T (x) ∩ S(x) for each x ∈ A, respectively. If X and Y are
topological spaces and (Ω,Σ) is a measurable space, and T : Ω × X → 2Y is
a correspondence, the graph of T , denoted by GraphT , is the set {(ω, x, y) ∈
Ω × X × Y : y ∈ T (ω, x)} and the correspondence T : Ω × X → 2Y is defined
by T (ω, x) = {y ∈ Y : (x, y) ∈ clX×Y GraphT (ω, · )}, where for each fixed
ω ∈ Ω,GraphT (ω, · ) = {(x, y) ∈ X × Y : y ∈ T (ω, x)} and clT : Ω ×X → 2Y

is defined by clT (ω, x) = clY (T (ω, x)) for each (ω, x) ∈ Ω×X. It is easy to see
that clT (ω, x) ⊂ T (ω, x) for each (ω, x) ∈ Ω×X.

If X and Y are two sets, A ⊂ X × Y , and F : X → 2Y , then (1) the
domain of F , denoted by DomF , is the set {x ∈ X : F (x) 6= ∅}; (2) the
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projection of A into X, denoted by ProjXA, is the set {x ∈ X : there exists
some y ∈ Y such that (x, y) ∈ A}; moreover, if both X and Y are topological
spaces, (3) F is said to be lower (respectively, upper) semicontinuous if for each
closed (respectively, open) subset C of Y , the set {x ∈ X : F (x) ⊂ C} is closed
(respectively, open) in X, (4) x ∈ X is a maximal element of F if F (x) = ∅ and
(5) F is said to be compact if for each x ∈ X, there exists a neighborhood Vx of
x in X such that F (Vx) =

⋃
x′∈Vx

F (x′) is relatively compact in Y . Note that
DomF = ProjXGraphF .

Let X be a subset of a topological vector space E. X is said to have property
(K) (see [56]) if for each compact subset B of X, the convex hull coB of B is
also relatively compact in X.

Let X be a topological space, Y be a non-empty subset of a vector space
E, θ : X → E be a (single-valued) map and φ : X → 2Y be a correspondence.
Then (1) φ is said to be of class Lθ if for every x ∈ X, coφ(x) ⊂ Y and
θ(x) 6∈ coφ(x) and for each y ∈ Y , φ−1(y) = {x ∈ X : y ∈ φ(x)} is open in
X; (2) a correspondence φx : X → 2Y is said to be an Lθ-majorant of φ at
x ∈ X if there exists an open neighborhood Nx of x in X such that (a) for each
z ∈ Nx, φ(z) ⊂ φx(z) and θ(z) 6∈ coφx(z), (b) for each z ∈ X, coφx(z) ⊂ Y

and (c) for each y ∈ Y , φ−1
x (y) is open in X; (3) φ is Lθ-majorized if for each

x ∈ X with φ(x) 6= 0, there exists an Lθ-majorant of φ at x in X. We shall
only deal with either the case (I) X = Y and is a non-empty convex subset of
a topological vector space and θ = IX , the identity map on X (in this case, the
above notions coincide with the corresponding notions introduced in [58]), or the
case (II) X =

∏
i∈I Xi and θ = πj : X → Xj is the projection of X onto Xj

and Xj = Y is a non-empty convex subset of a topological vector space. In both
cases (I) and (II), we shall write L in place of Lθ.

A measurable space (Ω,Σ) is a pair where Ω is a set and Σ is a σ-algebra
of subsets of Ω. If X is a set, A ⊂ X, and D is a non-empty family of subsets
of X, we shall denote by D ∩ A the family {D ∩ A : D ∈ D} and by σX(D)
the smallest σ-algebra on X generated by D. If X is a topological space with
topology τX , we shall use B(X) to denote σX(τX), the Borel σ-algebra on X if
there is no ambiguity on the topology τX . If (Ω,Σ) and (Φ,Γ) are two measurable
spaces, then Σ ⊗ Γ denotes the smallest σ-algebra on Ω × Φ which contains all
the sets A × B, where A ∈ Σ, B ∈ Γ, i.e., Σ ⊗ Γ = σΩ×Φ(Σ × Γ). We note
that the Borel σ-algebra B(X1 × X2) contains B(X1) ⊗ B(X2) in general. A
map f : Ω → Φ is said to be (Σ,Γ) measurable (or simply, measurable) if for
each B ∈ Γ, f−1(B) = {x ∈ Ω, f(x) ∈ B} ∈ Σ. Let X be a topological space
and F : (Ω,Σ) → 2X be a map. F is said to be measurable (respectively,
weakly measurable) if F−1(B) = {ω ∈ Ω : F (ω) ∩ B 6= ∅} ∈ Σ for each closed
(respectively, open) subset B of X. The map F is said to have a measurable
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graph if GraphF := {(ω, y) ∈ Ω × X : y ∈ F (ω)} ∈ Σ ⊗ B(X). A function
f : Ω → X is a measurable selection of F if f is a measurable function such that
f(ω) ∈ F (ω) for all ω ∈ Ω.

If (Ω,Σ) and (Φ,Γ) are measurable spaces, Y is a topological space, then
a map F : Ω × Φ → 2Y is called (jointly) measurable (respectively, weakly
measurable) if for every closed (respectively, open) subset B of Y , F−1(B) =
{(ω, x) ∈ Ω × Φ : F (ω, x) ∩ B 6= ∅} ∈ Σ ⊗ Γ. In the case Φ = X, a topological
space, it is understood that Γ is the Borel σ-algebra B(X).

A topological space X is (i) a Polish space if F is separable and metrizable
by a complete metric; (ii) a Suslin (respectively, Polish) space if X is a Haus-
dorff topological space and the continuous image of a Polish space. A Suslin
(respectively, Polish) subset in a topological space is a subset which is a Suslin
(respectively, Polish) space. Suslin sets play very important roles in measur-
able selection theory. We remark that if X1 and X2 are Suslin spaces, then
B(X1 ×X2) = B(X1)⊗ B(X2) (see e.g. [40, p. 113]).

Denote by J and F the sets of infinite and finite sequences of positive in-
tegers respectively. Let G be a family of sets and F : F → G be a map. For
each σ = (σi)∞i=1 ∈ J and n ∈ N, we shall denote (σ1, . . . , σn) by σ|n; then⋃
σ∈J

⋂∞
n=1 F (σ|n) is said to be obtained from G by the Suslin operation. Now

if every set obtained from G in this way is also in G, then G is called a Suslin
family (see e.g. [34], [41], [57] etc.).

Note that, if µ is an outer measure on a measurable space (Ω,Σ), then Σ is
a Suslin family (see [41, p. 50]). In particular, if (Ω,Σ) is a complete measurable
space, then Σ is a Suslin family (for more details, see [57, p. 864]). It also implies
that the σ-algebra Σ of Lebesgue measurable subsets of [0,1] is a Suslin family.

Let X and Y be topological spaces, (Ω,Σ) be a measurable space and F :
Ω×X → 2Y be a map. Then (a) F is a random operator if for each fixed x ∈ X,
the map F ( · , x) : Ω → 2Y is a measurable map; (b) F is random lower semi-
continuous (respectively, random upper semicontinuous, random continuous) if
F is a random operator and for each fixed ω ∈ Ω, F (ω, · ) : X → 2Y is lower
semicontinuous (respectively, upper semicontinuous, continuous) and (c) a mea-
surable (single-valued) map ψ : Ω → X is said to be a random maximal element
of the correspondence F if F (ω, ψ(ω)) = 0 for all ω ∈ Ω.

Let (Ω,Σ) be a measurable space, X be a topological space and F : Ω×X →
2X be a map. The (single-valued) map ϕ : Ω → X is said to be (i) a deterministic
fixed point of F if ϕ(ω) ∈ F (ω, ϕ(ω)) for all ω ∈ Ω and (ii) a random fixed point
of F if ϕ is a measurable map and ϕ(ω) ∈ F (ω, ϕ(ω)) for all ω ∈ Ω. It should be
noted here that some authors define a random fixed point of F to be a measurable
map ϕ such that ϕ(ω) ∈ F (ω, ϕ(ω)) for almost every ω ∈ Ω (see e.g. [38], [39]
and the references therein).
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Let I be any set of players and (Ω,Σ) be a measurable space. For each i ∈ I,
let its strategy set Xi be a non-empty subset of a topological vector space. Let
X =

∏
i∈I Xi. For each i ∈ I, let Pi : Ω × X → 2Xi be a correspondence

which is irreflexive, i.e. xi 6∈ Pi(ω, x) for each (ω, x) ∈ Ω × X. Following the
terminology of Gale and Mas-Colell [21] in the deterministic case, the collection
Γ = (Ω, Xi, Pi)i∈I will be called a random qualitative game. A measurable map
ψ : Ω → X is said to be a random equilibrium of the random qualitative game Γ
if Pi(ω, ψ(ω)) = 0 for all i ∈ I and all ω ∈ Ω.

A random generalized game (or a random abstract economy) is a collection
Γ = (Ω;Xi;Ai, Bi;Pi)i∈I where I is a (finite or infinite) set of players (agents)
such that for each i ∈ I, Xi is a non-empty subset of a topological vector space
and Ai, Bi : Ω × X → 2Xi are random constraint correspondences where X =∏
i∈I Xi, and Pi : Ω × X → 2Xi is a preference correspondence (which are

interpreted as for each player (or agent) i ∈ I, the associated constraint and
preference correspondences Ai, Bi and Pi have stochastic actions). A random
equilibrium of Γ is a (single-valued) measurable map Ω → X such that for each
i ∈ I, πi(ψ(ω)) ∈ Bi(ω, ψ(ω)) and Ai(ω, ψ(ω)) ∩ Pi(ω, ψ(ω)) = ∅ for all ω ∈ Ω.
Here, πi is the projection from X onto Xi. If x ∈ X, we shall also write xi
in place of πi(x) if there is no ambiguity. We remark that if Ai, Bi and Pi of
the random generalized game Γ = (Ω;Xi;Ai, Bi;Pi)i∈I are independent of the
variable ω ∈ Ω, i.e., Ai(ω, · ) = Ai( · ), Bi(ω, · ) = Bi( · ) and Pi(ω, · ) = Pi( · ) for
all ω ∈ Ω, and if Bi(x̂) = clXi Bi(x̂) for each x̂ ∈ X (which is the case when Bi
has a closed graph in X ×Xi; in particular, when clBi is upper semicontinuous
with closed values), then our definition of an equilibrium point coincides with
that of Ding et al. [16] in deterministic case; and if, in addition, Ai = Bi for
each i ∈ I, our definition of an equilibrium point coincides with the standard
definition in deterministic case, e.g., in Borglin and Keiding [8], Tulcea [55] and
Yannelis and Prabhakar [58].

We now recall two results which will be needed in this paper. The following
is due to Leese [34, pp. 408–409]:

Theorem A. Let (Ω,Σ) be a measurable space, Σ be a Suslin family, X be
a Suslin space and F : (Ω,Σ) → 2X \ {∅} be a mapping such that GraphF ∈
Σ ⊗ B(X). Then there exists a sequence {φn : n = 1, 2, . . . } of measurable
selectors of F such that for each ω ∈ Ω, the set {φn(ω) : n = 1, 2, . . . } is dense
in F (ω).

The following is Theorem 5.3 of Tan and Yuan [49]:

Theorem B. Let Γ = (Xi;Ai, Bi;Pi)i∈I be an abstract economy such that
X =

∏
i∈I Xi is paracompact. Suppose the following conditions are satisfied:



64 K. K. Tan — X. Z. Yuan

(a) for each i ∈ I, Xi is a non-empty closed convex subset of a locally convex
Hausdorff topological vector space Ei and Xi has property (K);

(b) for each i ∈ I, Bi is compact and upper semicontinuous with non-empty
compact convex values and Ai(x) ⊂ Bi(x) for each x ∈ X;

(c) for each i ∈ I, Pi is lower semicontinuous and L-majorized;
(d) for each i ∈ I, Ei = {x ∈ X : (Ai ∩ Pi)(x) 6= ∅} is open in X;
(e) there exist a non-empty compact convex subset X0 of X and a non-

empty compact subset K of X such that for each y ∈ X \K there is an
x ∈ co(X0 ∪ {y}) with xi ∈ co(Ai(y) ∩ Pi(y)) for all i ∈ I.

Then there exists x ∈ K such that xi ∈ Bi(x) and Ai(x) ∩ Pi(x) = 0 for each
i ∈ I.

3. Random equilibria in locally convex spaces

By Theorems A and B, we have the following existence theorem for random
equilibria of random generalized games:

Theorem 3.1. Let (Ω,Σ) be a measurable space, Σ be a Suslin family and
Γ = (Ω;Xi;Ai, Bi;Pi)i∈I be a random generalized game such that I is countable
and Dom(Ai ∩ Pi) ∈ Σ ⊗ B(X) for each i ∈ I. Suppose that the following
conditions are satisfied:

(i) for each i ∈ I, Xi is a non-empty convex Polish subset of a locally
convex Hausdorff topological vector space Ei;

(ii) for each i ∈ I and for each fixed ω ∈ Ω, Bi(ω, · ) is compact and upper
semicontinuous with non-empty compact convex values, and for each
(ω, x) ∈ Ω×X, Ai(ω, x) ⊂ Bi(ω, x);

(iii) for each i ∈ I and for each fixed ω ∈ Ω, Pi(ω, · ) is lower semicontinuous
and L-majorized;

(iv) for each i ∈ I and ω ∈ Ω, Ei(ω) = {x ∈ X : Ai(ω, x) ∩ Pi(ω, x) 6= ∅} is
open in X;

(v) for each given ω ∈ Ω, there exist a non-empty compact subset K(ω)
of X and a non-empty compact convex subset X0(ω) of X such that
for each y ∈ X \ K(ω), there is an x ∈ co(X0(ω) ∪ {y}) with xi ∈
co(Ai(ω, y) ∩ Pi(ω, y)) for all i ∈ I; and

(vi) the mapping B : Ω × X → 2X defined by B(ω, x) =
∏
i∈I Bi(ω, x) for

each (ω, x) ∈ Ω × X has a measurable graph, i.e., GraphB ∈ Σ ⊗
(X ×X).

Then Γ has a random equilibrium.

Proof. Define Ψ : Ω → 2X×X by Ψ(ω) = {(x, x) ∈ X × X : Ai(ω, x) ∩
Pi(ω, x) = ∅ and x ∈ B(ω, x) for all i ∈ I} for each ω ∈ Ω. Then Ψ(ω) 6= ∅ for
each ω ∈ Ω by assumptions (i)–(v) and Theorem B. Let ∆ = {(x, x) : x ∈ X}.
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Then GraphΨ = (((Ω×X)\ (
⋃
i∈I(Dom(Ai∩Pi))))×X)∩ (GraphB)∩ (Ω×∆).

By hypotheses, Dom(Ai ∩ Pi) ∈ Σ ⊗ B(Xi) for each i ∈ I and GraphB ∈ Σ ⊗
B(X×X), so that

⋃
i∈I Dom(Ai∩Pi) ∈ Σ⊗B(Xi) since I is countable. Therefore

GraphΨ ∈ Σ ⊗ B(X × X). Hence Ψ satisfies all conditions of Theorem A. By
Theorem A, there exists a measurable selection ψ′ of Ψ, where ψ′ : Ω → X ×X.
But then there exists ψ : Ω → X such that ψ′(ω) = (ψ(ω), ψ(ω)) for all ω ∈ Ω.
Now if D is a closed subset of X, then D × D is a closed subset of X × X; as
ψ−1(D) = {ω ∈ Ω : ψ(ω) ∈ D} = {ω ∈ Ω : ψ′(ω) ∈ D × D} ∈ Σ, it follows
that ψ is also measurable. Moreover, we have Ai(ω, ψ(ω))∩Pi(ω, ψ(ω)) = ∅ and
πi(ψ(ω)) ∈ Bi(ω, ψ(ω)) for all ω ∈ Ω and all i ∈ I. �

Remark. We note that if Bi has a measurable graph for each i ∈ I, then it is
easy to see that the mapping B : Ω×X → 2X defined by B(ω, x) =

∏
i∈I Bi(ω, x)

for each (ω, x) ∈ Ω×X, by the same argument of Lemma 2.4 of Castaing [9, p.
96], also has a measurable graph. Thus, we have the following corollary:

Corollary 3.2. Let (Ω,Σ) be a measurable space with Σ a Suslin family
and G = (Ω;Xi;Ai;Pi)i∈I be a random abstract economy and let X =

∏
i∈I Xi.

Suppose that I is countable and the following conditions are satisfied for each
i ∈ I:

(a) Xi is a non-empty compact convex Polish subset of a locally convex
Hausdorff topological vector space Ei;

(b) Ai : Ω ×X → 2Xi is such that for each fixed ω ∈ Ω, Ai(ω, · ) is upper
semicontinuous with non-empty compact convex values and GraphAi ∈
Σ⊗ B(X ×Xi);

(c) Pi : Ω × X → 2Xi is such that for each fixed ω ∈ Ω, P (ω, · ) is lower
semicontinuous and L-majorized and Dom(Ai ∩ Pi) ∈ Σ⊗ B(X);

(d) for each ω ∈ Ω, Ei(ω) = {x ∈ X : Ai(ω, x) ∩ Pi(ω, x) 6= ∅} is open
in X.

Then G has a random equilibrium.

By taking Ai = Bi = Xi for all i ∈ I in Theorem 3.1 and noting that the
domain of a lower semicontinuous correspondence is open, we have the following
existence theorem for a random qualitative game:

Theorem 3.3. Let (Ω,Σ) be a measurable space, Σ be a Suslin family and
Γ = (Ω, Xi, Pi)i∈I be a random qualitative game such that I is a countable and
DomPi ∈ Σ ⊗ B(X) for each i ∈ I. Suppose that the following conditions are
satisfied:

(i) for each i ∈ I, Xi is a non-empty compact convex Polish subset of a
locally convex Hausdorff topological vector space Ei;
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(ii) for each i ∈ I and for each fixed ω ∈ Ω, Pi(ω, · ) is lower semicontinuous
and L-majorized.

Then Γ has a random equilibrium.

4. Non-compact random quasi-variational inequalities

In this section, by our existence theorem for random equilibria of random
generalized games, namely, Theorem 3.1, some existence theorems for random
quasi-variational inequalities and generalized random quasi-variational inequali-
ties are given. Our results not only generalize the results of Tan [50] and Zhang
[59], but also they are the stochastic versions of corresponding results in the
literature (see e.g. [4]–[5], [14], [46], [59]–[60] and the references therein).

Here we emphasize that our arguments for the existence of solutions for
random quasi-variational inequalities are different from the approaches used in
[50] and [59].

Theorem 4.1. Let (Ω,Σ) be a measurable space with Σ a Suslin family, and
let I be countable. For each i ∈ I, suppose that the following conditions are
satisfied:

(a) Xi is a non-empty convex Polish subset of a locally convex Hausdorff
topological vector space;

(b) for each fixed ω ∈ Ω, Ai(ω, · ) : X =
∏
i∈I Xi → 2Xi is compact

and upper semicontinuous with non-empty compact convex values, and
GraphAi ∈ Σ⊗ B(X ×Xi);

(c) ψi : Ω×X ×Xi → R ∪ {−∞,+∞} is such that:
(c)1 x 7→ ψi(ω, x, y) is lower semicontinuous on X for each fixed (ω, y) ∈

Ω×Xi;
(c)2 xi 6∈ co{y ∈ Xi : ψi(ω, x, y) > 0} for each fixed (ω, x) ∈ Ω × X;
(c)3 for each fixed ω ∈ Ω, the set {x ∈ X : αi(ω, x) > 0} is open in X,

where αi : Ω×X → R ∪ {−∞,+∞} is defined by
αi(ω, x) = supyi∈Ai(ω,x) ψi(ω, x, yi) for each (ω, x) ∈ Ω×X;

(d) {(ω, x) ∈ Ω×X : αi(ω, x) > 0} ∈ Σ⊗ B(X);
(e) for each given ω ∈ Ω, there exist a non-empty compact convex subset

X0(ω) of X and a non-empty compact subset K(ω) of X such that
for each y ∈ X \ K(ω) there exists x ∈ co(X0(ω) ∪ {y}) with xi ∈
co(Ai(ω, y) ∩ {z ∈ Xi : ψi(ω, y, z) > 0}).

Then there exists a measurable map φ : Ω → X such that for each i ∈ I,
πi(φ(ω)) ∈ Ai(ω, φ(ω)) and

sup
y∈Ai(ω,φ(ω))

ψi(ω, φ(ω), y) ≤ 0

for all ω ∈ Ω.
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Proof. For each i ∈ I, define Pi : Ω × X → 2Xi by setting Pi(ω, x) =
{y ∈ Xi : ψi(ω, x, y) > 0} for each (ω, x) ∈ Ω × X. We shall show that
G = (Ω;Xi;Ai;Pi)i∈I satisfies all hypotheses of Theorem 3.1 with Ai = Bi
for all i ∈ I.

Suppose i ∈ I and ω ∈ Ω. By (c)1, for each fixed y ∈ Xi, (Pi(ω, · ))−1(y)
= {x ∈ X : ψi(ω, x, y) > 0} is open in X and by (c)2, xi 6∈ coPi(ω, x) for each
x ∈ X. This shows that Pi(ω, · ) is lower semicontinuous and is of class L and
hence is L-majorized. By the definition of αi, we note that {x ∈ X : Ai(ω, x) ∩
Pi(ω, x) 6= ∅} = {x ∈ X : αi(ω, x) > 0} so that {x ∈ X : Ai(ω, x)∩Pi(ω, x) 6= ∅}
is open in X by (c)3. By (d), we have Dom(Ai ∩ Pi) ∈ Σ ⊗ B(X). By (b),
GraphAi ∈ Σ ⊗ B(X × X), so that the mapping A : Ω × X → X defined by
A(ω, x) =

∏
i∈I Ai(ω, x) for each (ω, x) ∈ Ω×X has a measurable graph (see e.g.

the argument of Castaing [9, p. 96]). Therefore G = (Ω;Xi;Ai;Pi)i∈I satisfies
all hypothesis of Theorem 3.1 with Ai = Bi for each i ∈ I. By Theorem 3.1,
there exists a measurable map φ : Ω → X such that for each i ∈ I, πi(φ(ω)) ∈
Ai(ω, φ(ω)) and Ai(ω, φ(ω)) ∩ Pi(ω, φ(ω)) = ∅ for all ω ∈ Ω, i.e., πi(φ(ω)) ∈
Ai(ω, φ(ω)) and supy∈Ai(ω,φ(ω)) ψi(ω, φ(ω), y) ≤ 0 for all ω ∈ Ω. �

By letting I = {1} in Theorem 4.1, we have the following existence result for
random quasi-variational inequalities:

Theorem 4.2. Let (Ω,Σ) be a measurable space with Σ a Suslin family.
Suppose that the following conditions are satisfied:

(a) X is a non-empty convex Polish subset of a locally convex Hausdorff
topological vector space;

(b) for each fixed ω ∈ Ω, A(ω, · ) : X → 2X is compact and upper semi-
continuous with non-empty compact and convex values, and GraphA ∈
Σ⊗ B(X ×X);

(c) ψ : Ω×X ×X → R ∪ {−∞,+∞} is such that:
(c)1 x 7→ ψ(ω, x, y) is lower semicontinuous on X for each fixed (ω, y) ∈

Ω×X;
(c)2 x 6∈ co{y ∈ X : ψ(ω, x, y) > 0} for each fixed (ω, x) ∈ Ω×X;
(c)3 for each fixed ω ∈ Ω, the set {x ∈ X : α(ω, x) > 0} is open in X,

where α : Ω×X → R ∪ {−∞,+∞} is defined by
α(ω, x) = supy∈A(ω,x) ψ(ω, x, y) for each (ω, x) ∈ Ω×X;

(d) {(ω, x) ∈ Ω×X : α(ω, x) > 0} ∈ Σ⊗ B(X);
(e) for each given ω ∈ Ω, there exist a non-empty compact convex subset

X0(ω) of X and a non-empty compact subset K(ω) of X such that
for each y ∈ X \ K(ω) there exists x ∈ co(X0(ω) ∪ {y}) with x ∈
co(A(ω, y) ∩ {z ∈ X : ψ(ω, y, z) > 0}).
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Then there exists a measurable map φ : Ω → X such that φ(ω) ∈ A(ω, φ(ω)) and

sup
y∈A(ω,φ(ω))

ψ(ω, φ(ω), y) ≤ 0

for all ω ∈ Ω.

As a consequence of Theorem 4.2 and Theorem 4.2(c) of [57], we have the
following random fixed point theorem:

Corollary 4.3. Let (Ω,Σ) be a measurable space with Σ a Suslin family,
X be a non-empty compact convex Polish subset of a locally convex Hausdorff
topological vector space and A : Ω×X → 2X be measurable. If for each ω ∈ Ω,
A(ω, · ) is upper semicontinuous with non-empty compact convex values, then A

has a random fixed point.

For more details about random fixed point theorems, we refer the reader to
[47] and the references therein.

5. Generalized random quasi-variational inequalities

In this section, by applying results in Section 4, we shall consider the following
generalized random variational inequality problems (∗) and (∗∗).

Let (Ω,Σ) be a measurable space, X be a non-empty compact convex subset
of a locally convex Hausdorff topological vector space E and E∗ be the dual
space of E. Suppose the correspondences F : Ω ×X → 2X , T : Ω ×X → 2E

∗

and the function f : Ω ×X ×X → R ∪ {−∞,+∞} are given. We want to find
a measurable map ψ : Ω → X which satisfies the following generalized random
quasi-variational inequalities:

(∗)

{
ψ(ω) ∈ F (ω, ψ(ω))

sup
y∈F (ω,ψ(ω))

[ sup
u∈T (ω,ψ(ω))

Re〈u, ψ(ω)− y〉+ f(ω, ψ(ω), y)] ≤ 0

for all ω ∈ Ω. We also want to find two measurable maps ψ : Ω → X and
φ : Ω → E∗ such that

(∗∗)

{
ψ(ω) ∈ F (ω, ψ(ω)) and φ(ω) ∈ T (ω, ψ(ω)),

Re〈φ(ω), ψ(ω)− y〉+ f(ω, ψ(ω), y) ≤ 0

for all y ∈ F (ω, ψ(ω)) and for all ω ∈ Ω.
Now we recall some definitions (see e.g. [60]). Let X be a convex subset of

a topological vector space E. A function ψ(x, y) : X ×X → R ∪ {−∞,+∞} is
said to be

(1) γ-diagonally quasi-convex (respectively, γ-diagonally quasi-concave) in y,
for short, γ-DQCX (respectively, γ-DQCV) in y, if for each A ∈ F(X) and each
y ∈ co(A), γ ≤ maxx∈A ψ(y, x) (respectively, γ ≥ infx∈A ψ(y, x));
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(2) γ-diagonally convex (respectively, γ-diagonally concave) in y, for short,
γ-DCX (respectively, γ-DCV) in y, if for each A ∈ F(X) and each y ∈ co(A)
with y =

∑m
i=1 λiyi (λi ≥ 0 and

∑m
i=1 λi = 1), we have γ ≤

∑m
i=1 λiψ(y, yi)

(respectively, γ ≥
∑m
i=1 λiψ(y, yi)).

Let X and Y be two non-empty convex subsets of E. We also recall that
a function ψ : X × Y → R ∪ {−∞,+∞} is quasi-convex (respectively, quasi-
concave) in y if for each fixed x ∈ X, for each A ∈ F(Y ) and each y ∈ co(A),
ψ(x, y) ≤ maxz∈A ψ(x, z) (respectively, ψ(x, y) ≥ minz∈A ψ(x, z)).

It is easy to see that (i) if ψ(x, y) is γ-DCX (respectively, γ-DCV) in y, then
ψ(x, y) is γ-DQCX (respectively, γ-DQCV) in y and (ii) if ψi : X × Y → R
is γ-DCX (respectively, γ-DCV) in y for each i = 1, 2, . . . ,m, then ψ(x, y) =∑m
i=1 ai(x)ψi(x, y) is also γ-DCX (respectively, γ-DCV) in y, where ai : X → R

with ai(x) ≥ 0 and
∑m
i=1 ai(x) = 1 for each x ∈ X and (iii) the function

ψ(x, y) : X ×X → R ∪ {−∞,+∞} is 0-DQCV in y if and only if x 6∈ co({y ∈
X : ψ(x, y) > 0}) for each x ∈ X.

First we consider the following existence theorem for solutions of problem
(∗) for which monotonicity is needed.

Theorem 5.1. Let (Ω,Σ) be a measurable space with Σ a Suslin family and
X be a non-empty convex Polish subset of a locally convex Hausdorff topological
vector space E. Suppose that the following conditions are satisfied:

(i) F : Ω ×X → 2X is such that for each fixed ω ∈ Ω, F (ω, · ) is compact
and upper semicontinuous with non-empty compact convex values, and
GraphF ∈ Σ⊗ B(X ×X);

(ii) T : Ω×X → 2E
∗

is such that for each fixed ω ∈ Ω, T (ω, · ) is monotone
(i.e., Re〈u − υ, y − x〉 ≥ 0 for all u ∈ T (ω, y) and υ ∈ T (ω, x) and for
all x, y ∈ X) with non-empty values and for each one-dimensional flat
L ⊂ E, T (ω, · )|L∩X is lower semicontinuous from the relative topology
of X into the weak∗-topology σ(E∗, E) of E∗;

(iii) f : Ω × X × X → R ∪ {−∞,+∞} is such that for each fixed (ω, y) ∈
Ω×X, x 7→ f(ω, x, y) is lower semicontinuous on X and for each fixed
(ω, x) ∈ Ω × X, y 7→ f(ω, x, y) is concave and f(ω, x, x) = 0 for each
(ω, x) ∈ Ω×X;

(iv) for each fixed ω ∈ Ω, the set

{x ∈ X : sup
y∈F (ω,x)

[ sup
u∈T (ω,y)

Re〈u, x− y〉+ f(ω, x, y)] > 0}

is open in X;
(v) the set {(ω, x) ∈ Ω×X : supy∈F (ω,x)[supu∈T (ω,y) Re〈u, x−y〉+f(ω, x, y)]

> 0} ∈ Σ⊗ B(X);
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(vi) for each given ω ∈ Ω, there exist a non-empty compact convex subset
X0(ω) of X and a non-empty compact subset K(ω) of X such that
for each x ∈ X \ K(ω) there exists y ∈ co(X0(ω) ∪ {x}) with y ∈
co(F (ω, x) ∩ {z ∈ X : supu∈T (ω,z) Re〈u, x− z〉+ f(ω, x, z) > 0}).

Then there exists a measurable map φ : Ω → X such that φ(ω) ∈ F (ω, φ(ω)) and

sup
u∈T (ω,φ(ω))

Re〈u, φ(ω)− y〉+ f(ω, φ(ω), y) ≤ 0

for all y ∈ F (ω, φ(ω)) and ω ∈ Ω.

Proof. Define a function ψ : Ω×X ×X → R ∪ {−∞,+∞} by

ψ(ω, x, y) = sup
u∈T (ω,y)

Re〈u, x− y〉+ f(ω, x, y)

for each (ω, x, y) ∈ Ω×X×X. Then by (iii), x 7→ ψ(ω, x, y) is lower semicontinu-
ous on X for each (ω, y) ∈ Ω×X. For each ω ∈ Ω, since T (ω, · ) is monotone, by
(iii), it is easy to prove that ψ(ω, x, y) is 0-DCV in y by Proposition 3.2 of Zhou
and Chen [60]. The conditions (i)–(vi) imply that all hypotheses of Theorem 4.2
are satisfied. By Theorem 4.2, there exists a measurable map φ : Ω → X such
that φ(ω) ∈ F (ω, φ(ω)) and

(1) sup
y∈F (ω,φ(ω))

sup
u∈T (ω,y)

[Re〈u, φ(ω)− y〉+ f(ω, φ(ω), y)] ≤ 0

for all ω ∈ Ω.
We shall now modify the proof of Theorem 3 of Tan [46] to prove that

sup
y∈F (ω,φ(ω))

sup
u∈T (ω,φ(ω))

[Re〈u, φ(ω)− y〉+ f(ω, φ(ω), y)] ≤ 0

for each ω ∈ Ω.
Fix an ω ∈ Ω. Let x ∈ F (ω, φ(ω)) be arbitrarily given and let

zt(ω) = tx+ (1− t)φ(ω) = φ(ω)− t(φ(ω)− x)

for t ∈ [0, 1]. As F (ω, φ(ω)) is convex, we have zt(ω) ∈ F (ω, φ(ω)) for t ∈ [0, 1].
Therefore by (1) we have

sup
u∈T (ω,zt(ω))

[Re〈u, φ(ω)− zt(ω)〉+ f(ω, φ(ω), zt(ω))] ≤ 0

for all t ∈ [0, 1].
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Since for each x ∈ X, y 7→ f(ω, x, y) is concave and f(ω, x, x) = 0, it follows
that for t ∈ (0, 1],

t ·
{

sup
u∈T (ω,zt(ω))

[Re〈u, φ(ω)− x〉] + f(ω, φ(ω), x)
}

≤ sup
u∈T (ω,zt(ω))

t · [Re〈u, φ(ω)− x〉] + f(ω, φ(ω), tx+ (1− t)φ(ω))

= sup
u∈T (ω,zt(ω))

Re〈u, φ(ω)− zt(ω)〉+ f(ω, φ(ω), zt(ω)) ≤ 0,

which implies that for t ∈ (0, 1],

(2) sup
u∈T (ω,zt(ω))

Re〈u, φ(ω)− x〉+ f(ω, φ(ω), x) ≤ 0.

Let z0 ∈ T (ω, φ(ω)) be arbitrarily fixed. For each ε > 0, let

Uz0 = {z ∈ E∗ : |Re〈z0 − z, φ(ω)− x〉| < ε}.

Then Uz0 is a σ(E∗, E)-neighborhood of z0. Since T (ω, · )|L∩X is lower semi-
continuous, where L := {zt(ω) : T ∈ [0, 1]}, and Uz0 ∩ T (ω, φ(ω)) 6= ∅, there
exists a neighborhood N(φ(ω)) of φ(ω) in L such that if z ∈ N(φ(ω)), then
T (ω, φ(ω)) ∩ Uz 6= ∅. But then there exists δ ∈ (0, 1] such that zt(ω) ∈ N(φ(ω))
for all t ∈ (0, δ). Fix any t ∈ (0, δ) and u ∈ T (ω, zt(ω)) ∩ Uz0 . We have
|Re〈z0−u, φ(ω)−x〉| < ε. This implies that Re〈z0, φ(ω)−x〉 < Re〈u, φ(ω)−x〉+ε.
Therefore Re〈z0, φ(ω)−x〉+f(ω, φ(ω), x) < Re〈u, φ(ω)−x〉+f(ω, φ(ω), x)+ε < ε

by (2). Since ε > 0 is arbitrary, Re〈z0, φ(ω) − x〉 + f(ω, φ(ω), x) ≤ 0. As
z0 ∈ T (ω, φ(ω)) is arbitrary,

sup
z∈T (ω,φ(ω))

Re〈z, φ(ω)− x〉+ f(ω, φ(ω), x) ≤ 0

for all x ∈ F (ω, φ(ω)). �

Theorem 5.2. Let (Ω,Σ) be a measurable space with Σ a Suslin family and
X be a non-empty bounded convex Polish subset of a locally convex Hausdorff
topological vector space E. Assume that F : Ω ×X → 2X is such that for each
ω ∈ Ω, F (ω, · ) is continuous with non-empty compact and convex values and
GraphF ∈ Σ ⊗ B(X × X), and T : Ω × X → 2E

∗
is such that for each given

ω ∈ Ω, T (ω, · ) is monotone with non-empty values and is lower semicontinuous
from the relative topology of X to the strong topology of E∗. Suppose that

(i) f : Ω × X × X → R ∪ {−∞,+∞} is such that for each given ω ∈ Ω,
(x, y) 7→ f(ω, x, y) is lower semicontinuous and for each fixed (ω, x) ∈
Ω × X, y 7→ f(ω, x, y) is concave and f(ω, x, x) = 0 for each (ω, x) ∈
Ω×X;

(ii) the set {(ω, x) ∈ Ω×X : supy∈F (ω,x) supu∈T (ω,y)[Re〈u, x−y〉+f(ω, x, y)]
> 0} ∈ Σ⊗ B(X);
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(iii) for each ω ∈ Ω, there exist a non-empty compact convex subset X0(ω)
of X and a non-empty compact subset K(ω) of X such that for each
x ∈ X \K(ω) there exists y ∈ co(X0(ω) ∪ {x}) with y ∈ co(F (ω, x) ∩
{z ∈ X : supu∈T (ω,z) Re〈u, x− z〉+ f(ω, x, z) > 0}).

Then there exists a measurable map φ : Ω → X such that φ(ω) ∈ F (ω, φ(ω)) and

sup
y∈F (ω,φ(ω))

[ sup
u∈T (ω,φ(ω))

Re〈u, φ(ω)− y〉+ f(ω, φ(ω), y)] ≤ 0

for all ω ∈ Ω.

Proof. By Theorem 5.1, we need only show that for each given ω ∈ Ω, the
set

Σ(ω) := {x ∈ X : sup
y∈F (ω,x)

[ sup
u∈T (ω,y)

Re〈u, x− y〉+ f(ω, x, y)] > 0}

is open in X.
Since X is bounded and f(ω, · , · ) is lower semicontinuous, the function

(u, x, y) 7→ Re〈u, x− y〉+ f(ω, x, y) is lower semicontinuous from E∗×X ×X to
R for each fixed ω ∈ Ω. Therefore (x, y) 7→ supu∈T (ω,y)[Re〈u, x−y〉+f(ω, x, y)] is
also lower semicontinuous by lower semicontinuity of T (ω, · ) and Proposition III-
19 of Aubin and Ekeland [5, p. 118]. Since F (ω, · ) is lower semicontinuous, x 7→
supy∈F (ω,x) supu∈T (ω,y)[Re〈u, x − y〉 + f(ω, x, y)] is again lower semicontinuous
for each fixed ω ∈ Ω. Thus the set

Σ(ω) = {x ∈ X : sup
y∈F (ω,x)

sup
u∈T (ω,y)

[Re〈u, x− y〉+ f(ω, x, y)] > 0}

is open in X. �

Now we will consider the existence of solutions for the problems (∗) and (∗∗)
without assuming monotonicity as in Theorems 5.1 and 5.2.

Theorem 5.3. Let (Ω,Σ) be a measurable space with Σ a Suslin family and
X be a non-empty convex Polish subset of a locally convex Hausdorff topological
vector space E. Suppose that:

(i) F : Ω × X → 2X is such that for each ω ∈ Ω, F (ω, · ) is compact
and upper semicontinuous with non-empty compact convex values, and
GraphF ∈ Σ⊗ B(X ×X);

(ii) T : Ω × X → 2E
∗

is such that x 7→ infu∈T (ω,x) Re〈u, x − y〉 is lower
semicontinuous for each (ω, y) ∈ Ω×X;

(iii) f : Ω × X × X → R is such that for each fixed (ω, y) ∈ Ω × X, x 7→
f(ω, x, y) is lower semicontinuous on X and for each fixed (ω, x) ∈
Ω×X, y 7→ f(ω, x, y) is 0-diagonally concave;
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(iv) for each given ω ∈ Ω, the set

{x ∈ X : sup
y∈F (ω,x)

[ inf
u∈T (ω,x)

Re〈u, x− y〉+ f(ω, x, y)] > 0}

is open in X;
(v) the set {(ω, x) ∈ Ω×X : supy∈F (ω,x) infu∈T (ω,x)[Re〈u, x−y〉+f(ω, x, y)]

> 0} ∈ Σ⊗ B(X);
(vi) for each ω ∈ Ω, there exist a non-empty compact convex subset X0(ω)

of X and a non-empty compact subset K(ω) of X such that for each
x ∈ X \K(ω) there exists y ∈ co(X0(ω) ∪ {x}) with y ∈ co(F (ω, x) ∩
{z ∈ X : supu∈T (ω,z) Re〈u, x− z〉+ f(ω, x, z) > 0}).

Then there exists a measurable map φ : Ω → X such that φ(ω) ∈ F (ω, φ(ω)) and

inf
u∈T (ω,φ(ω))

Re〈u, φ(ω)− y〉+ f(ω, φ(ω), y) ≤ 0

for all y ∈ F (ω, φ(ω)) and ω ∈ Ω.
Suppose that, in addition, (1) for each fixed (ω, x) ∈ Ω×X, y 7→ f(ω, x, y) is

lower semicontinuous and concave and f is measurable; (2) there exists a non-
empty Polish subset E∗0 of E∗ such that T (Ω ×X) ⊂ E∗0 , T is measurable with
non-empty strongly compact convex values and (3) F is measurable.

Then there exists a measurable function ρ : Ω → E∗ such that ρ(ω) ∈
T (ω, φ(ω)) and

sup
y∈F (ω,φ(ω))

{Re〈ρ(ω), φ(ω)− y〉+ f(ω, φ(ω), y)} ≤ 0

for all ω ∈ Ω.

Proof. Define ψ : Ω×X ×X → R ∪ {−∞,+∞} by

ψ(ω, x, y) = inf
u∈T (ω,x)

Re〈u, x− y〉+ f(ω, x, y),

for each (ω, x, y) ∈ Ω×X ×X. Then by (ii), (iii) and (iv) we have:

(1) for each fixed (ω, y) ∈ Ω × X, x 7→ ψ(ω, x, y) is lower semicontinuous
on X and x 6∈ co({y ∈ X : ψ(ω, x, y) > 0}) for each (ω, x) ∈ Ω×X;

(2) for each ω ∈ Ω, the set {x ∈ X : supy∈F (ω,x) ψ(ω, x, y) > 0} is open
in X.

Therefore F and ψ satisfy all conditions of Theorem 4.2. By Theorem 4.2 there
exists a measurable map φ : Ω → X such that φ(ω) ∈ F (ω, φ(ω)) and

sup
y∈F (ω,φ(ω))

inf
u∈T (ω,φ(ω))

[Re〈u, φ(ω)− y〉+ f(ω, φ(ω), y)] ≤ 0

for all ω ∈ Ω.



74 K. K. Tan — X. Z. Yuan

If, in addition, the conditions (1), (2) and (3) hold, we shall find another mea-
surable map ρ : Ω → E∗ such that ρ(ω) ∈ T (ω, φ(ω)) and supy∈F (ω,φ(ω))[Re〈ρ(ω),
φ(ω)− y〉+ f(ω, φ(ω), y)] ≤ 0 for each ω ∈ Ω.

Fix an ω ∈ Ω. Define f1 : F (ω, φ(ω))× T (ω, φ(ω)) → R by

f1(y, u) = Re〈u, φ(ω)− y〉+ f(ω, φ(ω), y)

for each (y, u) ∈ F (ω, φ(ω)) × T (ω, φ(ω)). Then for each y ∈ F (ω, φ(ω)), u 7→
f1(y, u) is lower semicontinuous and convex and for each fixed u ∈ T (ω, φ(ω)),
y 7→ f1(y, u) is concave. By Kneser’s minimax theorem [33],

inf
u∈T (ω,φ(ω))

sup
y∈F (ω,φ(ω))

[Re〈u, φ(ω)− y〉+ f(ω, φ(ω), y)]

= sup
y∈F (ω,φ(ω))

inf
u∈T (ω,φ(ω))

[Re〈u, φ(ω)− y〉+ f(ω, φ(ω), y)] ≤ 0.

Since T (ω, φ(ω)) is compact, there exists u0 ∈ T (ω, φ(ω)) such that

sup
y∈F (ω,φ(ω))

[Re〈u0, φ(ω)− y〉+ f(ω, φ(ω), y)] ≤ 0.

Now let Φ, T1 : Ω → 2X be defined by

Φ(ω) = {u ∈ T (ω, φ(ω)) : sup
y∈F (ω,φ(ω))

[Re〈u, φ(ω)− y〉+ f(ω, φ(ω), y)] ≤ 0},

T1(ω) = T (ω, φ(ω))

for each ω ∈ Ω. Note that Φ(ω) 6= ∅ for all ω ∈ Ω. Since T and φ are measurable,
T1 is also measurable by Lemma 3 in [39, p. 55].

Define g1 : Ω×X ×X × E∗0 → R by

g1(ω, x, y, u) = Re〈u, x− y〉+ f(ω, x, y)

for each (ω, x, y, u) ∈ Ω × X × X × E∗0 . Then g1 is measurable. Also define
g2 : Ω×X × E∗0 → R by

g2(ω, y, u) = Re〈u, φ(ω)− y〉+ f(ω, φ(ω), y)

for each (ω, y, u) ∈ Ω×X×E∗0 . Now define F1 : Ω → 2X by F1(ω) = F (ω, φ(ω))
for each ω ∈ Ω. Since φ is measurable and F is also measurable, g2 and F1 are
measurable by Lemma 3 in [39, p. 55] again.

Now define g3 : Ω× E∗0 → R by

g3(ω, u) = sup
y∈F (ω,φ(ω))

g2(ω, y, u) = sup
y∈F (ω,φ(ω))

[Re〈u, φ(ω)− y〉+ f(ω, φ(ω), y)]

for each (ω, u) ∈ Ω× E∗0 . We shall prove that g3 is a measurable function.
Since F1 is measurable, by Theorem A, there exists a countable family of

measurable maps pn : Ω → X such that F1(ω) = cl{pn(ω) : n = 1, 2, . . . } for
each ω ∈ Ω. Since φ is measurable, for each fixed (u, y) ∈ E∗ × X, the map
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ω 7→ Re〈u, φ(ω)− y〉 is measurable. Note that the map (u, y) 7→ Re〈u, φ(ω)− y〉
is continuous, so that the map (ω, u, y) 7→ Re〈u, φ(ω) − y〉 is measurable by
Theorem III.14 of Castaing and Valadier [10, p. 70]. For each n ∈ N, the function
g′n : Ω× E∗ → R defined by

g′n(ω, u) = Re〈u, φ(ω)− pn(ω)〉+ f(ω, φ(ω), pn(ω))

for each (ω, u) ∈ Ω × E∗, is measurable. Therefore for each n ∈ N, the map
(ω, u) 7→ Re〈u, φ(ω) − pn(ω)〉 + f(ω, φ(ω), pn(ω)) is also measurable. Since for
each (ω, x) ∈ Ω ×X, y 7→ f(ω, x, y) is lower semicontinuous, it follows that for
each r ∈ R,

{(ω, u) ∈ Ω× E∗ : g3(ω, u) ≤ r}

=
∞⋂
n=1

{(ω, u) ∈ Ω× E∗ : g′n(ω, u) ≤ r} ∈ Σ⊗ B(E∗).

Therefore the function g3 is measurable so that the set M0 = {(ω, u) ∈ Ω×E∗0 :
g3(ω, u) ≤ 0} ∈ Σ⊗B(E∗). Hence GraphΦ = (GraphT1)∩M0 ∈ Σ⊗B(E∗0 ). By
Theorem A, there exists a measurable map ρ : Ω → E∗0 such that ρ(ω) ∈ Φ(ω) for
each ω ∈ Ω. By the definition of Φ, the measurable map ρ satisfies the following:

(∗∗)

{
φ(ω) ∈ F (ω, φ(ω)) and ρ(ω) ∈ T (ω, φ(ω)),

supy∈F (ω,φ(ω))[Re〈ρ(ω), φ(ω)− y〉+ f(ω, φ(ω), y)] ≤ 0.

�

Note that if X is bounded and the mapping T : Ω×X → 2E
∗

is such that for
each ω ∈ Ω, T (ω, · ) is upper semicontinuous with non-empty strongly compact
values, then by Lemma 2 of Kim and Tan in [32, p. 140] or Theorem 1 of Aubin
in [4, p. 67], the condition (ii) of Theorem 5.3 is satisfied. Thus Theorem 5.3
is a stochastic version of Theorem 3 of Shih and Tan in [44, p. 340]. Recall
that for a topological vector space E, the strong topology on its dual space E∗

is generated by the family {U(B; ε) : B is a non-empty bounded subset of E
and ε > 0} as a base for the neighborhood system at zero, where U(B; ε) :=
{f ∈ E∗ : supx∈B |Re〈f, x〉| < ε}.

Now if we impose the upper semicontinuity condition on the correspondence
T , then we have the following:

Theorem 5.4. Let (Ω,Σ) be a measurable space with Σ a Suslin family and
X be a non-empty bounded convex Polish subset of a locally convex Hausdorff
topological vector space E. Suppose that

(i) F : Ω × X → 2X is random compact and continuous with non-empty
compact convex values;
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(ii) T : Ω×X → 2E
∗

is such that for each given ω ∈ Ω, T (ω, · ) is compact
and upper semicontinuous with non-empty strongly compact and convex
values;

(iii) f : Ω × X × X → R is such that (a) for each fixed (ω, y) ∈ Ω × X,
x 7→ f(ω, x, y) is lower semicontinuous on X; (b) for each fixed (ω, x) ∈
Ω×X, y 7→ f(ω, x, y) is 0-diagonally concave;

(iv) the set {(ω, x) ∈ Ω×X : supy∈F (ω,x) infu∈T (ω,x)[Re〈u, x−y〉+f(ω, x, y)]
> 0} ∈ Σ⊗ B(X).

(v) for each ω ∈ Ω, there exist a non-empty compact convex subset X0(ω)
of X and a non-empty compact subset K(ω) of X such that for each
x ∈ X \K(ω) there exists y ∈ co(X0(ω) ∪ {x}) with y ∈ co(F (ω, x) ∩
{z ∈ X : supu∈T (ω,z) Re〈u, x− z〉+ f(ω, x, z) > 0}).

Then

(a) for each fixed ω ∈ Ω, the set

{x ∈ X : sup
y∈F (ω,x)

[ inf
u∈T (ω,x)

Re〈u, x− y〉+ f(ω, x, y)] > 0}

is open in X;
(b) GraphF ∈ Σ⊗ B(X ×X);
(c) there exists a measurable map φ : Ω → X such that φ(ω) ∈ F (ω, φ(ω))

and

inf
u∈T (ω,φ(ω))

Re〈u, φ(ω)− y) + f(ω, φ(ω), y) ≤ 0

for all y ∈ F (ω, φ(ω)) and ω ∈ Ω.

Proof. (a) Fix ω ∈ Ω. Since X is a compact subset of the locally convex
Hausdorff topological vector space E, and E∗ is equipped with the strong topo-
logy, the function ψ1 : E∗ ×X ×X → R ∪ {−∞,+∞} defined by ψ1(u, x, y) =
Re〈u, x − y〉 for each (u, x, y) ∈ E∗ × X × X is continuous. Since T (ω, · ) :
X → 2E

∗
is upper semicontinuous with non-empty strongly compact values, by

Theorem 1 of Aubin [4, p. 67], the function ψ2 : X×X → R∪{−∞,+∞} defined
by ψ2(x, y) = infu∈T (ω,x) Re〈u, x−y〉 is also lower semicontinuous. Thus (x, y) 7→
infu∈T (ω,x) Re〈u, x−y〉+f(ω, x, y) is lower semicontinuous by (iii). As F (ω, · ) :
X → 2X is lower semicontinuous with non-empty values, by Proposition III-19
in [5, p. 118], the map x 7→ supy∈F (ω,x) infu∈T (ω,x)[Re〈u, x − y〉 + f(ω, x, y)] is
also lower semicontinuous from X to R ∪ {−∞,+∞} for each fixed ω ∈ Ω, so
that the set

Σ(ω) = {x ∈ X : sup
y∈F (ω,x)

inf
u∈T (ω,x)

[Re〈u, x− y〉+ f(ω, x, y)] > 0}

is open in X.
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(b) Since F is random continuous with closed values, by Theorem 3.5 in [26,
p. 57], we have GraphF ∈ Σ⊗ B(X ×X).

(c) Since all hypotheses of Theorem 5.3 are satisfied, the conclusion follows.�

If both correspondences T and F are measurable, we have the following:

Theorem 5.5. Let (Ω,Σ) be a measurable space with Σ a Suslin family and
X be a non-empty bounded convex Polish subset of a locally convex Hausdorff
topological vector space E. Suppose that

(i) F : Ω × X → 2X is measurable such that for each ω ∈ Ω, F (ω, · ) is
compact and continuous with non-empty compact convex values;

(ii) T : Ω × X → 2E
∗

is measurable such that for each ω ∈ Ω, T (ω, · )
is compact and upper semicontinuous with non-empty strongly compact
convex values;

(iii) f : Ω×X ×X → R is measurable such that (a) for each fixed (ω, y) ∈
Ω×X, x 7→ f(ω, x, y) is lower semicontinuous on X; (b) for each fixed
(ω, x) ∈ Ω×X, f(ω, x, x) = 0 and y 7→ f(ω, x, y) is lower semicontinu-
ous and concave;

(iv) there exists a non-empty Polish subset E∗0 of E∗ such that T (Ω × X)
⊂ E∗0 ; and

(v) for each ω ∈ Ω, there exist a non-empty compact convex subset X0(ω)
of X and a non-empty compact subset K(ω) of X such that for each
x ∈ X \K(ω) there exists y ∈ co(X0(ω) ∪ {x}) with y ∈ co(F (ω, x) ∩
{z ∈ X : supu∈T (ω,z) Re〈u, x− z〉+ f(ω, x, z) > 0}).

Then there exist measurable maps φ : Ω → X and ρ : Ω → E∗ such that
φ(ω) ∈ F (ω, φ(ω)), ρ(ω) ∈ T (ω, φ(ω)) and

sup
y∈F (ω,φ(ω))

{Re〈ρ(ω), φ(ω)− y〉+ f(ω, φ(ω), y)} ≤ 0

for all ω ∈ Ω.

Proof. By Theorems 5.3 and 5.4, it remains to prove that

{(ω, x) ∈ Ω×X : sup
y∈F (ω,x)

inf
u∈T (ω,x)

[Re〈u, x− y〉+ f(ω, x, y)] > 0} ∈ Σ⊗ B(X).

Since T and F are measurable, by Theorem 4.2(e) of Wagner [57], there exist
two countable families of measurable maps pn : Ω×X → X and qn : Ω×X → E∗

such that F (ω, x) = cl{pn(ω, x) : n = 1, 2, . . . } and T (ω, x) = cl{qn(ω, x) : n =
1, 2, . . . } for each (ω, x) ∈ Ω×X.

We define a mapping g0 : E∗ × X × X → R ∪ {−∞,+∞} by g0(u, x, y) =
Re〈u, x − y〉 for each (u, x, y) ∈ E∗ ×X ×X. Then g0 is continuous so that g1
is measurable. Therefore the function g′0 : Ω × E∗ ×X ×X → R ∪ {−∞,+∞}
defined by g′0(ω, u, x, y) = Re〈u, x − y〉 + f(ω, x, y) is also measurable for each
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(ω, u, x, y) ∈ Ω × E∗ ×X ×X since f is measurable. Fix n ∈ N, note that pn :
Ω×X → X is measurable and f is measurable. Thus for each j ∈ N, the function
gnj : Ω×X → R∪ {−∞,+∞} defined by gnj (ω, x) = Re〈qj(ω, x), x− pn(ω, x)〉+
f(ω, x, pn(ω, x)) is also measurable by Lemma 3 in [39, p. 55]. Therefore the
mapping gn : Ω×X → R ∪ {−∞,+∞} defined by gn(ω, x) = infj∈N g

n
j (ω, x) =

infj∈N{Re〈qj(ω, x), x − pn(ω, x)〉 + f(ω, x, pn(ω, x))} is measurable. Note that
the mapping g : Ω×X → R ∪ {−∞,+∞} defined by g(ω, x) = supn∈N gn(ω, x)
for each (ω, x) ∈ Ω ×X is also measurable. Since for each (ω, x) ∈ Ω ×X, the
mapping y 7→ f(ω, x, y) is lower semicontinuous, we have

{(ω, x) ∈ Ω×X : sup
y∈F (ω,x)

inf
u∈T (ω,x)

[Re〈u, x− y〉+ f(ω, x, y)] > 0}

= {(ω, x) ∈ Ω×X : sup
n∈N

inf
j∈N

[Re〈qj(ω, x), x− pn(ω, x)〉+ f(ω, x, pn(ω, x))] > 0}

= {(ω, x) : g(ω, x) > 0} ∈ Σ⊗ B(X).

Therefore

{(ω, x) ∈ Ω×X : sup
y∈F (ω,x)

inf
u∈T (ω,x)

[Re〈u, x− y〉+ f(ω, x, y)] > 0} ∈ Σ⊗ B(X).

�

Let X in Theorem 5.5 be compact. Then we have:

Corollary 5.6. Let (Ω,Σ) be a measurable space with Σ a Suslin family
and X be a non-empty compact convex subset of a Banach space E whose dual
space E∗ is separable. Suppose that

(i) F : Ω × X → 2X is measurable such that for each ω ∈ Ω, F (ω, · ) is
continuous with non-empty compact convex values;

(ii) T : Ω × X → 2E
∗

is measurable such that for each ω ∈ Ω, T (ω, · )
is upper semicontinuous with non-empty strongly compact and convex
values;

(iii) f : Ω×X ×X → R is measurable such that (a) for each fixed (ω, y) ∈
Ω×X,x 7→ f(ω, x, y) is lower semicontinuous on X; (b) for each fixed
(ω, x) ∈ Ω×X, f(ω, x, x) = 0 and y 7→ f(ω, x, y) is lower semicontinu-
ous and concave.

Then there exist measurable maps φ : Ω → X and ρ : Ω → E∗ such that
φ(ω) ∈ F (ω, φ(ω)), ρ(ω) ∈ T (ω, φ(ω)) and

sup
y∈F (ω,φ(ω))

{Re〈ρ(ω), φ(ω)− y〉+ f(ω, φ(ω), y)} ≤ 0

for all ω ∈ Ω.

Let f = 0 in Corollary 5.6. Then we have the following:
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Corollary 5.7. Let (Ω,Σ) be a measurable space with Σ a Suslin family
and X be a non-empty compact convex subset of a Banach space E whose dual
space E∗ is separable. Suppose that

(i) F : Ω × X → 2X is measurable such that for each ω ∈ Ω, F (ω, · ) is
continuous with non-empty compact convex values;

(ii) T : Ω × X → 2E
∗

is measurable such that for each ω ∈ Ω, T (ω, · ) is
upper semicontinuous with non-empty strongly compact convex values.

Then there exist measurable maps φ : Ω → X and ρ : Ω → E∗ such that
φ(ω) ∈ F (ω, φ(ω)), ρ(ω) ∈ T (ω, φ(ω)) and

sup
y∈F (ω,φ(ω))

Re〈ρ(ω), φ(ω)− y〉 ≤ 0

for all ω ∈ Ω.

Theorem 5.4 is also a non-compact stochastic version of Theorem 4 of Shih
and Tan in [44, p. 341] (and its improvements due to Kim [31, Theorem] and to
Shih and Tan [45, Theorem 2, p. 69–70] (with M = 0)).

Theorem 5.4 generalizes Theorem of Tan [50, p. 326] in the following ways:
(1) the set X need not be compact; (2) the correspondence T is upper semicon-
tinuous instead of being continuous and (3) the function f need not be random
continuous. In the case F (x) = X and T (x) = 0 for each x ∈ X, Theorem
5.4 also improves Theorem 9.2.3 of Zhang [59, p. 304] with weaker continu-
ity and measurability conditions. We also remark that our arguments used in
proving the existence of solutions for generalized random quasi-variational in-
equalities in this section are different from those used by Tan [50] and Zhang
[59], etc.

Quasi-variational inequalities and generalized quasi-variational inequalities
have many applications in mathematical economics, game theory and optimiza-
tion and other applied sciences (see e.g. [4], [5] and [6]). For sure, random quasi-
variational inequalities and generalized random quasi-variational inequalities will
also have many applications in random mathematical economics, random game
theory and related fields.
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