A COHOMOLOGY COMPLEX FOR MANIFOLDS WITH BOUNDARY

Kung ching Chang - Jiaquan Liu

Dedicated to Professor Ky Fan

Morse theory is an important part of critical point theory. A fashionable version of Morse theory, which implies Morse inequalities as consequences, describes a Morse function on an oriented compact differentiable manifold without boundary by a cohomology complex or a chain complex $\left\{C_{k}, \partial\right\}$. In J. Milnor $[\mathrm{Mi}], C_{k}=\bigoplus \mathbb{Z}\langle x\rangle$, where x is a critical point with Morse index k, and ∂ is the boundary operator, i.e., $\partial^{2}=0$, determined by the matrix of intersection numbers of oriented right hand spheres with left hand spheres having oriented normal bundles. And in E. Witten [Wi], C_{k} is the linear space of the k-"harmonic" forms of a certain Laplacian related to the given function, and ∂ is a certain exterior differential operator. This version of Morse theory was generalized to infinite-dimensional manifolds by Floer in his study of symplectic geometry [Fl].

However, Morse inequalities for manifolds with boundary have been known to be useful in applications. The main purpose of this paper is to extend Witten's approach to that situation, i.e., we shall prove

Theorem. Suppose that f is a Morse function defined on an oriented compact manifold M with boundary. Define

$$
d_{t}^{p}=t d f \wedge \cdot+d^{p}
$$

1991 Mathematics Subject Classification. Primary 58A14.
Supported by Chinese National Science Foundation.
with domain $D\left(d_{t}^{p}\right)=H^{1} A^{p}(M)$. Define also the Laplacian

$$
\Delta_{t}^{p}=d_{t}^{* p} d_{t}^{p}+d_{t}^{p-1} d_{t}^{* p-1}
$$

with domain

$$
D\left(\Delta_{t}^{p}\right)=\left\{\omega \in H^{2} A^{p}(M):\left.* \nu \omega\right|_{\partial M}=\left.* \nu d_{t} \omega\right|_{\partial M}=0\right\}
$$

Let X_{t}^{p} be the span of the eigenvectors of Δ_{t}^{p} with eigenvalues $\lambda^{p}(t)$ satisfying $\lambda^{p}(t)<\varepsilon t$. Then $\left(X_{t}^{p}, d_{t}^{p}\right)$ is a cohomology complex for large t. (See Section 4 for the choice of ε and the exact expression for the dimension of X_{t}^{p}.)

REmARK. If we take the following as domains:

$$
\begin{aligned}
D\left(d_{t}^{p}\right) & =\left\{\omega \in H^{1} A^{p}(M):\left.\tau \omega\right|_{\partial M}=0\right\} \\
D\left(\Delta_{t}^{p}\right) & =\left\{\omega \in H^{2} A^{p}(M):\left.\tau \omega\right|_{\partial M}=\left.\tau d_{t}^{*} \omega\right|_{\partial M}=0\right\}
\end{aligned}
$$

then the conclusion of the Theorem remains valid.

1. Preliminaries

Let M^{n} be a compact manifold with boundary $\Sigma=\partial M$. The following notations are used throughout this paper: $A^{p}(M)$ for the space of all $L^{2} p$-forms on M, and d for the exterior differential operator.

For a p-form, we write in local coordinates,

$$
\omega=\sum a_{I} d x^{I}, \quad I=\left(i_{1}, \ldots, i_{p}\right)
$$

If Σ is along $x_{n}=0$, and M is on the side $x_{n}>0$, we call

$$
\tau \omega=\sum_{n \notin I}^{\prime} a_{I} d x^{I} \quad \text { and } \quad \nu \omega=\sum_{n \in I}^{\prime \prime} a_{I} d x^{I},
$$

the tangent part and the normal part of ω respectively.
Given a Riemannian metric g on M, we introduce the Hodge star operator * : $A^{p}(M) \rightarrow A^{n-p}(M)$, satisfying

$$
\begin{aligned}
* * \omega=(-1)^{p(n-p)} \omega & \forall \omega \in A^{p}(M) \\
g(\omega, \theta)=\omega \wedge(* \theta) & \forall \omega, \theta \in A^{p}(M),
\end{aligned}
$$

and

$$
* 1=\eta, \quad * \eta=1,
$$

where $\eta=\sqrt{g} d x^{1} \wedge \ldots \wedge d x^{n}$. The codifferential operator d^{*} is defined to be $(-1)^{n(p-1)+1} * d *$ on $A^{p}(M)$.

According to Stokes' theorem,

$$
\langle d \varrho, \omega\rangle=\int_{M} d \varrho \wedge(* \omega)=\left\langle\varrho, d^{*} \omega\right\rangle+\int_{\partial M} \varrho \wedge(* \omega)
$$

for all $\omega \in A^{p+1}(M)$ and $\varrho \in A^{p}(M)$. Since

$$
\int_{\partial M} \varrho \wedge(* \omega)=\int_{\partial M}(\tau \varrho) \wedge(* \nu \omega)
$$

there are many ways of defining the domains of d and d^{*} so that they are coadjoint, e.g.,
(1) $D(d)=H^{1} A^{p}(M)$, the H^{1} section of the bundle $\bigwedge^{p} T^{*} M$,
$D\left(d^{*}\right)=\left\{\omega \in H^{1} A^{p}(M):\left.* \nu \omega\right|_{\partial M}=0\right\} ;$
(2) $D(d)=\left\{\omega \in H^{1} A^{p}(M):\left.\tau \omega\right|_{\partial M}=0\right\}$,

$$
D\left(d^{*}\right)=H^{1} A^{p}(M) ;
$$

(3) $D(d)=\left\{\omega \in H^{1} A^{p}(M):\left.\tau \omega\right|_{\partial M}=0\right\}$,

$$
D\left(d^{*}\right)=\left\{\omega \in H^{1} A^{p}(M):\left.* \nu \omega\right|_{\partial M}=0\right\} .
$$

In all these cases, we have

$$
\langle d \varrho, \omega\rangle=\left\langle\varrho, d^{*} \omega\right\rangle \quad \forall \varrho \in D(d), \forall \omega \in D\left(d^{*}\right) .
$$

Under these boundary conditions, again, we have

$$
d^{2}=\left(d^{*}\right)^{2}=0 .
$$

In fact, what we really want to show is the following:
Claim. If $\omega \in D(d) \cap H^{2} A^{p}(M)$ (or $\left.D\left(d^{*}\right) \cap H^{2} A^{p}(M)\right)$, then $d \omega \in D(d)$ (or $d^{*} \omega \in D\left(d^{*}\right)$ resp.).

It suffices to prove $\left.\tau d \omega\right|_{\partial M}=0$ from $\left.\tau \omega\right|_{\partial M}=0$. Indeed, if $\omega=\tau \omega+\nu \omega=$ $\left(\sum^{\prime}+\sum^{\prime \prime}\right) a_{I} d x^{I}$, then

$$
\tau d \omega=\sum_{k=1}^{n-1} \sum_{n \notin I}^{\prime} \partial_{k} a_{I} d x^{k} \wedge d x^{I} .
$$

From $\left.a_{I}\right|_{\partial M}=0, n \notin I$, it follows that $\left.\partial_{k} a_{I}\right|_{\partial M}=0$ for $k \neq n$, i.e., $\left.\tau d \omega\right|_{\partial M}=0$.

Similarly, we now prove $\left.* \nu d^{*} \omega\right|_{\partial M}=0$ from $\left.* \nu \omega\right|_{\partial M}=0$. Noticing that $d^{*}=(-1)^{n(p-1)+1} * d *, *(\tau \omega)=\nu(* \omega)$ and $*(\nu \omega)=\tau(* \omega)$, from $\left.* \nu \omega\right|_{\partial M}=0$ it follows that $\left.\tau(* \omega)\right|_{\partial M}=0$, i.e., $* \omega \in D(d)$. By the previous conclusion, we have $\left.\tau d(* \omega)\right|_{\partial M}=0$, so

$$
\left.* \nu d^{*} \omega\right|_{\partial M}=\left.(-1)^{n(p-1)+1} * \nu *(d * \omega)\right|_{\partial M}=0 .
$$

This proves $d^{*} \omega \in D\left(d^{*}\right)$.
Now let us define the Laplacian $\Delta=d^{*} d+d d^{*}$ under various boundary conditions so that it is self-adjoint:
(1) ${ }^{\prime} D\left(\Delta^{p}\right)=\left\{\omega \in H^{2} A^{p}(M):\left.* \nu \omega\right|_{\partial M}=\left.* \nu d \omega\right|_{\partial M}=0\right\}$,
$(2)^{\prime} D\left(\Delta^{p}\right)=\left\{\omega \in H^{2} A^{p}(M):\left.\tau \omega\right|_{\partial M}=\left.\tau d^{*} \omega\right|_{\partial M}=0\right\}$,
$(3)^{\prime} D\left(\Delta^{p}\right)=\left\{\omega \in H^{2} A^{p}(M):\left.\tau \omega\right|_{\partial M}=\left.* \nu \omega\right|_{\partial M}=0\right\}$.

Case (1)' associates with (1). Indeed, for $\omega \in D(\Delta)$, both $d \omega$ and $d^{*} \omega$ make sense. From $\left.* \nu d \omega\right|_{\partial M}=0$, it follows that $d \omega \in D\left(d^{*}\right)$. And obviously $d^{*} \omega \in D(d)$. Similarly, case (2) ${ }^{\prime}$ associates with (2).

The self-adjointness of Δ follows from Green's formula:

$$
\langle\Delta \omega, \theta\rangle=\langle d \omega, d \theta\rangle+\left\langle d^{*} \omega, d^{*} \theta\right\rangle+\int_{\partial M} \tau d^{*} \omega \wedge(* \nu \theta)-\tau \theta \wedge(* \nu d \omega),
$$

for all $\omega, \theta \in H^{2} A^{p}(M)$.
In case $(3)^{\prime}, d^{*} d$ and $d d^{*}$ do not make sense. However, Δ is defined by the bilinear form

$$
[\omega, \theta]=\langle d \omega, d \theta\rangle+\left\langle d^{*} \omega, d^{*} \theta\right\rangle \quad \forall \omega, \theta \in D(d) \cap D\left(d^{*}\right)
$$

in case (3), and then the Friedrichs extension provides a self-adjoint operator.
In all these cases,

$$
\Delta \omega=0 \quad \text { iff } \quad d \omega=d^{*} \omega=0
$$

However, in case (3), there is no nontrivial harmonic form, according to the Poincaré inequality. Therefore this is not the case of interest, and we restrict ourselves to cases (1) and (2).

We have the following Hodge Theorem:

$$
\begin{aligned}
& A^{p}(M)=N\left(\Delta^{p}\right) \oplus R\left(d^{p-1}\right) \oplus R\left(\left(d^{*}\right)^{p}\right) \\
& N\left(d^{p}\right)=R\left(d^{p-1}\right) \oplus N\left(\Delta^{p}\right) \\
& N\left(\left(d^{*}\right)^{p-1}\right)=R\left(\left(d^{*}\right)^{p}\right) \oplus N\left(\Delta^{p}\right)
\end{aligned}
$$

where we use $d^{p},\left(d^{*}\right)^{p}$ and Δ^{p} to indicate the associated operators.
According to various boundary conditions,

$$
N\left(\Delta^{p}\right)=N\left(d^{p}\right) / R\left(d^{p-1}\right) \cong \begin{cases}H_{\mathrm{DR}}^{p}(M) & \text { in case }(1) \\ H^{p}(M, \partial M) & \text { in case }(2)\end{cases}
$$

(cf. [GM], [Du], [DS], [DR]).

2. Witten complex

To a given 1-form λ, one attaches an exterior differential operator

$$
\begin{equation*}
d_{\lambda} \omega=\lambda \wedge \omega+d \omega \tag{2.1}
\end{equation*}
$$

with $D\left(d_{\lambda}\right)=D(d)$. We have $d_{\lambda}^{2}=0$ if λ is exact.
Similarly, we define $d_{\lambda}^{*}=(-1)^{n(p-1)} * d_{\lambda} *$, thus

$$
\begin{equation*}
d_{\lambda}^{*} \omega=i_{\lambda} \omega+d^{*} \omega \tag{2.2}
\end{equation*}
$$

where i is the interior product, with $D\left(d_{\lambda}^{*}\right)=D\left(d^{*}\right)$. We have $d_{\lambda}^{* 2}=0$ if λ is exact. Define

$$
\begin{equation*}
\Delta_{\lambda}=d_{\lambda}^{*} d_{\lambda}+d_{\lambda} d_{\lambda}^{*} \tag{2.3}
\end{equation*}
$$

where $D\left(\Delta_{\lambda}\right)=D(\Delta)$. We have the expression

$$
\begin{equation*}
\Delta_{t \lambda}=\Delta+t^{2} g(\lambda, \lambda)+t P_{\lambda} \tag{2.4}
\end{equation*}
$$

where

$$
P_{\lambda} \omega=i_{\lambda} d \omega+d\left(i_{\lambda} \omega\right)+d^{*}(\lambda \wedge \omega)+\lambda \wedge d^{*} \omega .
$$

It is known that P_{λ} commutes with multiplication, i.e., for all $\varphi \in C^{\infty}(M)$,

$$
\begin{equation*}
P_{\lambda}(\varphi \omega)=\varphi\left(P_{\lambda} \omega\right) \tag{2.5}
\end{equation*}
$$

Now, for a function $f \in C^{2}\left(M, \mathbb{R}^{1}\right)$, we use the shorthand

$$
d_{t} \omega=d_{t d f} \omega
$$

and similarly for d_{t}^{*} and Δ_{t}.
In a conformal metric,

$$
P_{d f} \omega=\sum_{k, l} \frac{\partial^{2} f}{\partial x_{l} \partial x_{k}}\left[d x^{l} \wedge i_{d x^{k}}\right] \omega .
$$

Now, for the pair of differential operators d_{t}, d_{t}^{*}, we call the complex

$$
E=\left\{A^{p}(M): p=0,1, \ldots, n\right\}, \quad d_{t}=\left\{d_{t}^{p}: p=0,1, \ldots, n-1\right\}
$$

with

$$
0 \rightarrow A^{0}(M) \rightarrow \ldots \rightarrow A^{p}(M) \xrightarrow{d_{t}^{p}} A^{p+1}(M) \rightarrow \ldots \rightarrow 0
$$

the Witten complex. With the given domains as boundary conditions, again we have the Hodge decomposition:

$$
\begin{aligned}
& A^{p}(M)=N\left(\Delta_{t}^{p}\right) \oplus R\left(d_{t}^{p-1}\right) \oplus R\left(\left(d_{t}^{*}\right)^{p}\right) \\
& N\left(d_{t}^{p}\right)=R\left(d_{t}^{p-1}\right) \oplus N\left(\Delta_{t}^{p}\right) \\
& N\left(\left(d_{t}^{*}\right)^{p-1}\right)=R\left(\left(d_{t}^{*}\right)^{p}\right) \oplus N\left(\Delta_{t}^{p}\right)
\end{aligned}
$$

and

$$
\begin{equation*}
N\left(\Delta_{t}^{p}\right)=N\left(d_{t}^{p}\right) / R\left(d_{t}^{p-1}\right) \cong N\left(\Delta^{p}\right) \tag{2.6}
\end{equation*}
$$

Indeed, only the last relation is to be verified. By looking at the complex

$$
\begin{aligned}
& 0 \rightarrow A^{0}(M) \rightarrow \ldots \rightarrow A^{p}(M) \xrightarrow{d^{p}} A^{p+1}(M) \rightarrow \ldots \rightarrow 0 \\
& e^{-t f} \downarrow \\
& 0 \rightarrow A^{0}(M) \rightarrow \ldots \rightarrow A^{p}(M) \xrightarrow{\text { 立f }} \downarrow A^{p+1}(M) \rightarrow \ldots \rightarrow 0
\end{aligned}
$$

one sees that $R\left(d_{t}^{p-1}\right)$ and $R\left(\left(d_{t}^{*}\right)^{p}\right)$ are isomorphic to $R\left(d^{p-1}\right)$ and $R\left(\left(d^{*}\right)^{p}\right)$ resp. This proves $N\left(\Delta_{t}^{p}\right) \cong N\left(\Delta^{p}\right)$ for all t.

In the following, we assume that f satisfies the general boundary conditions, i.e., f has no critical point on ∂M, and both f and $\widehat{f}=\left.f\right|_{\partial M}$ are Morse functions.

Let

$$
\Sigma_{\mp}=\{x \in \Sigma: \pm\langle d f(x), n(x)\rangle \leq 0\},
$$

where $n(x)$ is the unit normal vector on Σ, and let

$$
\Sigma_{*}= \begin{cases}\Sigma_{-} & \text {in case (1) } \\ \Sigma_{+} & \text {in case (2) }\end{cases}
$$

In a local chart about x, we take $x^{\prime}=\left(x_{1}, \ldots, x_{n-1}\right)$ along $T_{x}(\Sigma)$, and the y axis directed opposite to $n(x)$.

Let $K(f)=\left\{x_{1}^{*}, \ldots, x_{s}^{*}\right\}$ and $K_{*}(\widehat{f})=\left\{y_{1}^{*}, \ldots, y_{w}^{*}\right\}$ be the critical sets of f and $\left.\widehat{f}\right|_{\Sigma_{*}}$ respectively. We have the Morse lemmas

$$
\begin{equation*}
f(x)=f\left(x^{*}\right)+\frac{1}{2} \sum_{k=1}^{n} \mu_{k} x_{k}^{2}, \quad \mu_{k}= \pm 1 \tag{2.7}
\end{equation*}
$$

in a local chart about x^{*}, and

$$
\begin{equation*}
f(x)=\widehat{f}\left(y^{*}\right)+\frac{1}{2} \sum_{k=1}^{n-1} \mu_{k} x_{k}^{2} \pm y, \quad \mu_{k}= \pm 1 \tag{2.8}
\end{equation*}
$$

in a local chart about $y^{*} \in \Sigma_{\mp}$.
In a local chart about $x^{*}\left(\right.$ and $\left.y^{*}\right)$ under the flat metric, the Laplacian Δ_{t}^{p} is expressed as follows:

$$
\begin{equation*}
\sum_{k=1}^{n} \mathcal{H}_{k, t} \quad\left(\text { and } \sum_{k=1}^{n-1} \mathcal{H}_{k, t}+\left(-\frac{\partial^{2}}{\partial y^{2}}+t^{2}\right) \text { resp. }\right) \tag{2.9}
\end{equation*}
$$

where

$$
\mathcal{H}_{k, t}=-\frac{\partial^{2}}{\partial x_{k}^{2}}+t^{2} x_{k}^{2}+t \mu_{k}\left[d x^{k} \wedge i_{d x^{k}}\right] .
$$

For all $x^{*} \in K(f)$, we define a self-adjoint operator $\Delta_{t, x^{*}}^{p}$ on $A^{p}\left(\mathbb{R}^{n}\right)$ with the same expression as in (2.9). Thus, $N\left(\Delta_{t, x^{*}}^{p}\right)$ is spanned by all p-forms of the form

$$
\varphi_{I}^{t}=t^{n / 4} \exp \left(-\frac{t}{2} \sum_{k=1}^{n} x_{k}^{2}\right) d x^{I}
$$

where I is a p-multiindex such that $\mu_{k}<0<\mu_{k^{\prime}}$ for $k \in I$ and $k^{\prime} \notin I$.
Similarly, for $y^{*} \in K_{*}(\widehat{f}), \Delta_{t, y^{*}}^{p}$ is defined on $A^{p}\left(\mathbb{R}_{+}^{n}\right)$ with the same expression as in (2.9) and with boundary conditions either $*(\nu \omega)=*\left(\nu d_{t} \omega\right)=0$ on $y=0$, or $\tau \omega=\tau d_{t}^{*} \omega=0$ on $y=0$.

Again $\Delta_{t, y^{*}}^{p}$ so defined is self-adjoint.
We are going to find the kernel $N\left(\Delta_{t, y^{*}}^{p}\right)$.

Lemma 2.1. $N\left(\Delta_{t, y^{*}}^{p}\right)$ is spanned by all p-forms of the form

$$
\varphi_{I}^{t}=t^{(n-1) / 4} \exp \left\{-t\left(y+\frac{1}{2} \sum_{k=1}^{n-1} x_{k}^{2}\right)\right\} d x^{I}
$$

where I is a p-multiindex in $\{1, \ldots, n\}$ such that $\mu_{k}<0<\mu_{k^{\prime}}$ for $k \in I$ and $k^{\prime} \notin I$ and $n \notin I$ in case (1), while $n \in I$ in case (2).

Proof. We only discuss the case where the boundary condition for $\Delta_{t, y^{*}}^{p}$ reads

$$
* \nu \omega=*\left(\nu d_{t} \omega\right)=0 \quad \text { on } y=0
$$

where $d_{t}=d_{t d f}$ and f is as in (2.8). Set

$$
\begin{aligned}
& E_{1}=\left\{\omega=e^{-t y} \omega_{1}: \omega_{1} \in H^{2} A^{p}\left(\mathbb{R}^{n-1}\right)\right\}, \\
& E_{2}=\left\{\omega=\sum_{n \notin J} a_{J}\left(x^{\prime}, y\right) d x^{J}: a_{J} \in H^{2}\left(\mathbb{R}_{+}^{n}\right), \int_{0}^{\infty} a_{J}\left(x^{\prime}, y\right) e^{-t y} d y=0\right. \\
& \left.\quad \text { and } \partial_{y} a_{J}\left(x^{\prime}, 0\right)+t a_{J}\left(x^{\prime}, 0\right)=0 ; J \text { is a } p \text {-multiindex }\right\}, \\
& E_{3}=\left\{\omega \in H^{2} A^{p}\left(\mathbb{R}_{+}^{n}\right): \omega=\omega_{1} \wedge d y, \nu \omega_{1}=0 \text { and }\left.\omega_{1}\right|_{y=0}=0\right\} .
\end{aligned}
$$

We shall prove

$$
\begin{equation*}
D\left(\Delta_{t, y^{*}}^{p}\right)=E_{1} \oplus E_{2} \oplus E_{3} . \tag{2.10}
\end{equation*}
$$

Firstly, all $E_{i}, i=1,2,3$, are in $D\left(\Delta_{t, y^{*}}^{p}\right)$, i.e., the boundary condition is satisfied.

Indeed, for $\omega \in E_{1}, \nu \omega=0$ so $\left.*(\nu \omega)\right|_{y=0}=0$. Further, on $y=0$,

$$
\nu d_{t} \omega=-t e^{-t y} d y \wedge \omega_{1}+t e^{t y} d y \wedge \omega_{1}=0 .
$$

For $\omega \in E_{2}$, again $\nu \omega=0$. Moreover,

$$
\nu d_{t} \omega=\sum\left(\partial_{y} a_{J}+t a_{J}\right) d y \wedge d x^{J}
$$

so $\left.*\left(\nu d_{t} \omega\right)\right|_{y=0}=0$.
For $\omega \in E_{3},\left.*(\nu \omega)\right|_{y=0}=\left.* \omega_{1}\right|_{y=0}=0$. From

$$
\nu d_{t} \omega=\left(t d f \wedge \omega_{1}+d \omega_{1}\right) \wedge d y
$$

and $\left.\omega_{1}\right|_{y=0}=0$ it follows that $\left.*\left(\nu d_{t} \omega\right)\right|_{y=0}=0$.
Secondly, E_{1}, E_{2} and E_{3} are mutually orthogonal with respect to the inner product of $A^{p}\left(\mathbb{R}_{+}^{n}\right)$.

Thirdly, E_{1}, E_{2} and E_{3} span $D\left(\Delta_{t, y^{*}}^{p}\right)$.
Similarly, for the boundary condition

$$
\tau \omega=\tau d_{t}^{*} \omega=0 \quad \text { on } y=0
$$

we set

$$
\begin{aligned}
& E_{1}=\left\{\omega=e^{-t y} \omega_{1} \wedge d y: \omega_{1} \in H^{2} A^{p}\left(\mathbb{R}^{n-1}\right)\right\} \\
& E_{2}=\left\{\omega=\sum_{n \in J} a_{J}\left(x^{\prime}, y\right) d x^{J}: a_{J} \in H^{2}\left(\mathbb{R}_{+}^{n}\right), \int_{0}^{\infty} a_{J}\left(x^{\prime}, y\right) e^{-t y} d y=0\right. \\
&\text { and } \left.\partial_{y} a_{J}\left(x^{\prime}, 0\right)+t a_{J}\left(x^{\prime}, 0\right)=0 ; J \text { is a } p \text {-multiindex }\right\}
\end{aligned}
$$

and

$$
E_{3}=\left\{\omega \in H^{2} A^{p}\left(\mathbb{R}_{+}^{n}\right): \nu \omega=0,\left.* \omega\right|_{y=0}=0\right\}
$$

The verification of (2.10) is the same.
Now we show that for $\omega=a_{I} d x^{I}$,

$$
\begin{equation*}
\left\langle\Delta_{t, y^{*}}^{p} \omega, \omega\right\rangle \geq t^{2}\|\omega\|^{2}+t \sum_{k=1}^{n-1}\left(1+\varepsilon_{k}^{I}\right)\|\omega\|^{2} \tag{2.11}
\end{equation*}
$$

if $\omega \in E_{2} \oplus E_{3}$, and

$$
\begin{equation*}
\left\langle\Delta_{t, y^{*}}^{p} \omega, \omega\right\rangle \geq t \sum_{k=1}^{n-1}\left(1+\varepsilon_{k}^{I}\right)\|\omega\|^{2} \tag{2.12}
\end{equation*}
$$

if $\omega \in E_{1}$, where

$$
\varepsilon_{k}^{I}= \begin{cases}1 & \text { if } k \in I \\ -1 & \text { if } k \notin I\end{cases}
$$

That (2.11) holds for $\omega \in E_{3}$ is verified by using the Hermite operators in separate variables and the boundary condition. For $\omega \in E_{2}$, since

$$
\begin{aligned}
\int_{\mathbb{R}^{n-1}} \int_{0}^{\infty} & a_{J}\left(x^{\prime}, y\right)\left(-\partial_{y}^{2}+t^{2}\right) a_{J}\left(x^{\prime}, y\right) d x^{\prime} \wedge d y \\
& =\int_{\mathbb{R}_{+}^{n}}\left(\left(\partial_{y} a_{J}\right)^{2}+t^{2} a_{J}^{2}\right) d x^{\prime} \wedge d y+\int_{\mathbb{R}^{n-1}} a_{J}\left(x^{\prime}, 0\right) \partial_{y} a_{J}\left(x^{\prime}, 0\right) d x^{\prime}
\end{aligned}
$$

and

$$
\int_{0}^{\infty} e^{-t y} \partial_{y} a_{J}\left(x^{\prime}, y\right) d y=-a_{J}\left(x^{\prime}, 0\right)
$$

we have

$$
\begin{aligned}
\left|\int_{0}^{\infty} e^{-t y} \partial_{y} a_{J}\left(x^{\prime}, y\right) d y\right|^{2} & \leq\left(\int_{0}^{\infty}\left|\partial_{y} a_{J}\left(x^{\prime}, y\right)\right|^{2} d y\right)\left(\int_{0}^{\infty} e^{-2 t y} d y\right) \\
& =(2 t)^{-1} \int_{0}^{\infty}\left|\partial_{y} a\left(x^{\prime}, y\right)\right|^{2} d y
\end{aligned}
$$

Therefore

$$
\begin{aligned}
\int_{\mathbb{R}^{n-1}} a_{J}\left(x^{\prime}, 0\right) \partial_{y} a_{J}\left(x^{\prime}, 0\right) d x^{\prime} & =-t \int_{\mathbb{R}^{n-1}}\left|a_{J}\left(x^{\prime}, 0\right)\right|^{2} d x^{\prime} \\
& \geq-\frac{1}{2} \int_{\mathbb{R}_{+}^{n}}\left|\partial_{y} a\right|^{2} d x^{\prime} \wedge d y
\end{aligned}
$$

This proves (2.11).
For $\omega \in E_{1}$, since $e^{-t y}$ is a solution of the equation

$$
\left(-\partial_{y}^{2}+t^{2}\right) v=0
$$

(2.12) follows directly.

Combining (2.11) and (2.12), we see that $N\left(\Delta_{t, y^{*}}^{p}\right)$ is spanned by the forms φ_{I}^{t}.

Let us introduce a Hilbert space $H=A^{p}\left(\mathbb{R}^{n}\right)^{s} \oplus A^{p}\left(\mathbb{R}_{+}^{n}\right)^{w}$, where X^{s} denotes the s-fold product of a Banach space X. Moreover, let

$$
A_{t}^{p}=\left(\Delta_{t, x_{1}^{*}}^{p}, \ldots, \Delta_{t, x_{s}^{*}}^{p}, \Delta_{t, y_{1}^{*}}^{p}, \ldots, \Delta_{t, y_{w}^{*}}^{p}\right)
$$

be a self-adjoint operator on H, where $\Delta_{t, x^{*}}^{p}$ (and $\Delta_{t, y^{*}}^{p}$) is defined as above. We obtain

Theorem 1.

$$
\operatorname{dim} N\left(A_{t}^{p}\right)=m_{p}+ \begin{cases}n_{p} & \text { in case }(1) \\ n_{p-1} & \text { in case }(2)\end{cases}
$$

where

$$
\begin{aligned}
m_{p} & =\#\left\{x^{*} \in K(f): \operatorname{ind}\left(f, x^{*}\right)=p\right\}, \\
n_{p} & =\#\left\{y^{*} \in K_{*}(\widehat{f}): \operatorname{ind}\left(\widehat{f}, y^{*}\right)=p\right\} .
\end{aligned}
$$

Remark 2.1. The operator A_{t}^{p} may have continuous spectrum.

3. The relationship between eigenvalues of Δ_{t}^{p} and A_{t}^{p}

We arrange the eigenvalues of Δ_{t}^{p} and A_{t}^{p} as follows:

$$
0 \leq \lambda_{1}^{p}(t) \leq \lambda_{2}^{p}(t) \leq \ldots, \quad 0 \leq t e_{1}^{p} \leq t e_{2}^{p} \leq \ldots,
$$

but ignore the continuous spectrum of A_{t}^{p}. We shall prove
Theorem 2.

$$
\lim _{t \rightarrow \infty} \frac{\lambda_{k}^{p}(t)}{t}=e_{k}^{p}
$$

The proof is divided into two parts:
(i) $\lim \sup _{t \rightarrow \infty} t^{-1} \lambda_{k}^{p}(t) \leq e_{k}^{p}$,
(ii) $\liminf _{t \rightarrow \infty} t^{-1} \lambda_{k}^{p}(t) \geq e_{k}^{p}$.

The proof of (i) is quite similar to that for manifolds without boundary. Write down the eigenforms of $\Delta_{t, x^{*}}^{p}$ and $\Delta_{t, y^{*}}^{p}$:

$$
\begin{aligned}
\varphi_{N, I}^{t}=\prod_{k=1}^{n} \sqrt{t} H_{N_{k}}\left(\sqrt{t} x_{k}\right) d x^{I} & \text { for } x^{*} \in K(f) \\
\varphi_{N^{\prime}, I}^{t}=e^{-t y} \prod_{k=1}^{n-1} \sqrt{t} H_{N_{k}}\left(\sqrt{t} x_{k}\right) d x^{I} & \text { for } y^{*} \in K_{-}(\widehat{f})
\end{aligned}
$$

where $H_{j}(\dot{x})$ is the j th Hermite function, $N=\left(N_{1}, \ldots, N_{n}\right), N^{\prime}=\left(N_{1}, \ldots\right.$, $\left.N_{n-1}\right)$ and I is a multiindex. Let $\varrho \in C^{\infty}\left(\mathbb{R}^{n}\right)$, with $0 \leq \varrho \leq 1$, satisfy $\varrho(y)=1$ if $|y| \leq 1 / 2$ and $\varrho(y)=0$ if $|y| \geq 1$.

We pull back these functions, and glue them up to define a form on M :

$$
\psi_{\alpha}^{t}=\left(\sum_{j^{\prime}=1}^{s}+\sum_{j^{\prime \prime}=1}^{w}\right) \varrho\left(t^{2 / 5} \eta_{j}(x)\right)\left(\varphi_{\alpha}^{t}\right)^{j} \circ \eta_{j}(x)
$$

where φ_{α}^{t} is an eigenform of A_{t}^{p}, and $\left(\varphi_{\alpha}^{t}\right)^{j}$ is its j th component, $\alpha=\left(N^{1}, \ldots, N^{s}\right.$; $N^{\prime 1}, \ldots, N^{\prime w}$), and η_{j} is the coordinate function in a neighborhood of $x_{j^{\prime}}^{*}$ (or $\left.y_{j^{\prime \prime}}^{*}\right), j=j^{\prime}$ or $j^{\prime \prime}$.

As in [An], [Ch], we have

$$
\begin{gathered}
\left|\left\langle\psi_{\alpha}^{t}, \psi_{\beta}^{t}\right\rangle-\delta_{\alpha \beta}\right| \leq C_{\alpha \beta} \exp \left(-\frac{1}{2} t^{1 / 5}\right) \\
\left|\left\langle\psi_{\alpha}^{t}, \Delta_{t}^{p} \psi_{\beta}^{t}\right\rangle-\frac{1}{2} t\left(e_{\alpha}^{p}+e_{\beta}^{p}\right)\left\langle\psi_{\alpha}^{t}, \psi_{\beta}^{t}\right\rangle\right| \leq C_{\alpha \beta} \exp \left(-\frac{1}{2} t^{1 / 5}\right)
\end{gathered}
$$

as $t \rightarrow \infty$, where e_{α}^{p} and e_{β}^{p} are the eigenvalues of $t^{-1} A_{t}^{p}$ associated with φ_{α}^{t} and φ_{β}^{t} resp.

Applying the Rayleigh-Ritz Principle, it follows that

$$
\begin{equation*}
\limsup _{t \rightarrow \infty} t^{-1} \lambda_{k}^{p}(t) \leq e_{k}^{p} \tag{3.1}
\end{equation*}
$$

Next we turn to the proof of the reverse inequality (ii).
Let $U_{j^{\prime}}\left(\right.$ or $\left.U_{j^{\prime \prime}}\right)$ denote a neighborhood of $x_{j^{\prime}}^{*}$ (or $y_{j^{\prime \prime}}^{*}$) on which the Morse lemma holds, and suppose a metric g is constructed in such a manner that $\left.g\right|_{U_{j}}$ is conformal.

Set (for t large)

$$
J_{j}^{t}(x)= \begin{cases}0, & x \notin U_{j} \\ \varrho\left(t^{2 / 5} \eta_{j}(x)\right), & x \in U_{j}\end{cases}
$$

where $j=j^{\prime}$ or $j^{\prime \prime}$, and set

$$
J_{0}^{t}=\left(1-\sum_{j}\left(J_{j}^{t}\right)^{2}\right)^{1 / 2}
$$

By direct computation, one has

$$
\begin{equation*}
\Delta_{t}^{p}=J_{0}^{t} \Delta_{t}^{p} J_{0}^{t}+\sum_{j} J_{j}^{t} \Delta_{j}^{t} J_{j}^{t}-\sum_{j}\left(\nabla J_{j}^{t}\right)^{2}, \tag{3.2}
\end{equation*}
$$

where we use j to denote j^{\prime} and $j^{\prime \prime}$.
We have

$$
\begin{equation*}
\left(\nabla J_{j}^{t}\right)^{2}=O\left(t^{4 / 5}\right), \tag{3.3}
\end{equation*}
$$

and for $\omega \in D\left(\Delta_{t}^{p}\right)$,

$$
\begin{align*}
\sum_{j}\left\langle J_{j}^{t} \Delta_{t}^{p} J_{j}^{t} \omega, \omega\right\rangle & =\left\langle A_{t}^{p} \omega_{t}, \omega_{t}\right\rangle \tag{3.4}\\
& \geq t e_{k+1}^{p} \sum_{j}\left\|J_{j}^{t} \omega\right\|^{2}+\left\langle F_{k}(t) \omega, \omega\right\rangle,
\end{align*}
$$

where $\omega_{t}=\varrho\left(t^{2 / 5} x\right) \cdot \omega \circ \eta_{j}^{-1}(x) \in H$, and

$$
\begin{equation*}
F_{k}(t)=\sum_{j} J_{j}^{t} \widetilde{P}_{k}\left(\Delta_{t}^{p}-t e_{k+1}^{p}\right) \widetilde{P}_{k} J_{j}^{t} \tag{3.5}
\end{equation*}
$$

\widetilde{P}_{k} being the pull back of P_{k}, which is the orthogonal projection onto the subspace spanned by the first k eigenvectors of A_{t}^{p}.

It remains to estimate $\left\langle J_{0}^{t} \Delta_{t}^{p} J_{0}^{t} \omega, \omega\right\rangle$. A new difficulty is the lack of positive definiteness of Δ^{p} on $D\left(\Delta_{t}^{p}\right)$. Indeed,

$$
\left\langle\Delta^{p} \omega, \omega\right\rangle=\|d \omega\|^{2}+\left\|d^{*} \omega\right\|^{2}+\int_{\partial M}\left(\tau d^{*} \omega \wedge(* \nu \omega)-\tau \omega \wedge(* \nu d \omega)\right) .
$$

For instance, if $\left.* \nu \omega\right|_{\partial M}=\left.*\left(\nu d_{t} \omega\right)\right|_{\partial M}=0$, one has

$$
\left\langle\Delta^{p} \omega, \omega\right\rangle=\|d \omega\|^{2}+\left\|d^{*} \omega\right\|^{2}+t \int_{\partial M} \tau \omega \wedge(* \nu(d f \wedge \omega)) ;
$$

and if $\left.\tau \omega\right|_{\partial M}=\left.\tau d_{t}^{*} \omega\right|_{\partial M}=0$, then

$$
\left\langle\Delta^{p} \omega, \omega\right\rangle=\|d \omega\|^{2}+\left\|d^{*} \omega\right\|^{2}-t \int_{\partial M} \tau i_{d f} \omega \wedge(* \nu \omega) .
$$

Since

$$
\tau \omega \wedge(* \nu(d f \wedge \omega))=g(\tau \omega, \tau \omega) \partial_{n} f \cdot \eta
$$

and

$$
\tau i_{d f} \omega \wedge(* \nu \omega)=g(\nu \omega, \nu \omega) \partial_{n} f \cdot \eta
$$

where

$$
\partial_{n} f(x)=\langle d f(x), n(x)\rangle \quad \forall x \in \partial M
$$

and η is the volume form on $\partial M, \Delta^{p}$ might be positive definite on $D\left(\Delta_{t}^{p}\right)$ if $\pm \partial_{n} f \geq 0$ on ∂M in case (1) and (2) resp. However, generally speaking, this is not true.

We only investigate case (1).

To overcome this difficulty, let us define a 1-form λ as follows. We choose $U_{j^{\prime}}$ and $U_{j^{\prime \prime}}$ as above; let $U^{\prime}=\bigcup_{j^{\prime}} U_{j^{\prime}}, U^{\prime \prime}=\bigcup_{j^{\prime \prime}} U_{j^{\prime \prime}}$, and let W be a neighborhood of $\Sigma_{-} \backslash U^{\prime \prime}$ with $W \cap U^{\prime}=\emptyset$ for which there exists $\varepsilon_{0}>0$ such that

$$
\left.g(\tau d f, \tau d f)\right|_{x} \geq \varepsilon_{0} \quad \forall x \in W
$$

The existence of ε_{0} is due to the fact that $\tau d f \neq 0$ on $\Sigma_{-} \backslash U^{\prime \prime}$.
One may choose an open set V such that $V \cap \Sigma_{-}=\emptyset$ and $\left\{U^{\prime \prime}, W, V\right\}$ is a covering of M.

Let χ_{1}, χ_{2} and χ_{3} be a C^{∞}-partition of unity on M associated with $\left\{U^{\prime \prime}, W, V\right\}$, i.e., supp $\chi_{1} \subset U^{\prime \prime}, \operatorname{supp} \chi_{2} \subset W$ and $\operatorname{supp} \chi_{3} \subset V$. Set

$$
[\nu d f]_{-}= \begin{cases}\nu d f & \text { if } \partial_{n} f<0 \\ 0 & \text { if } \partial_{n} f \geq 0\end{cases}
$$

and

$$
\lambda=\chi_{1}(x) \sqrt{1-y^{2}} d y+\chi_{2}(x)[\nu d f]_{-}
$$

where $\left(x^{\prime}, y\right)=\eta_{j^{\prime \prime}}(x)$ for all $x \in U_{j^{\prime \prime}}$ and all $j^{\prime \prime}$.
Lemma 3.1.

$$
\begin{align*}
\langle d f-\lambda, n(x)\rangle \geq 0 & \forall x \in \Sigma, \tag{3.6}\\
g(d f, d f)-\left.g(\lambda, \lambda)\right|_{x} \geq \varepsilon_{0}>0 & \forall x \in M \backslash\left(U^{\prime} \cup U^{\prime \prime}\right) . \tag{3.7}
\end{align*}
$$

Proof. For $x \in \operatorname{supp} \chi_{1} \cap \Sigma_{-}$,

$$
\partial_{n} f=-[\nu d f]_{-}=-1
$$

and $\chi_{1}+\chi_{2}=1$, therefore $\langle d f-\lambda, n\rangle=-1+\chi_{1}+\chi_{2}=0$.
For $x \in \Sigma_{-} \backslash \operatorname{supp} \chi_{1}$,

$$
\partial_{n} f=-[\nu d f]_{-}=-1
$$

therefore $\langle d f-\lambda, n\rangle=-1+1=0$.
For $x \in \Sigma \backslash \Sigma_{-}$,

$$
\partial_{n} f \geq 0, \quad[\nu d f]_{-}=0
$$

therefore $\langle d f-\lambda, n\rangle=\partial_{n} f \geq 0$. Thus (3.6) is proved.
One may choose U^{\prime} suitably such that

$$
\left.g(d f, d f)\right|_{x} \geq \varepsilon_{0} \quad \forall x \in M \backslash U^{\prime}
$$

This is due to the fact that $K(f) \subset U^{\prime}$. Since

$$
\lambda=0 \quad \forall x \in V \backslash\left(W \cup U^{\prime \prime} \cup U^{\prime}\right)
$$

for such x we have

$$
g(d f, d f)-\left.g(\lambda, \lambda)\right|_{x} \geq \varepsilon_{0}
$$

Finally, for $x \in W \backslash U^{\prime \prime}$,

$$
\begin{aligned}
g(d f, d f)-g(\lambda, \lambda) & =g(\tau d f, \tau d f)+g(\nu d f, \nu d f)-\chi_{2}^{2} g\left([\nu d f]_{-},[\nu d f]_{-}\right) \\
& \geq g(\tau d f, \tau d f) \geq \varepsilon_{0}
\end{aligned}
$$

and (3.7) is proved.
Lemma 3.2. Suppose $e_{k}^{p}<r<e_{k+1}^{p}$. Then for large t, there is a finite rank operator $F_{k}(t): A^{p}(M) \rightarrow A^{p}(M)$ with $\operatorname{dim} R\left(F_{k}(t)\right) \leq k$ and

$$
\Delta_{t}^{p} \geq r t . \operatorname{Id}+F_{k}(t)
$$

Proof. Obviously, the operator $F_{k}(t)$ defined in (3.5) is of finite rank, and $\operatorname{dim} R\left(F_{k}(t)\right) \leq k$. As we have seen in (3.2)-(3.4), it suffices to estimate

$$
\left\langle J_{0}^{t} \Delta_{t}^{p} J_{0}^{t} \omega, \omega\right\rangle \geq t e_{k+1}^{p}\left\|J_{0}^{t} \omega\right\|^{2}
$$

for large t.
Indeed, from (2.4),

$$
\begin{aligned}
\left\langle J_{0}^{t} \Delta_{t}^{p} J_{0}^{t} \omega, \omega\right\rangle= & \left\langle\Delta_{t}^{p} J_{0}^{t} \omega, J_{0}^{t} \omega\right\rangle \\
= & \left\langle\Delta^{p} J_{0}^{t} \omega, J_{0}^{t} \omega\right\rangle+t^{2}\left\langle g(d f, d f) J_{0}^{t} \omega, J_{0}^{t} \omega\right\rangle+t\left\langle P_{d f} J_{0}^{t} \omega, J_{0}^{t} \omega\right\rangle \\
= & \left\langle\Delta_{t \lambda}^{p} J_{0}^{t} \omega, J_{0}^{t} \omega\right\rangle+t^{2}\left\langle(g(d f, d f)-g(\lambda, \lambda)) J_{0}^{t} \omega, J_{0}^{t} \omega\right\rangle \\
& +t\left\langle P_{d f-\lambda} J_{0}^{t} \omega, J_{0}^{t} \omega\right\rangle \\
= & T_{1}+T_{2}+T_{3} .
\end{aligned}
$$

Now, for all $\omega \in D\left(\Delta_{t}^{p}\right)$,

$$
\begin{aligned}
T_{1}= & \left\|d_{t \lambda} \omega\right\|^{2}+\left\|d_{t \lambda}^{*} \omega\right\|^{2}+\int_{\partial M}\left(-\tau \omega \wedge\left(* \nu d_{t \lambda} \omega\right)\right) \\
& +\tau d_{t \lambda}^{*} \omega \wedge(* \nu \omega) \\
= & \left\|d_{t \lambda} \omega\right\|^{2}+\left\|d_{t \lambda}^{*} \omega\right\|^{2}+t \int_{\partial M} \tau \omega \wedge(*(d f-\lambda) \wedge \omega) \geq 0
\end{aligned}
$$

by Lemma 3.1, if $\left.*(\nu \omega)\right|_{\partial M}=\left.*\left(\nu d_{t} \omega\right)\right|_{\partial M}=0$. Similarly one reasons for the other boundary condition by using

$$
[\nu d f]_{+}= \begin{cases}0 & \text { if } \partial_{n} f \leq 0 \\ \nu d f & \text { if } \partial_{n} f>0\end{cases}
$$

in place of $[\nu d f]_{-}$.
Obviously, since P_{λ} commutes with multiplication (cf. (2.5)), it is a bounded operator on $A^{p}(M)$, and we have a constant $C>0$ such that

$$
T_{3} \geq-C t\left\|J_{0}^{t} \omega\right\|^{2}
$$

We turn to estimating T_{2}. By Lemma 3.1, for $x \in M \backslash\left(U^{\prime} \cup U^{\prime \prime}\right)$, we have

$$
g(d f, d f)-g(\lambda, \lambda) \geq \varepsilon_{0}
$$

For $x \in U^{\prime}$, we have $\lambda=0$, and

$$
g(d f, d f)=|x|^{2} \geq \frac{1}{4} t^{-4 / 5}
$$

For $x \in U^{\prime \prime}$, we have $\lambda=\left(1-y^{2}\right) d y$, and

$$
g(d f, d f)-g(\lambda, \lambda)=\left|x^{\prime}\right|^{2}+y^{2} \geq \frac{1}{4} t^{-4 / 5} .
$$

Therefore

$$
T_{2} \geq t^{2} \min \left(\varepsilon_{0}, \frac{1}{4} t^{-4 / 5}\right)\left\|J_{0}^{t} \omega\right\|^{2} \geq \frac{1}{4} t^{6 / 5}\left\|J_{0}^{t} \omega\right\|^{2} \quad \text { for } t \text { large. }
$$

This proves the lemma.
The rest of the proof of Theorem 2 is the same as the proof for manifolds without boundary; we refer the reader to [An], [Ch].

4. Cohomology complex

We introduce a new cohomology complex
$X^{p}=X_{t}^{p}=\left\{\omega \in A^{p}(M): \omega\right.$ an eigenvector of Δ_{t}^{p} with eigenvalue $\lambda_{m}^{p}(t)$

$$
\text { satisfying } \left.\lambda_{m}^{p}(t) \leq \varepsilon t\right\}
$$

where

$$
0<\varepsilon<\min \left\{e_{M_{p+1}}^{p}: p=0,1, \ldots, n\right\}
$$

and

$$
M_{p}=\operatorname{dim} N\left(A_{t}^{p}\right)=m_{p}+ \begin{cases}n_{p} & \text { in case (1) } \\ n_{p-1} & \text { in case (2) }\end{cases}
$$

(cf. Theorem 1). Thus, by Theorem 2,

$$
\operatorname{dim} X^{p}=m_{p}+ \begin{cases}n_{p} & \text { in case }(1) \\ n_{p-1} & \text { in case }(2)\end{cases}
$$

We are going to show that

$$
\begin{equation*}
0 \rightarrow X^{0} \xrightarrow{d_{t}^{0}} X^{1} \rightarrow \ldots \xrightarrow{d_{t}^{n-1}} X^{n} \rightarrow 0 \tag{4.1}
\end{equation*}
$$

is a cohomology complex.
Claim 1. $d_{t}^{p}: X^{p} \rightarrow X^{p+1}$.
For all $\omega \in X^{p}$, we have $d_{t}^{p} \omega=\lambda_{t}^{p}(t) \omega$, and

$$
\left.* \nu \omega\right|_{\partial M}=\left.*\left(\nu d_{t}^{p} \omega\right)\right|_{\partial M}=0 \quad\left(\text { or }\left.\tau \omega\right|_{\partial M}=\left.\tau\left(d_{t}^{*}\right)^{p} \omega\right|_{\partial M}=0\right)
$$

so that

$$
\left.*\left(\nu d_{t}^{p} \omega\right)\right|_{\partial M}=\left.* \nu\left(d_{t}^{p+1} d_{t}^{p} \omega\right)\right|_{\partial M}=0 .
$$

The last equality follows from $d_{t}^{2}=0$. Moreover, we have

$$
\Delta_{t}^{p+1} d_{t}^{p}=\left(d_{t}^{* p+1} d_{t}^{p+1}+d_{t}^{p} d_{t}^{* p}\right) d_{t}^{p}=d_{t}^{p} d_{t}^{* p} d_{t}^{p}=d_{t}^{p} \Delta_{t}^{p} .
$$

This proves the claim.
Claim 2. $d_{t}^{* p-1}: X^{p} \rightarrow X^{p-1}$.
Indeed, $\forall \omega \in X^{p}$, we have $\left.*(\nu \omega)\right|_{\partial M}=\left.*\left(\nu d_{t}^{p} \omega\right)\right|_{\partial M}=0$.
Set $\theta=d_{t}^{* p-1} \omega$. Then $\left.* \nu \theta\right|_{\partial M}=\left.* \nu d_{t}^{* p-1} \omega\right|_{\partial M}=0$ since $\left.*(\nu \omega)\right|_{\partial M}=0$ (see
§1). Moreover,

$$
d_{t}^{p-1} \theta=d_{t}^{p-1} d_{t}^{* p-1} \omega=\left(\lambda_{m}^{p}(t)-d_{t}^{* p} d_{t}^{p}\right) \omega .
$$

Therefore

$$
\left.*\left(\nu d_{t}^{p-1} \theta\right)\right|_{\partial M}=-\left.*\left(\nu d_{t}^{* p}\left(d_{t}^{p} \omega\right)\right)\right|_{\partial M}=0 \quad \text { since }\left.*\left(\nu d_{t}^{p} \omega\right)\right|_{\partial M}=0,
$$

i.e., we proved $\theta \in D\left(\Delta_{t}^{p-1}\right)$. Moreover,

$$
\Delta_{t}^{p-1} d_{t}^{* p-1}=\left(d_{t}^{* p-1} d_{t}^{p-1}+d_{t}^{p-2} d_{t}^{* p-2}\right) d_{t}^{* p-1}=d_{t}^{* p-1} d_{t}^{p-1} d_{t}^{* p-1}=d_{t}^{* p-1} \Delta_{t}^{p} .
$$

Again, this proves the claim. Similarly, we verify the case (2).
Claim 3. $N\left(d_{t}^{p}\right)=R\left(d_{t}^{p-1}\right) \oplus N\left(\Delta_{t}^{p}\right)$.
It is easily seen that $N\left(\Delta_{t}^{p}\right) \subset X^{p} \cap N\left(d_{t}^{p}\right)$. Now, for $\omega \in X^{p} \cap N\left(d_{t}^{p}\right) \cap$ $N\left(\Delta_{t}^{p}\right)^{\perp}$, we have

$$
d_{t}^{p} \omega=0, \quad d_{t}^{p-1} d_{t}^{* p-1} \omega=\lambda_{m}^{p}(t) \omega
$$

where $\lambda_{m}^{p}(t) \neq 0$. Define $\theta=d_{t}^{* p-1} \omega$. By Claim 2, $\theta \in X^{p-1}$. It follows that

$$
\omega=\frac{1}{\lambda_{m}^{p}(t)} d_{t}^{p-1} \theta \in R\left(d_{t}^{p-1}\right) .
$$

Finally, we have shown that the smaller cohomology complex (4.1) has the following properties:

$$
\begin{gathered}
\operatorname{dim} X^{p}=m_{p}+ \begin{cases}n_{p} & \text { in case (1) }, \\
n_{p-1} & \text { in case (2) },\end{cases} \\
\operatorname{dim} N\left(d_{t}^{p}\right) / R\left(d_{t}^{p-1}\right)= \begin{cases}\beta_{p} & \text { in case }(1), \\
\beta_{p}^{*} & \text { in case (2) },\end{cases}
\end{gathered}
$$

where

$$
\beta_{q}=\operatorname{rank} H_{\mathrm{DR}}^{q}(M) \quad \text { and } \quad \beta_{q}^{*}=\operatorname{rank} H^{q}(M, \partial M) .
$$

As a consequence, Morse inequalities for M with boundary conditions hold, i.e., for all t,

$$
\sum_{q=0}^{\infty}\left(m_{q}+n_{q}-\beta_{q}\right) t^{q} \quad\left(\text { and } \sum_{q=0}^{\infty}\left(m_{q}+n_{q-1}-\beta_{q}^{*}\right) t^{q}\right)=(1+t) Q(t)
$$

where Q is a formal series with nonnegative coefficients.

Remark 4.1. The two boundary conditions yield two different cohomology complexes. However, anyone is the dual of the other, in the sense that the second complex can be obtained by considering the first complex for the function $-f$ via the Poincaré duality theorem, and vice versa.

References

[An] F. Annik, Démonstration analytique des inégalités de Morse, Univ. Libre de Bruxelles, 1984-85.
[Ch] K. C. Chang, Infinite Dimensional Morse Theory and Multiple Solution Problems, Birkhäuser, 1993.
[DR] G. De Rham, Differentiable Manifolds, Springer-Verlag, 1984.
[Du] G. F. D. Duff, Differential forms in manifolds with boundary, Ann. of Math. 56 (1952), 115-127.
[DS] G. F. D. Duff and D. C. Spencer, Harmonic tensors on Riemannian manifolds with boundary, Ann. of Math. 56 (1952), 128-156.
[Fl] A. Floer, A relative Morse index for the symplectic action, Comm. Pure Appl. Math. 41 (1988), 393-407.
[GM] P. A. Griffiths and J. W. Morgan, Rational Homotopy Theory and Differential Forms, Birkhäuser, 1981.
[Mi] J. W. Milnor, Lectures on the h-Cobordism Theorem, Princeton Univ. Press, 1965.
[Wi] E. Witten, Supersymmetry and Morse theory, J. Differential Geom. 17 (1982), 661692.

Kung ching Chang and Jiaquan Liu
Institute of Mathematics
Peking University
Beijing 10087, P.R. CHINA

