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LERAY–SCHAUDER DEGREE: A HALF CENTURY
OF EXTENSIONS AND APPLICATIONS

Jean Mawhin

Dedicated to the memory of Juliusz Schauder and Jean Leray

Abstract. The Leray–Schauder degree is defined for mappings of the form
I−C, where C is a compact mapping from the closure of an open bounded

subset of a Banach space X into X. Since the fifties, a lot of work has been

devoted in extending this theory to the same type of mappings on some
nonlinear spaces, and in extending the class of mappings in the frame of

Banach spaces or manifolds. New applications of Leray–Schauder theory

and its extensions have also been given, specially in bifurcation theory,
nonlinear boundary value problems and equations in ordered spaces. The

paper surveys those developments.

1. Introduction

The algebraic topology of Banach spaces, and its application to nonlinear
equations, has started with the work of Juliusz Schauder in the five years period
1927–1932 ([73]–[77]). Schauder identified an important class of nonlinear oper-
ators in a Banach space, the completely continuous perturbations of identity, for
which he could generalize two important results of Brouwer in finite-dimensional
topology: the fixed point and invariance of domain theorems. Schauder applied
the first extension – nowadays called the Schauder fixed point theorem [73], [78],
[76] — to the existence of solutions of differential equations for which uniquenes
does not necessarily hold. Schauder applied his invariance of domain theorem
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[75], [77] to exhibit nonlinear elliptic problems for which uniqueness implies ex-
istence.
In 1933, Schauder got the opportunity to meet Leray in Paris (an indirect

consequence of Nazi’s epuration in Göttingen that Schauder was supposed to
visit), and a second important period in infinite dimensional topology started
from their collaboration. Leray and Schauder immediately realized that the
topology of completely continuous perturbations of identity in a Banach space
was the right setting to develope Leray’s continuation method for nonlinear in-
tegral equations (called by him the Arzelá-Schmidt’s method), introduced in his
thesis [43] of 1933, and in particular to liberate it from unnecessary uniqueness
and regularity assumptions. Leray said to Schauder:

I have read your paper on the relationship between existence and uniqueness of the

solution of a nonlinear equation. I know now that existence is independent of unique-

ness. I admire your topological methods. In my opinion they ought to be useful for
establishing an existence theorem independent of the whole question of uniqueness

and assuming only some a priori estimates.

Schauder replied:

Das wäre ein Satz1.

This became a theorem in a few days and a fundamental joint paper in a few
weeks [53]. To prove it, the topology of Banach spaces was developed by extend-
ing Brouwer’s topological degree to the completely continuous perturbations of
identity in a Banach space, providing fundamental continuation theorems suc-
cessfully applied to nonlinear elliptic boundary value problems.
Schauder did not make any further applications of the continuation theorems

(concentrating his interests to hyperbolic partial differential equations), in con-
trast to Leray, who used it in problems of wakes and bows in hydrodynamics,
in fully nonlinear elliptic problems of Bernstein type, and extended it to some
nonlinear spaces.
The influence of [53] on contemporary mathematics is considerable. The

quick search in the Mathematical Reviews disclosing 591 references to papers
that make use of it, mentioned by Peter Lax in [42], is surely underestimated,
and the real figure should be much larger than one thousand. The reader can
consult the monographs [174], [126], [141], [81] and their references to get a first
idea of the tremendous bibliography related to the consequences and extensions
of [53]. The bibliography of this paper includes a (surely uncomplete) list of
some one hundred and twenty monographs dealing with Leray–Schauder theory
and its applications, published between 1948 and 1999.
To keep the paper at a reasonable length and to remain within a minimum of

competence of the author, we exclude important aspects of the development of

1That would be a theorem.
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Leray–Schauder theory, like the many variants and extensions of Schauder fixed
point theorem, the case of mappings between spaces of different “dimensions”,
the theory of multi-valued mappings, the case of equivariant mappings, Nielsen’s
fixed point theory, asymptotic fixed point theorems, the computation of Leray–
Schauder degree, and its use in critical point theory.

In the whole paper, if X is a metric space, I = [0, 1], A ⊂ X × I, and λ ∈ I,
we write Aλ = {x ∈ X : (x, λ) ∈ A}. For a ∈ X and r > 0, B(a, r) denotes the
open ball of center a and radius r.

2. The Leray–Schauder’s paper revisited

Leray and Schauder define a completely continuous mapping from a metric
space A into a metric space B as a continuous mapping on A which takes bounded
subsets of A into relatively compact ones of B. When a continuous mapping takes
A into a relatively compact subset, it is nowadays said to be compact on A.

Leray and Schauder extend as follows the Brouwer degree to compact per-
turbations of the identity in a Banach space X. If U ⊂ X is an open bounded
set, f : U → X is compact, and z 6∈ (I − f)(∂U), the Leray–Schauder degree
degLS [I − f, U, z] of I − f in U over z is constructed from the Brouwer degree
by approximating the compact mapping f over U by mappings fε with range
in a finite-dimensional subspace Xε (containing z) of X, and showing that the
Brouwer degrees degB [(I − fε)|Xε , U ∩Xε, z] stabilize for sufficiently small pos-
itive ε to a common value defining degLS [I − f, U, z]. This topological degree
“algebraically counts” the number of fixed points of f( · )− z in U , and, for f of
class C1, and I − f ′(a) invertible for each fixed point a of f( · )− z in U , Leray
and Schauder show that

degLS [I − f, U, z] =
∑

a∈(I−f)−1(z)

(−1)σj(a),

where σj(a) is the sum of the algebraic multiplicities of the eigenvalues of f ′(a)
contained in ]1,∞[.
The Leray–Schauder degree conserves the basic properties of Brouwer degree,

as listed in [53].

Theorem 2.1. The Leray–Schauder degree has the following properties.

(i) (Additivity) If U = U1 ∪ U2, where U1 and U2 are open and disjoint,
and if z /∈ (I − f)(∂U1) ∪ (I − f)(∂U2), then

degLS [I − f, U, z] = degLS [I − f, U1, z] + degLS [I − f, U2, z].

(ii) (Existence) If degLS [I − f, U, z] 6= 0, then z ∈ (I − f)(U).
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(iii) (Homotopy invariance) Let Ω ⊂ X × I be a bounded open set, and let
F : Ω → X be compact. If x − F (x, λ) 6= z for each (x, λ) ∈ ∂Ω, then
degLS [I − F ( · , λ),Ωλ, z] is independent of λ.

In [53], property (iii) is stated under slightly more restrictive assumptions.

Denote by Σ the (possibly empty) set defined by

Σ = {(x, λ) ∈ Ω : x = F (x, λ)}.

An important consequence of the existence and homotopy invariance proper-
ties of Leray–Schauder’s degree is the celebrated Leray–Schauder continuation
theorem.

Theorem 2.2. Assume that F : Ω → X is completely continuous, and that
the following conditions hold.

(i) Σ ∩ ∂Ω = ∅ (a priori estimate),
(ii) degLS [I − F ( · , 0),Ω0, 0] 6= 0 (degree condition),

then Σ contains a continuum C along which λ takes all values in I.

In other words, under the above assumptions, Σ contains a compact con-
nected subset C connecting Σ0 to Ω1. In particular, the equation x = F (x, 1)
has a solution in Ω1.

Leray and Schauder use instead of (ii) a slightly less general condition re-
quiring in addition that Σ0 is a finite nonempty set {a1, . . . , aµ}, and observe
furthermore that, by refining Assumption (ii), one can obtain a more precise
conclusion, which already anticipates subsequent results in bifurcation theory
and alternative theorems described later. Let a is an isolated fixed point of f ,
for r > 0 small, define its local Leray–Schauder index by

indLS [I − f, a] := degLS [I − f,B(a, r), 0].

Theorem 2.3. If a1 is an isolated fixed point of F ( · , 0) and if

indLS [I − F ( · , 0), a1] 6= 0,

then (a1, 0) belongs to a continuum in Σ containing one of the points (a2, 0),
. . . , (aµ, 0), or to a continuum in Σ along which λ takes all the values in I.

Leray and Schauder emphasize the following important special case of con-
dition (iii), whose statement does not involve explicitely the concept of degree:

Corollary 2.1. If condition (i) holds, and if

(ii’) 0 ∈ Ω0, F ( · , 0) = 0,
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then Σ contains a continuum C 3 (0, 0) along which λ takes all values in I.

They also mention the special case of condition (ii), where Σ0 is a finite
nonempty set {a1, . . . , aµ} with µ odd and I − F ( · , 0) one-to-one on a neigh-
bourhood of each aj .

The assumption of complete continuity for F restricts the structure of the
equation to be considered, but is satisfied by many abstract formulations of
differential and integral equations.

Condition (i) requires the a priori knowledge of some properties of the solu-
tion set Σ and is in general the most difficult one to check. An important special
case, already emphasized by Leray and Schauder, corresponds to the situation
where Ω = X × I and the set Σ is bounded. In their own words [53]:

Soit une famille d’équations [...] qui dépendent continûment du paramètre k (k1 ≤
k ≤ k2)

x−F(x, k) = 0.

L’une des conséquences de notre théorie est la suivante: il suffit de savoir majorer a

priori toutes les solutions que possèdent ces équations et de vérifier, pour une valeur
particulière k0 de k, une certaine condition d’unicité, pour avoir le droit d’affirmer

que l’équation x−F(x, k) = 0 possède au moins une solution quel que soit k.2

The precise formulation of this important special case goes as follows.

Corollary 2.2. Assume that F is completely continuous on X × I, and
that the following conditions hold.

(i) F ( · , 0) = 0.
(ii) There exists r > 0 such that

Σ := {(x, λ) ∈ X × I : x = F (x, λ)} ⊂ B(r)× I.

Then Σ contains a continuum C 3 (0, 0) along which λ takes all values in I.

Motivated by applications to nonlinear elliptic problems, Leray and Schauder
have formulated continuation theorems for more general equations, which are
reducible to some compact perturbations of identity. Essentially, they consider
equations which can be written in the form

(1) G(x, y, λ) = 0,

2Consider a family of equations [...] depending continuously on the parameter k (k1 ≤
k ≤ k2)

x−F(x, k) = 0.

One of the consequences of our theory is the following one: it suffices to be able to find an a

priori estimate for all the solutions of those equations and to check, for one particular value
k0 of k, some uniqueness condition to have the right to affirm that equation x − F(x, k) = 0
has at least one solution for each k.
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where X, X0, Y are Banach spaces with X0 compactly imbedded in X, G :
X × X0 × I → Y is Fréchet differentiable and such that, near each solution
(x∗, λ∗) of (1), the equation in y

G(x, y, λ) = 0

has a unique solution y = F (x, λ) close to x∗, which defines locally a completely
continuous mapping F . Thus, near (x∗, x∗, λ∗), equation (1) is equivalent to the
fixed point problem

x = F (x, λ).

Leray and Schauder assume that the equation x = F (x, 0) has a finite number
of solutions and the sum of their indices is not zero. Then they conclude that
there exists in X × I a continuum of solutions along which λ takes all the values
of I.
Extensions and developments of this idea, including the construction of a de-

gree for mappings having diagonal or intertwined representation, have been made
in 1951 by Cronin [19], in 1967 by Zabrĕıko-Krasnosel’skĭı [82], and in 1968
by Browder–Nussbaum [14] and Browder [11], [129]. Extensions of the Leray–
Schauder theory to other classes of mappings between Banach spaces or mani-
folds, which took place from the sixties, have been fundamental for the devel-
opment of nonlinear functional analysis in the second half of the century. They
will be described in subsequent sections.
References to further applications of the Leray–Schauder continuation the-

orem to nonlinear elliptic boundary value problems can be found in [94], [144],
[135], [95], [84], [184], to nonlinear parabolic boundary value problems in [94],
[99], to Navier–Stokes equation in [88], [158], and to ordinary differential equa-
tions in [144], [145], [134], [141], [92], [104], [115].
The reader can consult [30], [52], [37] for interesting first hand informations

about the genesis of the Leray–Schauder’s paper. For their contribution, Leray
and Schauder were jointly awarded the Malaxa Prize in 1938.

3. Some surveys of Leray and of Schauder

In 1936, Leray [46] and Schauder [78] each published a survey of their joint
work, which contain both interesting general remarks and which, together with
a further survey of Leray in 1950 [48], paved the way for several developments
of their theory achieved in the second half of the century.
Leray’s paper [46] is the text of a lecture given at the Conférences inter-

nationales des Sciences mathématiques devoted to Equations aux dérivées par-
tielles. Conditions propres à déterminer les solutions, organized in June 1935
at the University of Genève. The part devoted to the general theory expresses
Leray’s concept of “solving an equation”:
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Pour pouvoir affirmer que l’équation x +F(x) = 0 est résoluble, il suffit de démontrer

qu’elle ne présente pas de solution arbitrairement grande quand on la réduit con-
tinûment à une équation telle que x = 0. Démontrer qu’une équation fonctionnelle

a des solutions revient donc à résoudre le problème suivant: assigner des majorantes
aux solutions qu’elle possède éventuellement. Il serait d’ailleurs inimaginable qu’on

puisse résoudre une équation par un procédé qui ne fournisse pas de renseignements

sur l’ordre de grandeur des inconnues. Pour nous, résoudre une équation, c’est ma-
jorer les inconnues et préciser leur allure le plus possible; ce n’est pas en construire,

par des développements compliqués, une solution dont l’emploi pratique sera presque

toujours impossible.

On peut se permettre de considérer ce théorème d’existence comme étant une

généralisation au cas non linéaire de l’alternative de Fredholm: soit une équation

de Fredholm x + L(x) = b, (où L(x) =
R

K(s, s′)x(s′) ds est complètement continue);
cette équation possède sûrement une solution, sauf si l’équation x+L(x) = 0 en possède

une; or ce cas est justement celui où l’équation proposée admettrait des solutions

arbitrairement grandes3.

One should mention also an unnoticed lecture of Leray [45] at Julia’s Sé-
minaire de mathématiques devoted in 1935–36 to Topology, and published in
a mimeographic form only. Leray’s lecture, delivered on December 18, 1935,
surveys essentially finite dimensional simplicial homology, Brouwer degree, the
Jordan–Brouwer theorem and Alexandroff’s theorem. It ends with a section
entitled “Topologie des espaces abstraits”4 in which Leray first explains the
difficulty of the problem:

Nous envisageons des espaces abstraits de Banach; ce sont ceux qu’on rencontre le plus

fréquemment en analyse [...]. Un domaine borné d’un espace de Banach, en général,
n’est pas compact et ne peut pas être assimilé à un complexe. Il semble d’abord que

les propriétés de la topologie combinatoire y tombent en défaut.

Certes il est facile de définir le groupe d’homologie d’un domaine appartenant à
un espace de Banach et de définir l’homomorphisme qu’engendre une transformation

continue opérant dans un tel espace. Mais dans l’espace de Hilbert, la correspondance

qui associe au point (x1, x2, . . . ) le point (0, x1, x2, . . . ) transforme l’un en l’autre un
hyperplan de l’espace et l’espace entier. On contredit aisément le théorème de Jordan.

On construit aisément des transformations pour lesquelles il est absurde d’admettre
qu’il existe un degré topologique possédant les propriétés usuelles.

[Considérons] les transformations du type y = x +F(x) [...], F(x) étant un point

qui dépend continûment de x, et qui décrit un domaine de définition. [...] Le degré
topologique d’une telle transformation existe; et le théorème d’Alexandroff vaut quand

l’homéomorphisme entre les deux ensembles fermés F1 et F2 est une correspondance

3To be able to claim that equation x + F(x) = 0 is solvable, it is sufficient to prove that

it has no arbitrarily large solution when one reduces it continuously to an equation like x = 0.

To prove that a functional equation has solutions is reduced to solving the following problem:
assign bounds to its possible solutions. It should be indeed unimaginable that one could solve

an equation through a method which does not provide information of the order of magnitude of

the unknowns. For us, to solve an equation consists in bounding its unknowns and precise their
shape as much as possible; it is not to construct, through complicated developments, a solution

whose practical use will be almost always impossible. One can consider this existence theorem

as being a generalization to the nonlinear case of the Fredholm alternative: let a Fredholm
equation x+L(x) = b, (where L(x) =

R
K(s, s′)x(s′) ds is completely continuous); this equation

surely has a solution, except if the equation x +L(x) = 0 has one; and this case is exactly the
one where the proposed equation would have arbitrarily large solutions.

4Topology of abstract spaces.
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de ce type. (Le premier théorème de cette nature est dû à J. Schauder; il s’agissait de

“l’invariance du domaine”)5.

Schauder’s survey [78] is the text of his lecture at the Conference on Topology
held in Moscow in 1935. After summarizing the main abstract results contained
in [53], Schauder writes, as a footnote to the special case of the continuation
theorem where F ( · , 0) = 0:

Es ist unmöglich, aus diesem einfachen Sonderfall, der übringens, — wie man leicht
beweisen kann, — mit dem Fixpunktsatze in linearen, normierten und vollständigen

Räumen (vgl. Schauder, Studia Math. 2 (1930), s. 171–180; Satz 2) äquivalent ist,

rückwärts irgendein tieferliegendes Resultat zu erzielen (z.B. die algebraische Addi-
tionsformel)6.

After mentioning the recent extension by Leray of the Jordan–Brouwer the-
orem to completely continuous perturbations of identity in Banach spaces [44],
Schauder traces a program for the further development of infinite-dimensional
algebraic topology:

Auf änliche weise, wie hier für den Abbildungsgrad dargelegt wurde, lassen sich auch

weitere topologische Invarianten (Bettische Gruppen, Zahlen usw.) (wie mir soeben
Herr Leray brieflich ankündigt) für den unendlichdimensionalen Raum definieren.

Doch weder Herr Leray, noch ich sehen vorläufig irgendeine Anwendungen dieser an-

deren Invarianten für den Fall des Funktionalraumes in der Analysis7.

Important contributions to the algebraic topology in infinite-dimensional spaces
has been made by Boltjanskĭı, Švarc, Mitjagin, Gęba, Granas, Eells, Namioka,
Mukherjea, Morava, Weinberg, and others (see references in [112], [125], [107]).

Finally, Schauder concludes his survey as follows:

5We consider abstract Banach spaces; they are the most frequent in analysis [...]. A bound-

ed domain of a Banach space is not in general compact and cannot be assimitated to a complex.
It seems first that the properties of combinatorial topology fail. However it is easy to define the

homology group of a domain belonging to a Banach space and to define the homomorphisms

induced by a continuous transformation acting in such a space. But, in Hilbert space, the
transformation which associates to the point (x1, x2, . . . ) the point (0, x1, x2, . . . ) transforms

a hyperplane of the space into the whole space. One easily contradict Jordan’s theorem. One
easily constructs transformations for which it is absurd to admit the existence of a topological

degree having the usual properties. [Consider] the transformations of the type y = x+F(x) [...]

F(x) being a point depending continuously on x, and which describes a domain of definition
[...]. The topological degree of such a transformation exists; and Alexandroff theorem holds

when the homeomorphism between the two closed sets F1 and F2 is a transformation of this

type. (The first theorem of this nature is due to J. Schauder; it was the “invariance of domain”
theorem).

6It is impossible from this simple special case which, indeed — as one can prove it easily —

is equivalent to the fixed point theorem in linear, normed and complete spaces (cf. Schauder,
Studia Math. 2 (1930), p. 171–180; Theorem 2), to obtain some of the deep results (for example

the algebraic addition formula).
7In a way similar to the one made here for the degree of an application, it will be possible

to define other topological invariants (Betti groups, numbers, etc.) (as Mr Leray recently

briefly anounced to me) for the infinite dimensional spaces. However, neither Mr. Leray nor
me see for the moment significant applications of those other invariants in the case of function
spaces of analysis.



Leray–Shauder Degree 203

Anderseits kann ich eine ähnliche Theorie der Abbildungsgrades auch dann entwickeln,

wenn es sich um allgemeinere Räume handelt, etwa um lineare metrisches Räume, in
welchen es beliebig kleine, konvexe Umgebungen der Null gibt. Ein gemeinsame Ar-

beit von Hernn Leray und mir über verschiedene topologische Invarianten in möglichst
allgemeinen Räumen wird erscheinen. Auch nichtlineare Räume könnten betrachtet

werden. Etwa metrische Räume, deren Umgebungen, z.B. den Umgebungen in Ba-

nachschen Räumen homöomorph sind8.

Thus, the way is traced for the extension of Leray–Schauder fixed point
theory to locally convex spaces and to Banach manifolds. Schauder’s tragical
death during the Second World War did not allow him to contribute to those
planned developments, and the legacy remained in the sole hands of Leray.
Leray never delivered an invited address or an invited lecture in section at

any International Congress of Mathematicians. However, volume II of the Pro-
ceedings of the ICM of 1950 held in Cambridge, Massachussets, contains an inter-
esting paper of him [48]. A closer look shows that this volume II consists in the
proceedings of three conferences, respectively on Algebra, Analysis and Applied
Mathematics, held during the ICM to supplement the regular program. The
Conference on Analysis is divided in three parts: Algebraic tendencies in ana-
lysis, Analysis in the large and Analysis and geometry in the large, and Leray’s
paper is one of the four contributions in this last direction. Leray’s survey is
dedicated

à la mémoire du profond mathématicien polonais Jules Schauder, victime des mas-
sacres de 19409.

It describes the extension of the Leray–Schauder theory, mentioned by Schau-
der in [78], to completely continuous perturbations of identity in a locally convex
topological vector space and Leray’s fixed point theory of continuous mappings of
some compact topological spaces into itself developed during war time.
After some pioneering work of Rothe in 1939 [69], the extension of Leray–

Schauder theory to completely continuous perturbations of identity in locally
convex spaces was also worked out in details by Nagumo in 1951 [60], but the
number of its applications to differential equations has been rather limited. It
is still an open problem to know if the extension works for arbitrary topological
vector spaces, even if Klee, Kaballo, Kayser, Krauthausen, Riedrich, Hahn, Alex,
Kaniok, Van der Bijl, Dobrowolski, Hart, Van der Mill, Pötter, Okoń and others
have shown that it can be done in some more general classes than the locally
convex ones (see [81] for references).

8On the other way, one can also develope a theory of the topological degree when one

deals with more general spaces, namely linear metric spaces in which arbitrarily small convex
neighbourhoods of the origin are given. A joint work of Mr Leray and myself on various
topological invariants in spaces as general as possible will appear. Also, nonlinear spaces can
be treated, namely metric spaces whose neighbourhoods are homeomorphic to Banach spaces.

9Dedicated to the memory of the deep Polish mathematician Jules Schauder, victim of the
massacres of 1940.
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Concerning the existence of fixed points for a continuous mapping f from
a compact space X into itself, Leray first observes in [48] that if there exist
a retraction r of an open subset V of a locally convex space E onto X, (i.e. an
continuous map r : V → X such that r|X = I), then the fixed points of f in
X are those of the completely continuous mapping f ◦ r, and a fixed point index
indX [f, U ] for the fixed points of f in U ⊂ X can be defined as the Leray–
Schauder degree degLS [I − f ◦ r, r−1(U), 0].
For E a Hilbert space, such a space X is an absolute neighbourhood retract

(ANR). Recall, following K. Borsuk, that a compact metric space X is a compact
ANR if, for any subspace A of a separable metric space Y which is homeomorphic
to X, there exists an open set U ⊃ A of Y and a retraction of U onto A. If
f : X → X is continuous, the Lefschetz number ΛX [f ] of f is the alternate
sum of the traces of the homology endomorphisms induced by f . The Lefschetz
fixed point theorem states that if X is a compact metric ANR, any continuous
mapping f : X → X with non-zero Lefschetz number has a fixed point. First
anounced by Lefschetz in 1923, for X a finite polyhedron or a manifold without
boundary, this result was proved for finite polyhedra by H. Hopf in 1928, and
extended by Lefschetz to compact ANR’s, implicitely in 1930 and explicitely
in 1937.
One of the main problems for fixed point theory in infinite dimensional spaces

is to “localize” the Lefschetz fixed point theorem, i.e. to construct a theory
which contains both the Leray–Schauder and the Lefschetz theory a special case.
The corresponding tool is called a fixed point index theory and we describe its
development in the next section.

4. Fixed point index in compact ANR’s

In a series of papers which constitute a course in algebraic topology teached
in captivity in the Oflag XVIIA, in Austria, Leray [47] developes new tools in
algebraic topology (the future spectral sequences and sheaf homology) in order
to extend the concepts and results of [53] to some nonlinear spaces and unify
his theory with Lefschetz one. He introduces the convexoid spaces, a class of
compact spaces which contains the finite polyhedra and finite unions of compact
convex sets in locally convex topological vector spaces. The following assertion
summarizes some of Leray’s results in his own terms, but in modern notations.
Let X be a convexoid space; let f be a continuous mapping from a closed

subset of X into X, and let us consider the equation

(2) x = f(x).

Assume the set of its solutions is compact. The total index indX [f, U ] (Leray
writes i(U)) of the solutions of (2) belonging to an open subset U of X is an
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integer, defined when U belongs to the domain of f and ∂U does not meet the
set of solutions of (2). This index has the following properties:

1. indX [f, U ] remains constant, as long as it remains defined, when f varies
continuously according to a parameter belonging to a connected topo-
logical space.

2. If f is defined over X, indX [f,X] = ΛX [f ].
3. If f is defined over U and U contains no solution of (2), then

indX [f, U ] = 0.

We refer to [47] for the involved explicit definition of this index.

A partial unification is obtained in this way between Lefschetz and Leray–
Schauder theory, but some open problems remain concerning convexoid spaces:
for example, it is not clear whether an arbitrary Euclidian manifold is convexoid.
In [48], Leray mentions that

Ce théorème [de Lefschetz] est une conséquence de la théorie précédente [de 1945]; mais
il s’applique à certains espaces compacts auxquels cette théorie n’a pas été étendue.

Le problème est ouvert de savoir si cette théorie est un cas particulier d’une théorie

plus générale, applicable à tout espace compact10.

This open problem raised by Leray has motivated a substantial activity in the
development of fixed point theory in the second half of the century, and we
describe its main lines.

In order to construct a theory of the fixed point index in a context similar to
that in which Lefschetz had proved his fixed point theorem in 1942, F. E. Brow-
der, in his unpublished Princeton University PhD thesis written under Lefschetz
and Hurewicz [7], constructs in 1948 a fixed point index for compact ANR’s,
using as a basic tool Leray’s theory as applied to finite polyhedra.

In 1950, Hanner proves that any ANR is ε-dominated by polyhedra, which
implies that the Lefschetz theorem for compact ANR’s follows from the one for
finite polyhedra. One year later, Dugundji proves that any convex subset of a
normed linear space is an ANR, giving an elegant and powerful way to connect
topology and functional analysis. As observed by R. F. Brown in [16]:

Leray worked with convexoid spaces, rather than with a more usual generalization

of polyhedra such as absolute neighbourhood retracts (ANR’s) because he wanted to
use his theory to obtain new results in analysis. There were certain kinds of subsets

of function spaces which he needed for this purpose and which he could prove to

be convexoid but which were not known to be ANR’s. However, in 1951, Dugundji
showed that these subsets are indeed ANR’s, so the motivation for the further study

of convexoid spaces was gone.

10This [Lefschetz] theorem is a consequence of the preceding theory [of 1945]; but it applies
to some compact spaces to which this theory has not been extended. The problem is open to
know if this theory is a special case of a more general one, applicable to any compact space.
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O’Neill rederives the principal results of Browder’s thesis for the special
case of finite polyhedra X in his M.I.T. PhD thesis of 1953 (written under
Hurewicz) [64]. If U and V are open sets of X whose boundaries contain no
fixed points of f : X → X, O’Neill proves the existence of a fixed point index
indX [f, U ] having the following properties:

(1) If U contains no fixed point of f , then indX [f, U ] = 0.
(2) indX [f, U ] + indX [f, V ] = indX [f, U ∪ V ] + indX [f, U ∩ V ].
(3) There is a neighbourhood N of f (in the compact-open topology) such
that g ∈ N implies that indX [g, U ] exists and is equal to indX [f, U ].

(4) If U is a subpolyhedron of X and f(U) ⊂ U , then indX [f, U ] = ΛU [f ].
(5) If U∪f(U) is contained in a subpolyhedron of X isomorphic under a map
h to a subpolyhedron of the finite polyhedron Y and if g : Y → Y is con-
tinuous and such that gh = hf on U , then indX [f, U ] = indY [g, h(U)].

He then shows that the fixed point index is uniquely determined in the class of
finite polyhedra by properties (2) to (5), giving the first axiomatic characteriza-
tion of the fixed point index. Using the results of O’Neill’s paper, Bourgin [6]
re-establishes in 1955 the theory of the fixed point index for compact ANR’s,
along lines similar to those of Browder’s thesis.
In 1959, Leray [49] introduces a concept of generalized trace which allows an

extension of the link between the fixed point index and the the corresponding
generalized Lefschez number. He proves that if X is convexoid, U ⊂ X open and
f : U → X continuous without fixed points in ∂U , then

K =
⋂
n≥1

fn(U) = lim
n→∞
fn(U)

is compact and invariant for f . Furthermore, if K ⊂ U, indX [f, U ] and ΛK [f ]
are defined and equal. More generally, if F is a compact such that

K ⊂ f(F ) ⊂ F ⊂ U,

then ΛF [f ] is defined and equal to indX [f, U ].
The same year, Deleanu [23] carries out in detail the extension of Leray’s

theory to retracts of convexoid spaces (which include the ANR’s), using the
sharpening form of Leray’s results given in 1959.
One year later, F. E. Browder [8] goes outside the frame of reference of ANR’s

or of retraction properties in general. He takes up the theory of the fixed point
index at the combinatorial or homology level on which it was treated by Leray
in 1945, but for more general spaces, the compact semi-complexes similar in their
nature to those made by Lefschetz in his treatment of his fixed point theorem
(1942). Given a category of compact topological spaces X and of permissible
continuous mappings h, Browder introduces as follows a concept of fixed point
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index in this category. If U is an open subset of X, and f : U → X a continuous
mapping such that f has no fixed point on ∂U , the fixed point index indX [f, U ]
is an integer which has the following four properties:

(a) (Invariance under homotopy) If fλ, 0 ≤ λ ≤ 1, is a homotopy of f0 to
f1, where all the fλ are mappings of U into X and none have any fixed
points on ∂U , then indX [f0, U ] = indX [f1, U ].

(b) (Additivity) If U contains a finite family of mutually disjoint open sets
Uj, 1 ≤ j ≤ s, and if U \

⋃s
j=1 Uj contains no fixed point of f : U → X,

then

indX [F,U ] =
s∑
j=1

indX [f, Uj ].

In particular, if U itself contains no fixed point of f , then indX [f, U ] = 0.
(c) (Normalization) If U = X, then indX [f, U ] = ΛU [f ].
(d) (Commutativity) Let X1 and X2 be two spaces in our category, h a
permissible mapping of X1 into X2, U2 an open subset of X2, f a con-
tinuous mapping of U2 into X1. Let U1 = h−1(U2). Suppose that hf
has no fixed point on ∂U2. Then

indX2 [hf, U2] = indX1 [fh, U1].

Browder proves that if the category consists of ANR’s and all continuous map-
pings, and if a fixed point index indX [f, U ] can be defined to satisfy properties
(a) to (d), it is uniquely characterized by those properties.
The same year, Browder [9] states and proves the following very general

version of the continuation theorem in the frame of the fixed point index.

Theorem 4.1. Let X be a Hausdorff space, U an open subset of X × I, F
a continuous mapping of U into a compact space Y lying in a category A for
which a fixed point index is defined. (Thus Y may be an ANR a neighbourhood
retract of a convexoid space, or an HLC∗ space). Let G be a continuous mapping
of Y × I into X, H the mapping of U into X given by H(x, λ) = G(F (x, λ), λ).
Let Ψ be the natural injection of X into X × I, Ψλ(x) = (x, λ), Uλ = Ψ−1λ (U),
hλ = HΨλ mapping Uλ into X. Suppose that hλ has no fixed points on ∂Uλ
for λ ∈ I. Let U ′ = G−1(U), U ′0 = Ψ−10 (U ′), F0 = FΨ0, G0 = GΨ0. Suppose
that indY [F0G0, U ′0] 6= 0. (In the case in which X itself lies in A, we make the
simpler assumption that indX [h0, U0] 6= 0). Then there exists a connected subset
C1 in U intersecting both X × {0} and X × {1} such that for all (x, λ) in C1,
hλ(x) = x.

The last paper of Leray on the fixed point index, published in 1972 [50],

describes as shortly as possible the main features of the fixed-point theory itself [...]

and makes accessible the part of [47] which is not presented by D. G. Bourgin [91].
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Further contributions to fixed point index theory on compact spaces are due
to Thompson, Knill and others. See [93], [146], [112] for references.

5. Fixed point index for non-compact ANR’s

With Schauder fixed point theorem in mind, one can ask if the Lefschetz
fixed point theorem remains true for compact maps on arbitrary ANR’s. An
affirmative answer is supplied by Granas in 1967 [34].
In 1969, F. E. Browder [9] shows that if X is a Banach space, U an open

subset of X, and f a compact mapping of U into X whose fixed point set S is a
compact subset of U , then, for any compact ANR R ⊃ f(S),

indR[f |U∩R, U ∩R] = degLS [I − f, U, 0].

This allows a definition of a fixed point index in a natural geometric way for any
compact mapping of an open subset U of a non-compact ANR X into X.
The same year, if X is an ANR and f : U → X an admissible compact map,

V open in a normed space E which r-dominates X, and s : X → V , r : V → X
are such that rs = I, Granas [33] defines the index of f in U by

indX [f, U ] = degLS [s ◦ f ◦ r, r−1(U), 0].

Some extensions of Schauder fixed point theorem proved in 1955 by Darbo [22]
and Krasnosel’skĭı [41] suggest that the fixed point index and degree theories
could be extended to a more general class of perturbations of identity.
In 1971, Nussbaum [61] defines a fixed point index indX [f, U ] for mappings

f having some type of asymptotic compactness property and defined on open
subsets U of certain “nice” class F of ANR’s. Let X be a closed subset of
a Banach space B whose norm induces the metric on X. We say that X ∈
F if there exists a locally finite cover {Ci : i ∈ I} of X by closed, convex
sets Ci ⊂ X. Let A be a subset of a Banach space B and let g : A → B
be a continuous map. Let K1(g,A) = co g(A) be the convex closure of g(A),
Kn(g,A) = co g(A ∩Kn−1(g,A)), n > 1, and K∞(g,A) =

⋂
n≥1Kn(g,A).

Let U be an open set of X ∈ F and f : U → X be continuous. Assume that
f(x) 6= x for x ∈ ∂U , and that K∞(f, U) is compact. If K∗∞ = X ∩K∞(f, U),
Nussbaum defines the generalized fixed point index indX [f, U ] by indK∗∞ [f, U ∩
K∗∞].
The generalized index satisfies properties like those of the classical fixed point

index.

(i) Let S = {x ∈ U : f(x) = x} and assume that S ⊂ U1 ∪ U2, where U1
and U2 are two disjoint open subsets of U . Then indX [f, Ui] is defined
(i = 1, 2) and indX [f, U ] = indX [f, U1] + indX [f, U2].
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(ii) Let Ω be an open set of X × I, X ∈ F . Let F : Ω→ X be a continuous
map and assume Σ = {(x, λ) ∈ Ω : F (x, λ) = x} is compact. Suppose
there exists an open subset O of Ω such that Σ ⊂ O and such that
K∞(F,O) is compact. Then the fixed point index indX [F ( · , λ),Ωλ] is
defined and constant for λ ∈ I.

There is also an analogous of the commutativity property, and, when X is
a Banach space and g : U → X is compact,

indX [f, U ] = degLS [I − f, U, 0].

Special case are given by the so called k-set-contractions (k < 1). Recall
that the Kuratowski’s measure of noncompactness of a set A of finite diameter
in a metric space is defined by

γ(A) = inf
{
r > 0 : A =

m⋃
i=1

Ai, d(Ai) ≤ r
}
,

and that, for the metric spaces X and Y , f : X → Y is a k-set-contraction if
γ(f(A)) ≤ kγ(A) for every A ⊂ X with γ(A) finite. A standard example when
X = Y is a Banach space is the sum of a strict contraction and a completely
continuous mapping. A more general class is that of condensing maps f : X → Y
such that f(A) is bounded and γ(f(A)) < γ(A) for all bounded sets A such that
γ(A) > 0.
The above homotopy invariance property specializes as follows.

(ii’) Let Ω be an open set of X × I, X ∈ F . Let F : Ω→ X be a continuous
map and assume that F is a local strict-set-contraction in the following
sense: given (x, λ) ∈ Ω, there exists an open neighbourhood of (x, λ) in
Ω, N(x,λ), such that for any subset A of X,

γ(F (N(x,λ) ∩ (A× I))) ≤ k(x,λ)γ(A), k(x,λ) < 1.

Assume that Σ = {(x, λ) ∈ Ω : F (x, λ) = x} is compact. Then the fixed
point index indX [F ( · , λ),Ωλ] is defined and constant for λ ∈ I.

Further contributions to the fixed point index of non-compact mappings are
due to Brown, Eells, Fournier, Fenske, Peitgen, Steinlein, and others.
Independently of Nussbaum’s work, the theory of rotation (equivalent to de-

gree) for the related condensing or limit compact perturbations of identity was
introduced and developed in Voronezh, starting in 1967 with Sadovskĭı’s exten-
sion of Schauder’s fixed point theorem to condensing mappings [70]. In 1968,
Vainniko and Sadovskĭı define a degree for condensing operators in separable
Banach spaces, Borisovich and Sapronov reduce the degree for condensing map-
pings to the relative degree of some associated compact perturbation of identity,
and Sadovskĭı defines a degree for limit compact and condensing operators in
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locally convex vector spaces. All this is described, with a large bibliography, in
Sadovskĭı’s survey paper [71] and in the monograph [169], and further contri-
butions can be found in the proceedings of Voronezh seminar [159], [170], [175],
[178], [183].

The applications of the fixed point index in infinite dimensional space to
nonlinear differential equations started essentially in the seventies and concern
mostly the use of a fixed point index in cones or in wedges, initiated by M. A.
Krasnosel’skĭı (see [180]). Specially noticeable is Nussbaum’s work in functional
differential equations [61] and Amann and Dancer’s contributions to nonlinear
equations in ordered spaces [1], [21]. See respectively [186] and [2] for further
references.

The axiomatic characterization of the fixed point index and its connection
with Leray–Schauder degree naturally raises the question of an axiomatic char-
acterization of the Leray–Schauder degree. The following result is proved in 1973
by Amann and Weiss [3], showing in particular that the commutativity property
is not necessary to characterize axiomatically the degree.

Theorem 5.1. Let X be a locally convex linear space, and let ωX denote
either the set τX of all open subsets of X, or, when nontrivial, the set βX of
bounded open subsets of X. Then, for the family of mappings I − f wich f
compact on U , and 0 6∈ (I − f)(∂U), there exists exactly one topological degree
deg[I − f, U, 0] satisfying the following properties:

(D1) (Normalization) For every U ∈ ωX with 0 ∈ U, deg[I, U, 0] = 1.
(D2) (Additivity) For every nonempty U ∈ ωX , every pair of disjoint subsets

U1, U2 ∈ ωX , and every compact f : U → X with 0 6∈ (I − f)(U \ (U1 ∪
U2)), deg[I − f, U, 0] = deg[I − f, U1, 0] + deg[I − f, U2, 0].

(D3) (Homotopy invariance) For every nonempty U ∈ ωX , and for every
compact F : U × I → X such that x 6= F (x, λ) for (x, λ) ∈ ∂U × [0, 1],
deg[I − F ( · , λ), U, 0] is constant.

Nussbaum [62] has extended this uniqueness property to the case of k-set con-
tractions (k < 1) and condensing maps in a Banach space. In the same paper, he
gives an alternate definition of the degree when f is a k-set contraction (k < 1)
in a Banach space, namely deg[I − f, U, 0] = degLS [I − f ◦ ρ, V, 0], where ρ is a
retraction onto K∞(f, U) and V = U ∩ ρ−1 (U ∩K∞(f, U)).

6. Continuation theorems in the form of alternatives

In 1955, Schaefer [72] formulates a special case of Leray–Schauder continu-
ation in the form of an alternative, and proves it as a consequence of Schauder
fixed point theorem.
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Theorem 6.1. Let X be a Banach space and f : X → X be completely
continuous. Then either there exists for each λ ∈ [0, 1] at least one x ∈ X such
that x = λf(x), or the set {x ∈ X : x = λf(x), 0 < λ < 1} is unbounded in X.

In 1972, Rabinowitz [67] formulates a continuation theorem when the param-
eter is the whole real line.

Theorem 6.2. Consider

x = F (x, λ)

where F : X × R → X is completely continuous and F ( · , 0) = 0. Let S denote
the closure of the set of solutions of this equation. Then the component of S to
which (0, 0) belongs is unbounded in X × R+ and in X × R−.

In the middle eighties Fitzpatrick, Massabo and Pejsachowicz [26], [55] ex-
tend this result to the multi-parameter case λ ∈ Rk and to the level of generality
of Theorem 2.2.

Theorem 6.3. Let O ⊂ X×Rk be an open set and F : O → X a completely
continuous mapping. Assume that, for some λ0 ∈ Rk such that Oλ0 6= ∅, the
Leray–Schauder degree degLS [I − F ( · , λ0),Oλ0 , 0] is well defined and non-zero.
Then there exists a connected subset C of ΣO such that C ∩ (Oλ0×{λ0}) 6= ∅, the
(covering) dimension of C at each point is at least k, and either C is unbounded
or C ∩ ∂O 6= ∅. Moreover, when O = X × R, and when (xn) ⊂ X is bounded
whenever (λn) ⊂ R is bounded and (xn, λn) ∈ C, C covers R, in the sense that,
for each λ ∈ R, there exists some x ∈ X such that (x, λ) ∈ C.

Capietto, Mawhin and Zanolin [18], in the early nineties, show how to use
suitable continuous functionals to eliminate one of the alternatives and get useful
continuation theorems in the absence of a priori bounds.

Theorem 6.4. Let Ω ⊂ X × I be an open set and let F : Ω → X be
a completely continuous mapping such that Σ0 is bounded and

degLS [I − F ( · , 0),Ω0, 0] 6= 0,

with Ω0 an open bounded neighbourhood of Σ0. Assume moreover that there
exists a continuous function ϕ : X × I → R, proper on Σ, and two real numbers
c−, c+ such that

c− < min
x∈Σ0
ϕ(x, 0) ≤ max

x∈Σ0
ϕ(x, 0) < c+,

and ϕ(Σ) ∩ {c−, c+} = ∅. Then Σ contains a continuum C along which λ takes
all values in I.

A rather direct consequence of Theorem 6.4, which is more easy to apply, is
the following one.
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Corollary 6.1. Let Ω ⊂ X × I be an open set and let F : Ω → X be
a completely continuous mapping such that Σ0 is bounded and

degLS [I − F ( · , 0),Ω0, 0] 6= 0,

with Ω0 an open bounded neighbourhood of Σ0. Assume moreover that there
exist a continuous mapping ϕ : X × I → R+, an unbounded increasing sequence
(ck)k∈N and R > 0 such that ϕ(u, λ) 6= ck for all k ∈ N and (u, λ) ∈ Σ with
‖u‖ ≥ R, and ϕ−1([0, cn[) ∩ Σ is bounded for each n ∈ N. Then there exist
a continuum C ⊂ Σ along which λ takes all values in I.

Extensions, variants and applications of those results to nonlinear boundary
value problems has been made by Furi, Pera, Martelli, Henrard, Precup, Garcia–
Huidobro, Manásevich, Mawhin, Zanolin, Capietto, Dambrosio and others (see
[186], [194], [59] for references).

7. Essential maps and continuation theorems

From 1959, Granas [89], [35], [152] has developed continuation theorems in
normed spaces based upon the concept of essential map, which avoids the explicit
use of degree.

Let C be a convex set of a normed vector space E, X an arbitrary subset
of C, A ⊂ X closed in X, and denote by KA(X,C) the set of all compact maps
F : X → C such that the restriction F |A : A→ C is fixed-point free. Call F, G ∈
KA(X,C) homotopic provided there is a compact homotopy H : X × [0, 1]→ C
which is fixed-point free on A and such that H( · , 0) = F and H( · , 1) = G. Call
F ∈ KA(X,C) essential provided every G ∈ KA(X,C) such that F |A = G|A has
a fixed point.

Then one has the so-called topological transversality theorem.

Theorem 7.1. Let F and G be two maps in KA(X,C), such that F and G
are homotopic in KA(X,C). Then F is essential if and only if G is essential.

For example, if U is an open subset of C, and if we take X = clCU , A = ∂CU ,
the constant map F (x) = u0 is essential in K∂CU (U,C) for any u0 ∈ U . This
provides an extension of Corollary 2.2 to a convex subset of a normed space. If
U is a convex open bounded symmetric neighbourhood of 0 in E, any compact
map F ∈ K∂U (U,E) that is antipodal-preserving on ∂U is essential.
Further extensions (zero-epi and zero-essential maps), variants and applica-

tions of this results have been given by Furi, Martelli, Vignoli, Ize, Massabó,
Pejschachowicz, Pera [31], [54], Gęba, Granas, Kaczyński, Krawcewicz, Guen-
ther, Lee [32], [163], [36], Frigon [179], O’Regan [192], [208] and others.
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8. Bifurcation theory

One of the most spectacular application of Leray–Schauder theory in the
second half of the century deals with bifurcation theory. Early traces of a topo-
logical theory of bifurcation can already be found in Poincaré’s work on the
figures of equilibrium of rotating bodies [66], and the word is mentioned in Leray–
Schauder’s paper [53]:

Le problème de Dirichlet étudié ci-dessus peut admettre plusieurs solutions, peut-être

même des faisceaux de solutions; quand on fait varier les données, des “bifurcations”
peuvent se produire11.

But the general theory in its essentially definitive form is initiated around 1950
by M. A. Krasnosel’skĭı [39], [40], [177].
The problem consists in studying an equation of the form

(3) x = T (x, λ),

in a real Banach space X, when T : X × R→ X is completely continuous and

T (0, λ) = 0

for each λ ∈ R. Thus x = 0 is a solution to (3) for each λ ∈ R (the trivial
solution). (λ∗, 0) is a bifurcation point for (3) if there exist a sequence (λk, xk) of
solutions of (3) in (R, X \ {0}) which converges to (λ∗, 0). The problem consists
in finding conditions for the existence of bifurcation points.
Krasnosel’skĭı considers the special case of equations of the form

(4) x = λLx+R(x, λ),

where L : X → X and R : X × R→ X are completely continuous, and

lim
x→0

‖R(x, λ)‖
‖x‖

= 0,

uniformly on bounded λ-sets. It is not too difficult to prove that if (λ∗, 0) is
a bifurcation point for (3), then λ∗ is a characteristic value of L (i.e. the reciprocal
of an eigenvalue). Krasnosel’skii’s theorem provides a sufficient conditions for
a characteristic value of L to be a bifurcation point.

Theorem 8.1. For each a real characteristic value λ∗ of L with odd multi-
plicity, (λ∗, 0) is a bifurcation point of (4).

Of fundamental importance in Krasnosel’skĭı’s proof of this theorem is the
Leray–Schauder formula

indLS [I − L, 0] = (−1)σ,

11The Dirichlet problem considered above may admit several solutions, maybe even sheaves

of solutions; when the data vary, “bifurcations” may occur.
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where L : X → X is linear, invertible and completely continuous, and σ is the
sum of the multiplicities of the eigenvalues of L contained in ]1,∞[.
The same year, Krasnosel’skĭı introduces the interesting and fruitful concept

of bifurcation from infinity. The point (λ∗,∞) is said to be a bifurcation point
for (4) if there exists a sequence (λn, xn) of solutions of (4) such that λn → λ∗

and ‖xn‖ → ∞. He proves the following existence result.

Theorem 8.2. If

(5) lim
‖x‖→∞

‖R(x, λ)‖
‖x‖

= 0,

uniformly on bounded λ-sets, then, for each real characteristic value λ∗ of L with
odd multiplicity, (λ∗,∞) is a bifurcation point of (4).

A global version of Krasnosel’skĭı’s Theorem 8.1 is given by Rabinowitz
in 1971 [67]. Let S denote the closure in R×X of the set of (λ, x) ∈ R×(X \{0})
satisfying (4).

Theorem 8.3. If λ∗ is a real characteristic value of L with odd multiplicity,
then S contains a component C which either is unbounded, or contains (λ∗∗, 0),
where λ∗∗ 6= λ∗ is a characteristic value of L.

The global version for bifurcation from infinity is due to Toland and to Ra-
binowitz (1973).

Theorem 8.4. If (5) holds and if λ∗ is a real characteristic value of L
with odd multiplicity, then (4) possesses an unbounded component of solutions D
which contains (λ∗,∞). Moreover, if Λ ⊂ R is an interval which contains only
the characteristic value λ∗ of L, and M is a neighbourhood of (λ∗,∞) whose
projection on R lies in Λ and whose projection on X is bounded away from 0,
then either:

(a) D \M is bounded in R×X, in which case D \M meets R× {0}, or
(b) D \M is unbounded.

If (b) occurs and D \M has a bounded projection on R, then D \M contains
(λ̂,∞), where λ̂ 6= λ∗ is a characteristic value of L.

The global version for bifurcation of mappings in cones is due to Turner
(1971) and Dancer (1973).
The proof of Theorem 8.3 leads to a bifurcation theorem for (3) which reveals

its deep relation with continuation techniques.

Theorem 8.5. If a < b are such that the Leray–Schauder indices

indLS [I − T ( · , a), 0] and indLS [I − T ( · , b), 0]
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exist and are different, then (λ∗, 0) is a bifurcation point of (3) for some λ∗ ∈
[a, b]. Furthermore, if O ⊃ {0} × [a, b] is open, then there is a connected set of
nontrivial solutions of (3) whose closure C intersects {0}× [a, b] and either C is
unbounded, intersects ∂O or contains a trivial solution not in {0} × [a, b].

Many variants, extensions and generalizations of those results have been
proved by Alexander–Yorke, Amann, Antman, Berestycki, Dancer, Fitzpatrick–
Pejsachowicz, Gęba, Hetzer, Ize, Krawcewicz, Laloux, Magnus, Mawhin, Nuss-
baum, Schmitt, Smith, Stuart, Toland, Turner, Weistreich and others. For ref-
erences see [130], [38], [206], [123], [174].
In the late eighties and early nineties, Fitzpatrick and Pejsachowicz [27], [187]

consider the class of quasilinear Fredholm mappings f : X → Y between real
Banach spaces, introduced in 1972 by Šnirel’man [80] and applied to nonlinear
Hilbert problems by Efendiev, which have a representation of the form

f(x) = L(x)x+ C(x), x ∈ X.

Here C : X → Y is completely continuous and L is the restriction to X of
a continuous map L from the complexification X of X to the set Φ0(X,Y ) of
the continuous linear Fredholm operators of index zero between X and Y . They
prove the following result.

Theorem 8.6. Let f : R×X → Y be quasilinear Fredholm and O ⊂ R×X
be open with f(λ, 0) = 0 if (λ, 0) ∈ O. Suppose that [a, b] × {0} ⊂ O, that
Lλ := Dxf(λ, 0) exists as a Fréchet derivative, uniformly in λ, and depends
continuously on λ, for λ ∈ [a, b]. Assume that L : [a, b]→ Φ0(X,Y ) has invertible
end-points and that σ(L, [a, b]) = −1. Then there is a connected set of nontrivial
solutions of f(λ, x) = 0 whose closure C intersects [a, b] × {0} and either C is
unbounded, intersects ∂O or contains a trivial solution not in [a, b]× {0}.

In this theorem σ(L, [a, b]) denotes the parity [27] of the corresponding ad-
missible path L, which belongs to {−1, 1} and is defined by

σ(L, [a, b]) = ε(Ma ◦ La) · ε(Mb ◦ Lb),

where M : [a, b] → GL(X,Y ) (a parametrix for L) is such that Mλ ◦ Lλ is
a linear compact perturbation of identity for each λ ∈ [a, b], and, for λ = a
or b, ε(Mλ ◦ Lλ) is defined by (−1)σλ , where σλ is the sum of the algebraic
multiplicities of the negative eigenvalues of Mλ ◦ Lλ.

9. A-proper mappings and mappings of monotone type

In 1969, motivated by the recent development of the theory of monotone and
accretive operators, Browder and Petryshyn [15] construct a degree theory for
a class of mappings between Banach spaces X and Y , that they call A-proper.
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This requires the existence of a suitable admissible approximation scheme
for the real separable Banach spaces X and Y . Let {Xn} ⊂ X and {Yn} ⊂ Y be
sequences of oriented finite dimensional subspaces such that dimXn = dimYn
and let Wn be a linear map of Y onto Yn for each n ∈ Z+. The scheme ΓA =
{Xn, Yn,Wn} is said to be admissible for (X,Y ) if dist(x,Xn) → 0 as n → ∞
for each x ∈ X and {Wn} is uniformly bounded. An important special case is
the projectionally complete scheme {Xn, Yn, Qn} where Qn is a linear projection
of Y onto Yn such that Qny → y as n→∞ for each y ∈ Y .
One can now define the concept of A-proper map T : D ⊂ X → Y with

respect to ΓA. Letting Dn = D ∩Xn, such a map T is defined by the properties
that WnT : Dn ⊂ Xn → Yn is continuous and the following condition holds: if
{xnj}, with xnj ∈ Dnj , is any bounded sequence such that Wnj (T (xnj )−g)→ 0
for some g ∈ Y , then there exists a subsequence {x′nj} and x ∈ D such that
x′nj → x in X and T (x) = g. A-proper mappings can be naturally associated to
some nonlinear boundary value problems and to various classes of monotone-like
operators.

If now D ⊂ X is a dense linear subspace, G ⊂ X is open, bounded and such
that GD = G ∩ D 6= ∅, and if T : GD → Y is A-proper with respect to the
complete projectional scheme Γ = {Xn, Yn, Qn} and such that y 6∈ T (∂G ∩D),
the degree Deg[T,GD, y] of T on GD over y is the subset of Z′ = Z∪{∞}∪{−∞}
made of the accumulation points of the set {degB [Tn, Gn, Qny] : n ≥ 1}.
Like in Leray–Schauder’s approach, an approximation by mappings between

spaces of the same finite dimension is used, but the approximation scheme, as in
a Galerkin method, is the same for all mappings.

This (multivalued) degree conserves some properties of Leray–Schauder de-
gree, and A-proper homotopies can be defined from which follow new contin-
uation theorems for various classes of mappings. Further contributions have
been made by Alexander, Dupuis, Fitzpatrick, Krawcewicz, Kröger, Kryszewski,
Perne, Milojevič, Nowak, Pascali, Przedradzki, Rothe, Toland, Webb, Weinberg,
Werenski, Willem, Wong and others. References can be found in [120], [180],
[189], [198].

In the early seventies, single-valued degrees have been defined independently
by Skrypnik [110], [118] and Browder [13] for various class of monotone-like
operators between a Banach space X and its dual X∗, like the S+-mappings
T : X → X∗ defined by the property that

xn ⇀ x and lim sup
n→∞

〈Txn, xn − x〉 ≤ 0⇒ xn → x,

which contain as special case suitable perturbations of the hemicontinuous stron-
gly monotone mappings. Extensions in various directions have been made by
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Berkovits, Browder, Hidirov, Kartsatos, Klimov, Krawcewicz, Mawhin, Milo-
jevič, Mustonen, Pascali, Skrypnik, Willem and others. The corresponding con-
tinuation theorems have applications to various types of elliptic, parabolic and
hyperbolic equations. See [182], [13], [180] for references.

10. Nonlinear Fredholm mappings between Banach manifolds

It is a classical result of F. Riesz that if L : X → X is a linear completely
continuous operator in the Banach space X, then F = I−L is a linear Fredholm
operator of index zero.
Building on some ideas of Smale and his 1965 infinite-dimensional version of

Sard’s theorem [79], Elworthy and Tromba [25] develope in 1968 a degree theory
for some nonlinear proper Fredholm operators of index zero between infinite di-
mensional Banach manifolds. Recall that a nonlinear Fredholm operator of index
zero is a C1 mapping whose differential at each point is a linear Fredholm map-
ping of index zero. This is the case for a C1 completely continuous perturbation
of identity. A map is proper is the inverse image of any compact set is compact.
A pioneering work in this direction was already made in 1936 par Caccioppoli

[17], using, in contrast to Smale, Elworthy and Tromba, some finite-dimensional
global Lyapunov–Schmidt reduction instead of a Sard-type lemma. Cacciop-
poli’s approach is developed by Sapronov in 1972–73, who treats compact per-
turbations of nonlinear Fredholm mappings (see the survey [5] and the Voronezh
seminars [159], [170], [175], [178], 183] for an accessible reference).
Formally, taking for simplicityM and N as Banach spaces, this degree theory

for nonlinear Fredholm operators is based upon the fact that any such operator
can be locally written in the form Φ = H + C, where H : M → N is an
homeomorphism and C is completely continuous.
The obstacle in using this degree for multiplicity and bifurcation results is

that its absolute value only is invariant under proper suitable homotopies, un-
less some orientations have been defined for the manifolds and/or the map-
pings. This is a delicate problem and various contributions in this direction
have been obtained by Ovchinnikov, Borisovich, Zvyagin, Sapronov, Isnard,
Gęba, Fitzpatrick–Pejsachowicz–Rabier, Kielhofer, Bartsch, Li, Benevieri–Furi
and others.
In the useful special case of some compactlike perturbations of linear Fred-

holm mappings of index zero, one can state continuation theorems which have
been widely applied. Let X and Z be real normed vector spaces and let the (not
necessarily continuous) linear mapping L : D(L) ⊂ X → Z be Fredholm of index
zero. The set F(L) of linear continuous mapppings of finite rank A : X → Z
such that L+ A : D(L)→ Z is a bijection is non empty. If E is a metric space
and G : E → Z is such that (L + A)−1G is compact on E for some A ∈ F(L),
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the same is true for any B ∈ F(L), and G is then called L-compact on E. G is
called L-completely continuous on E if it is compact on each bounded set of E.

Theorem 10.1. Let Ω ⊂ X × I be an open bounded set, L : D(L) ⊂ X → Z
be linear Fredholm of index zero, N : Ω→ Z L-compact, and

Σ = {(x, λ) ∈ (D(L)× I) ∩ Ω : Lx = N(x, λ)}.

Assume that the following conditions are satisfied:

(i) Σ ∩ ∂Ω 6= ∅ (a priori estimate),
(ii) N(Ω0 × {0}) ⊂ Y , Y a direct summand of R(L) in Z (transversality
condition),

(iii) degB [N( · , 0)|kerL,Ω0 ∩ kerL, 0] 6= 0 (degree condition).
Then Σ contains a continuum C along which λ takes all values in I.

This result can be viewed as the natural extension, to the case where ker L 6= {0},
of the following easy consequence of Corollary 2.2 when ker L = {0}, to which
Theorem 10.1 formally reduces if one adopts the following degree theory in 0-
dimensional space: degB [0, {0}, 0] = 1, degB [0, ∅, 0] = 0.

Theorem 10.2. Let L be invertible, L−1N compact on Ω, and assume the
following conditions hold:

(i) Σ ∩ ∂Ω 6= ∅,
(ii) N( · , 0) = 0,
(iii) 0 ∈ Ω0.

Then Σ contains a continuum C 3 (0, 0) along which λ takes all values in I.

Theorem 10.1 can also be stated in the form of an alternative. We restrict
to the following simple one of Schaefer type.

Theorem 10.3. Let L : D(L) ⊂ X → Z be linear Fredholm of index zero,
f : X → Z L-completely continuous, Q : Z → Z a continuous projector such that
kerQ = R(L). Assume that there exists r > 0 such that the following conditions
hold:

(a) Qf−1(0) ∩ kerL ⊂ B(r) ∩ kerL,
(b) degB [Qf |kerL, B(r) ∩ kerL, 0] 6= 0.

Then either equation Lx = λf(x) has at least one solution for each λ ∈ [0, 1], or
the set

{(x, λ) ∈ D(L)× ]0, 1[ : Lx = λf(x)}
is unbounded.

Theorems 10.1 and 10.3 can be traced to [56]. Other proofs or variants are
due to Furi, Gęba, Granas, Hetzer, Iannacci, Kaczyński, Krawcewicz, Martelli,
Pejsachowicz, Pera, Vignoli, Volkmann, Rybakowski, Fečkan, Ward, Erbe, Wu
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and others. It has received a large number of applications to various boundary
value problems for ordinary and partial differential equations, and in particular
to problems of the Landesman–Lazer type (see the references in [144], [134],
[141], [150], [166], [186], [194]).

11. Conclusion

In 1972, when he was awarded the Feltrinelli Prize, Jean Leray delivered
a lecture on Mathematics and its applications, in which he said [51]

Pour beaucoup d’autres problèmes très généraux, des théorèmes d’existence peuvent
être établis; bien que l’intuition physique les suggère souvent, leurs preuves emploient

des théories diverses et originales: celle des opérateurs, qui doit tant à David Hilbert;

celle des contractions, qui remonte à Emile Picard; celle de l’inversion des applications
fonctionnelles de votre compatriote R. Caccioppoli; celle des points fixes, que Jules

Schauder réussit à appliquer aux espaces fonctionnels. J’aimerais pouvoir détailler

le développement de celle-ci: dénombrer les points fixes d’une application d’un es-
pace topologique en lui-même, comme le théorème de d’Alembert dénombre les zéros

d’un polynome d’une variable, nécessite l’élaboration de la topologie algébrique des

espaces topologiques; il apparâıt alors que les propriétés topologiques fondamentales
de l’espace euclidien s’étendent aux espaces topologiques; cette extension conduit à

l’emploi de nouvelles méthodes: suite spectrale, cohomologie relative à un faisceau,

trace généralisée; elles ont permis à divers mathématiciens de développer la théorie
des fonctions de plusieurs variables complexes, la géométrie différentielle, la géométrie

algébrique, la théorie des points fixes elle-même, enfin la théorie des hyperfonctions,
qui prolonge celle des distributions12.

In some letters he wrote to me later, Jean Leray says what follows:

Je suis très touché de votre lettre si chaleureuse, rendant à la mémoire de Jules

Schauder un hommage tellement mérité et manifestant tant d’enthousiasme pour ce

qui est, peut-être, la meilleure part de mes écrits. [...] Je suis très heureux que celle-ci
[la théorie du degré topologique] reste si vivante. [...] Je partage votre [...] admiration

pour Jules Schauder, votre amour des points fixes13.

This conclusion should be shared by many mathematicians.

12For many other very general problems, existence theorems can be established; although

physical intuition often suggests them, their proof use various and original theories: the the-
ory of operators, which owes so much to David Hilbert; the theory of contractions, which

goes back to Emile Picard; the inversion of functional applications of your fellow-countryman
R. Caccioppoli; fixed point theory, that Jules Schauder succeeded to apply to function spaces.

I would like to be able to describe its development: to count the fixed points of a mapping of a

topological space into itself, like d’Alembert’s theorem counts the zeros of a polynomial in one
variable, requires the elaboration of algebraic topology of topological spaces; it appears then

that the fundamental topological properties of Euclidian space can be extended to topological

spaces; this extension leads to the use of new methods: spectral sequence, sheaf cohomology,
generalized trace; they have allowed various mathematicians to develop the theory of functions

of several complex variables, differential geometry, algebraic geometry, fixed point theory itself,

and finally the theory of hyperfunctions, which extends the theory of distributions.
13I am very touched by your so warm letter, giving to the memory of Jules Schauder a fully

deserved homage et expressing so much enthusiasm for what is, maybe, the best part of my
writings[...]. I am very happy that the theory of topological degree remains so much alife. [...]
I share your [...] admiration for Jules Schauder, your love of fixed points.
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[103] J. L. Lions, Quelques méthodes de résolution des problèmes non linéaires, Dunod,

Paris, 1969.

[104] R. Reissig, G. Sansone and R. Conti, Nichtlineare Differentialgleichungen Höherer
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[147] A. I. Gusejnov and Kh. S. Mukhtarov, Introduction to the Theory of Singular

Integral Equations, Nauka, Moscow, 1980. (Russian)

[148] E. Fadell and G. Fournier ed., FixedPointTheory, vol. 886, Lecture Notes in Math.,

Springer-Verlag, Berlin, 1981.

[149] V. I. Istratescu, Fixed Point Theory, Reidel, 1981.
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