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A SEMILINEAR ELLIPTIC EQUATION
WITH CONVEX AND CONCAVE NONLINEARITIES

Elliot Tonkes

Abstract. In this paper we establish the existence of multiple solutions
for a semilinear elliptic equation with competing convex and concave non-

linearities. With either a subcritical or critical exponent in the nonlinearity,

the existence of solutions is determined with critical point theorems based
on the symmetric mountain pass theorem.

1. Introduction

We consider the problem

(1)

{
−∆u− λg(x)u = k(x)|u|q−2u− h(x)|u|p−2u in RN ,

u > 0 in RN , u ∈ D1,2(RN ),

where N ≥ 3 and 1 < q < 2 < p ≤ 2∗ = 2N/(N − 2) and with integrability and
sign conditions on g(x), k(x) and h(x). Throughout this paper, we assume the
following hold:

(G1) g(x) ∈ LN/2(RN ) ∩ L∞(RN ) is indefinite in sign,
(H1) for p < 2∗, h(x) ∈ Lp0(RN )∩L∞(RN ), where p0 = 2N/(2N − pN + 2p)

while for p = 2∗, h(x) ∈ L∞(RN ),
(K1) k(x) ∈ Lq0(RN ) ∩ L∞(RN ), where q0 = 2N/(2N − qN + 2q).
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The requirements on g(x) are used in [16] to analyse the associated linear eigen-
value problem. The integrability requirements provide a compactness condition.

Problems such as (1) have captured interest since the seminal work of Brézis
and Nirenberg [14]. In particular, the difficulties associated with overcoming
a critical Sobolev exponent are discussed there.

The fountain theorem [7] demands that, with a sequential decomposition of
the underlying space, the geometry of a functional is appropriate to recycle the
symmetric mountain pass theorem at an unbounded sequence of energies. With
a Palais–Smale condition, this confirms an infinitude of solutions.

The dual fountain theorem [11] uses a stronger compactness condition in
the form of the dual Palais–Smale condition [6], [22] or a localised version, [21].
This stronger condition permits a Galerkin technique to be applied to the de-
composition of the underlying space. A sequence of critical energies is verified,
monotonically rising to zero.

In this paper, we extend and apply both of these theorems. In essence, the
underlying space is decomposed into a subspace upon which the minimax theo-
rem is applicable, and a complementary subspace where the functional remains
positive definite and hence does not impede the existence of critical points. The
concept of extracting a subspace and performing a successive decomposition and
mountain pass techniques on the conjugate space is also undertaken in [8]. When
k(x) ≥ 0, the extracted positive definite subspace is associated with k(x) assum-
ing the value zero on some set in RN . For the case that h(x) ≤ 0 and k(x) is
indefinite, a subspace associated with the set where h(x) = 0 is identified.

The fountain theorems rely on symmetry of the functional in the sense of
admissibility posed by Bartsch [7], of which even functionals are an example. In
fact, when symmetry is destroyed the method collapses and a limited number
of solutions may be discerned from the remnants: [23], [20], [25], [9]. It appears
possible that other methods may overcome restrictions on symmetry, given the
evidence in [5].

Ruppen [27] has advocated that terms of the form k(x)|u|q encourage the
existence of solutions while −h(x)|u|p tend to prohibit solutions.

For g(x) ≡ 0, and k(x) and h(x) replaced with real parameters, Ambrosetti
et al [3] contemplated problems like (1) on a bounded domain. Results there
were extended by Bartsch and Willem [12] using a fountain theorem. Further
uses are documented in [31], [7], [10], [9].

In [30], Tshinanga considered a similarly structured subcritical problem on
a unbounded domain, with functions h(x) and k(x) fixed to the form (1 + |x|)−b

(related to Hardy’s inequality) with two multiplicative parameters, µ and λ,
respectively taking the role of h and k. For µ > 0 fixed the geometry is valid for
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the fountain theorem while for fixed λ > 0, the dual fountain theorem may be
applied.

For k(x) ≥ 0, our results closely resemble and extend those achieved in [20].
However, our formulation does not seem capable of reproducing extensions to
supercritical growth.

These methods expose an infinite number of solutions. Our notation shall
enumerate the solutions as um, while a sequence approaching a solution will be
expressed as un. Eigenvalues λ1 and λ−1 are defined in the next section.

The main results derived are the following:

Theorem 1.1. Assume 1 < q < 2 < p < 2∗, and h(x) ≥ 0, k(x) ≥ 0 are not
identically zero. Let λ ∈ (−λ−1, λ1). Then problem (1) admits infinitely many
solutions at negative levels. A labelling of solutions {um} gives that ‖∇um‖ → 0
as m →∞.

Theorem 1.2. Assume 1 < q < 2 < p < 2∗, k(x) ≥ 0 is not identically zero
and h(x) changes sign. Let λ ∈ (−λ−1, λ1). Then problem (1) admits infinitely
many solutions at negative levels.

Theorem 1.3. Assume that 1 < q < 2 < p < 2∗, and h(x) ≤ 0 is not
identically zero. Let k(x) 6≡ 0 and λ ∈ (−λ−1, λ1). Then problem (1) possesses
an unbounded sequence of solutions {um} ⊂ D1,2.

Theorem 1.4. Suppose p = 2∗ and k(x) ≥ 0, h(x) ≥ 0 are not identically
zero. For each λ ∈ (−λ−1, λ1) there exists an infinite number of solutions to (1)
with negative energy. Labelling these solutions gives ‖∇um‖ → 0 as m →∞.

Theorem 1.5. Let p = 2∗, suppose h(x) is indefinite in sign and k(x) ≥ 0.
Suppose −λ−1 < λ < λ1. If ‖k(x)‖q0 > 0 is sufficiently small then the prob-
lem (1) possesses an infinite number of solutions at negative energy.

2. Preliminaries

We seek weak solutions to (1) in the space D1,2(RN ), defined as the com-
pletion of C∞

0 with respect to the norm ‖∇u‖2 =
∫

RN |∇u|2. A continuous
imbedding exists D1,2(RN ) ↪→ L2∗(RN ). By S we refer to the best Sobolev
constant for the imbedding:

S = inf
u∈D1,2

‖u‖2∗=1

∫
RN

|∇u|2 dx.

If γ is a measurable set in RN , then we denote

D1
0(γ) = {u ∈ D1,2(RN ) : u(x) = 0 a.e. x ∈ RN \ γ}.
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If a domain is omitted, by default it shall be RN . Weak convergence shall be
denoted “⇀” while strong convergence is represented by “→”. For a nonneg-
ative measurable function l(x), define the weighted Lebesgue space Lp

l by all
measurable functions u which satisfy

∫
RN l(x)|u|p < ∞, and associate with it the

seminorm ‖u‖p
p,l =

∫
RN l(x)|u|p.

Critical points of the C1 functional

Iλ(u) =
1
2

∫
RN

|∇u|2 dx− λ

2

∫
RN

gu2 dx−
∫

RN

k(x)|u|q dx−
∫

RN

h(x)|u|p dx

correspond with weak solutions to the Euler equations (1). In the sequel, we may
omit the notation for the domain of integration which shall by default be RN .

Consider the eigenvalue problem

(2) −∆u = λg(x)u, x ∈ RN , lim
|x|→∞

u(x) = 0.

A lemma from [16] which is important for eigenvalue results is included below.
Assuming (G1), define a linear form on D1,2 by

β(u, v) =
∫

RN

g(x)uv dx.

By the Riesz representation theorem, there is a bounded linear operator L such
that

β(u, v) = 〈Lu, v〉 for all u, v ∈ D1,2(RN ).

Lemma 2.1. L is compact.

From this, the existence of a principal positive eigenvalue results.
Assume (G1) and g+ 6≡ 0. We set

(3) 0 < λ1(g) = λ1 =
[

sup
v∈D1,2\{0}

∫
g(x)v2∫
|∇v|2

]−1

.

Then λ1 is the principal positive eigenvalue of the eigenvalue problem (2) and the
associated eigenfunction ϕ1 is strictly positive by construction in [15]. Similarly,
for g− 6≡ 0,

(4) 0 < λ1(−g) = λ−1 =
[

sup
v∈D1,2\{0}

∫
(−g(x))v2∫
|∇v|2

]−1

is the principal negative eigenvalue. If g+ ≡ 0 (g− ≡ 0) then it is natural
to denote λ1 = ∞ (λ−1 = ∞). Tertikas [29] has gained eigenvalue results
similar to these with relaxed conditions on g(x). However, we maintain the
condition (G1) to take advantage of compactness properties.

For a nonempty set γ, we may define

(5) λ1(γ) =
[

sup
D1

0(γ)\{0}

∫
g(x)v2∫
|∇v|2

]−1
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with λ−1(γ) defined analogously to (4) provided g− 6≡ 0 on γ. Cingolini and
Gámez [17] show that a maximum is attained in (5). Accordingly, suprema in (3)
and (5) are distinct since ϕ1 is positive everywhere in RN . This is expressible as

−λ−1(γ) ≤ λ−1 < 0 < λ1 ≤ λ1(γ).

The following lemma from [17] shows that for 2 ≤ s < 2∗ and l(x) ∈
L2N/(2N−sN+2s), the imbedding D1,2(RN ) ↪→ Ls

l (RN ) holds compactly. Indeed,
we remark that the lemma remains valid with no alteration in the proof for
1 < s < 2.

Lemma 2.2. Given l(x) ∈ L2N/(2N−sN+2s)(RN )∩L∞(RN ), 1 < s < 2∗, the
problem

−∆w = l(x)|u|s−2u in RN

admits a unique solution for each u ∈ D1,2(RN ). Further, the operator Ks
l :

D1,2(RN ) 7→ D1,2(RN ) defined by Ks
l (u) = w is compact.

Remark 2.3. In particular, this implies weak continuity of a subcritical
functional: if un ⇀ u0 in D1,2 then∫

RN

l(x)|un|s →
∫

RN

l(x)|u0|s.

Lemma 2.2 does not extend to the case p = 2∗. Drábek and Huang [18]
developed the following weak case:

Lemma 2.4. Let un be a bounded sequence in D1,2 and φ ∈ C∞
0 (RN ). Let

h(x) ∈ L∞(RN ). Then∫
h(x)|un|2

∗−2unφ →
∫

h(x)|u0|2
∗−2u0φ.

Remark 2.5. It is trivial to extend this result to account for φ ∈ L2∗ . For
choosing R sufficiently large, partition the integral∫

RN

h(x)|un|p−2unφ =
∫

BR

h(x)|un|p−2unφ +
∫

Bc
R

h(x)|un|p−2unφ

and estimate the last term using Hölder’s inequality∫
Bc

R

h(x)|un|p−2unφ

≤ ‖h(x)‖∞
( ∫

Bc
R

u2N/(N−2)
n

)(N+2)/2N( ∫
Bc

R

φ2∗
)1/2∗

≤ C

( ∫
Bc

R

φ2∗
)1/2∗

,

which can be made arbitrarily small with large R.
For nonnegative k(x), bounds exist on the values of λ for which solutions

may exist. Define W− = {x ∈ RN : h(x) < 0}.



256 E. Tonkes

Lemma 2.6. Suppose W− is nonempty, g(x) changes sign in W−, k(x) is
nonnegative, h(x) ∈ L∞ and 1 < q < 2 < p. Then for every positive solution
(u, λ) ∈ D1,2(RN )× RN , one has −λ−1(W−) < λ < λ1(W−).

Proof. Firstly note that due to the compactness Lemma 2.1, a maximiser
u0 exists for the eigenvalue problem:

λ1(W−) =
(

sup
u∈D1

0(W−)\{0}

∫
W− g(x)u2∫
W− |∇u|2

)−1

=

∫
W− |∇u0|2∫
W− g(x)u2

0

,

for some u0 ∈ D1
0(W

−). If u is a positive solution to (1), it must hold that

λ =
(

sup
v∈D1,2\{0}

∫
(g(x) + k(x)|u|q−2/λ− h(x)|u|p−2/λ)v2 dx∫

|∇v|2dx

)−1

<

(∫
W−(g(x) + k(x)|u|q−2/λ− h(x)|u|p−2/λ)u2

0 dx∫
W− |∇u0|2dx

)−1

=
(

1
λ1(W−)

+

∫
W− k(x)|u|q−2u2

0

λ
∫

W− |∇u0|2
−

∫
W− h(x)|u|p−2u2

0

λ
∫
|∇u0|2

)−1

≤ λ1(W−).

The case of λ < 0 follows symmetrically. If g(x) does not change sign in W−,
then λ±1(W−) may become infinite. �

3. Critical point theorems

3.1. Dual fountain theorem. A variation on an abstract critical point
theorem by Bartsch and Willem [12] is utilised to guarantee an infinite number
of solutions to equation (1). The alteration is required to widen the allowable
function class for k(x) from positive to nonnegative functions. The result from
[12] requires symmetry of the functional to be expressible in terms of a compact
group action which includes even functionals as a simple example. In essence,
the theorem is based on a symmetric mountain pass theorem by Ambrosetti and
Rabinowitz [4], but with a sequence of decompositions providing an infinite num-
ber of critical values. The Galerkin technique construction of each linking result
within the fountain theorem dictates that the usual (PS)-condition is inadequate
and a dual formulation of the condition, the (PS)∗-condition is introduced.

Let X be an infinite dimensional separable Banach space with norm ‖ · ‖.
Suppose that X may be decomposed as two subspaces, X = X1 ⊕ X2. Define
orthonormal bases for the subspaces as X1 = sp{e1

j}j∈N and X2 = sp{e2
j}j∈N.

Define

X1(j) = sp{e1
j}, Ym =

⊕
j≥m

X1(j), Zm =
⊕
j≥m

X2(j),

X2(j) = sp{e2
j}, Y m =

⊕
0≤j≤m

X1(j), Zm =
⊕

0≤j≤m

X2(j).
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We assume that the functional displays a group symmetry similar to [12]. Let
G be a compact Lie group, and V a finite dimensional orthogonal representation
of G.

Definition 3.1. The action of G is said to be admissible if every continu-
ous equivariant map γ : O 7→ V m where O is an open bounded and invariant
neighbourhood of 0 in V m+1, m ≥ 1, has a zero in ∂O.

Here O is invariant if gv = (gv1, . . . , gvm+1) ∈ O for every g ∈ G and
v = (v1, . . . , vm+1) ∈ O. The map γ is equivariant if γ(gv) = gγ(v). We remark
that an even functional has an admissible representation.

Compactness of the functional is expressed in a dual formulation of the
usual Palais–Smale condition, the (PS)∗c condition. We remark that the (PS)∗c -
condition implies the usual (PS)c-condition (Definition 3.2) but the converse has
not been proven [31].

Definition 3.2. Let Φ ∈ C1(X, RN ) and c ∈ RN . The functional Φ satisfies
the (PS)c-condition if any sequence {un} ⊂ X such that

n →∞, Φ(un) → c, Φ′(un) → 0 in D−1,2

(denoted a (PS)c-sequence) contains a subsequence converging to a critical point
of Φ.

Definition 3.3. Let Φ ∈ C1(X, RN ) and c ∈ RN . The function Φ satisfies
the (PS)∗c -condition (with respect to Y n ⊕ Zn) if any sequence {unj} ⊂ X such
that

nj →∞, unj ∈ Y nj ⊕ Znj , Φ(unj ) → c, Φ′|Y nj⊕Znj (unj ) → 0

(denoted a (PS)∗c -sequence) contains a subsequence converging to a critical point
of Φ.

In a slightly less restricted form than [12], sufficient conditions on a functional
Φ are expressed in (A1)–(A5).

(A1) The compact group G acts isometrically on the Banach space X =
X1 ⊕X2 =

⊕
j∈N X1(j)⊕

⊕
j∈N X2(j), the spaces X1(j) are invariant

and there exists a finite dimensional space V such that for every j ∈ N,
X1(j) ∼= V and the action of G on V is admissible.

(A2) There exists m0 ∈ N such that for all m ≥ m0 there exists Rm > 0 such
that Φ(w) ≥ 0 for every w ∈ Ym ⊕X2 with ‖w‖ = Rm.

(A3) Suppose bm = infBm
Φ(u) → 0 as m →∞ where Bm = {u ∈ Ym ⊕X2 :

‖u‖ ≤ Rm}.
(A4) For all m ≥ m0 there exists rm ∈ (0, Rm) and dm < 0 such that

Φ(u) ≤ dm for every u ∈ Y m with ‖u‖ = rm.
(A5) The (PS)∗c -condition holds for Φ for every c ∈ [bm0 , 0).
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Remark 3.4. We may remark that if Φ is positive definite on subspace X2,
then to guarantee condition (A2), it is sufficient to check nonnegativity of Φ on
a sphere in Ym and to verify (A3) we may replace the definition of Bm with
{u ∈ Ym : ‖u‖ ≤ Rm}.

Theorem 3.5. If Φ satisfies (A1)–(A5), then for each m ≥ m0, Φ has a
critical value cm ∈ [bm, dm], hence cm → 0 as m →∞.

The proof for this theorem is based on the deformation lemma [7] which has
been weakened slightly by broadening the restriction (A1).

Lemma 3.6. Assume Φ satisfies (A1). Let Bm = {u ∈ Y m : ‖u‖ ≤ Rm} (in
contrast to Bm in (A3)) and suppose 0 < rm < Rm. Define, for m ≥ 2,

cm = inf
γ∈Γm

max
u∈Bm

Φ(γ(u)),

Γm = {γ ∈ C(Bm, X) : γ is equivariant and γ|∂Bm = id}.

If

dm = inf
u∈Ym⊕X2, ‖u‖=rm

Φ(u) > am = max
u∈Y m, ‖u‖=Rm

Φ(u),

then cm ≥ dm and, for every ε ∈ (0, (cm − am)/2), δ > 0 and γ ∈ Γm such that
maxBm Φ ◦ γ ≤ cm + ε, there exists u ∈ X such that

(a) cm − 2ε ≤ Φ(u) ≤ cm + 2ε,
(b) dist(u, γ(Bm)) ≤ 2δ,
(c) ‖Φ′(u)‖ ≤ 8ε/δ.

Proof of Theorem 3.5. Fix n ≥ m ≥ m0 and define

Zn
m =

n⊕
j=m

X1(j)⊕ Zn,

Bn
m = {u ∈ Zn

m : ‖u‖ ≤ Rm},
Γn

m = {γ ∈ C(Bn
m, Y n ⊕ Zn) : γ is equivariant and γ|∂Bn

m
= id},

cn
m = sup

γ∈Γn
m

min
u∈Bn

m

Φ(γ(u)).

Now, apply Lemma 3.6 to the functional −Φ, defined on the space Y n ⊕ Zn. It
follows that cn

m ≤ dm and there exists un ∈ Y n ⊕ Zn such that

cn
m − 2/n ≤ Φ(un) ≤ cn

m + 2/n, ‖Φ′|Y n⊕Zn(un)‖ ≤ 8/n.

Since the (PS)∗c -condition holds at the appropriate levels, {cn
m}n≥m converges

along a subsequence to a critical value cm ∈ [bm, dm] of Φ as n → ∞. From
(A3), it follows that cm → 0 as m →∞. �
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3.2. Fountain theorem. A similar extraction of a subspace can extend
the fountain theorem. Let X be a Banach space, and X = X1 ⊕ X2 where
dim(X1) = ∞. Let {e1

j}j∈N form a basis for X1 and define X1(j) = sp{e1
j}.

Let Φ ∈ C1(X) be a functional with an admissible group action G as defined in
Definition 3.1.

Define the progressive decomposition of X1 as follows

Y m =
⊕

0≤j≤m

X1(j) and Ym =
⊕

m≤j<∞

X1(j).

We introduce the following conditions:

(B2) For some ρm > 0, am = max{Φ(u) : u ∈ Y m, ‖u‖ = ρm} ≤ 0.
(B3) For some rm > 0, bm = inf{Φ(u) : u ∈ Ym ⊕ X2, ‖u‖ = rm} →

∞ as m →∞.
(B4) Suppose that Φ satisfies (PS)c-condition for each c > 0.

Theorem 3.7. Assume that the functional Φ ∈ C1(X) satisfies the symme-
try condition (A1). Further, suppose that for each m ∈ N there exists ρm >

rm > 0 such that conditions (B2)–(B4) hold. Then there exists an unbounded
sequence of positive critical values.

The inclusion of a formal proof for this perturbation of a well known result
seems unwarranted since the concept and the proof is so close to Bartsch’s tra-
ditional fountain theorem in [7]. The only difference is that a subspace X2 is
extracted, and the symmetric mountain pass theorem applied to the remaining
subspaces.

Remark 3.8. If compactness conditions (A5) and (B4) are omitted, then
Theorems 3.5 and 3.7 yield (PS)- and (PS)∗-sequences at the associated sequence
of energies.

4. Proofs of theorems

For applications of Theorems 3.5 and 3.7, we replace the generic space X

with the concrete example D1,2(RN ) . To verify that this space is appropriate,
the existence of a countable basis and the ability to generate an orthogonal
complement must be assured.

By functional analysis, for example [28], given any closed linear subspace M

of a Banach space X, there is a complementary subspace N if and only if there
is a projector P of X onto M . Using the obvious projector derived from the
inner product in D1,2(RN ), an orthogonal complement to any closed subspace is
guaranteed.

According to Theorem II.7 in [26], a Hilbert space is separable if and only
if it possesses a countable orthonormal basis. To see that D1,2(RN ) is separa-
ble, recall the imbedding D1,2(RN ) ↪→ L2∗(RN ). Consequently, D1,2(RN ) must
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be isometrically isomorphic to a closed linear subspace V of L2∗ , with the iso-
morphism established by the map u 7→ Du. Since L2∗(RN ) is separable, so
D1,2(RN ) is too.

4.1. Proofs of Theorems 1.1 and 1.2. Let Ω = int{x ∈ RN : k(x) > 0}.
Define the subspace X2 spanned by those u which are zero on the support of k(x):
X2 = {u ∈ D1,2(RN ) : u(x) = 0 a.e. x ∈ Ω}. For any bounded sequence {un} ⊂
D1,2, it follows from the Sobolev imbedding theorem that for a subsequence
un(x) → u0(x) almost everywhere, and hence X2 is a closed subspace. Define
X1 by the relation X ≡ D1,2(RN ) = X1 ⊕ X2, an orthogonal decomposition.
Note that for all u ∈ X2,

∫
k(x)|u|q = 0, and X2 will form the positive definite

subspace mentioned in Remark 3.4. If k(x) > 0 a.e., then Ω = RN and X2 = {0}.

Lemma 4.1. Suppose (G1) holds with g± 6≡ 0. Assume 1 < q < 2 < p ≤ 2∗

and (K1) is satisfied. Then, for λ ∈ (−λ−1, λ1), any (PS)∗c-sequence for Iλ is
bounded in D1,2(RN ).

Proof. Specifying (H1) ensures Iλ is differentiable. Suppose un ∈ Y n⊕Zn

is a (PS)∗c -sequence, with ‖∇un‖ → ∞. Let 0 ≤ λ < λ1 then, for n sufficiently
large,

c + 1 + ‖∇un‖ ≥ Iλ(un)− 1
p
〈I ′(un), un〉

=
(

1
2
− 1

p

)( ∫
|∇un|2 − λ

∫
g(x)u2

n

)
−

(
1
q
− 1

p

) ∫
k(x)|un|q

≥
(

1
2
− 1

p

)(
1− λ

λ1

)
‖∇un‖2 −

(
1
q
− 1

p

)
S−q/2‖k(x)‖q0‖∇un‖q,

which provides a contradiction. A symmetric argument holds for −λ−1 <

λ < 0. �

Although simple, Lemma 4.1 is applicable for both subcritical and critical
exponents, and independently of the signs of h(x) and k(x). For nonnegative
h(x), we need only seek solutions at negative levels according to the lemma
below.

Lemma 4.2. Suppose (G1), (K1) and (H1) hold and let k(x) and h(x) be
nonnegative. Then there exist no solutions to (1) at positive energy.

Proof. Let u be a weak solution at level c. Then∫
|∇u|2 − λ

∫
g(x)u2 − 2

q

∫
k(x)|u|q +

2
p

∫
h(x)|u|p = 2c,∫

|∇u|2 − λ

∫
g(x)u2 −

∫
k(x)|u|q +

∫
h(x)|u|p = 0.
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Consequently,

(6) 0 ≤
(

1− 2
p

) ∫
h(x)|u|p = −2c +

(
1− 2

q

) ∫
k(x)|u|q.

Since h(x), k(x) ≥ 0 almost everywhere, it is impossible for c to assume a positive
value. �

Construction of the fountain theorems develops a sequence of linking sets,
each satisfying a variational principle to expose a solution. For this particular
problem, the size of these sets shrinks to zero as the technique progresses through
the decomposition of D1,2. As a consequence, the levels of the solutions rise
towards zero. However, it is not possible to immediately deduce the size of the
solution without further information regarding the functional. The result below
is pertinent to the query posed in [12].

Lemma 4.3. Suppose (G1), (K1) and (H1) hold, let k(x) and h(x) be non-
negative and −λ−1 < λ < λ1. Let {um} be a sequence of solutions to (1) with
Iλ(um) = −εm < 0, εm → 0 as m →∞. Then ‖∇um‖ → 0 as m →∞.

Proof. Let um be a (weak) solution at level −εm. Clearly it cannot be the
trivial solution, and following the working in Lemma 4.2,

−2εm ≤
(

1− 2
q

) ∫
k(x)|um|q ≤ 0 ⇒

∫
k(x)|um|q ≤ 2q

2− q
εm.

Inserting this expression into (6) gives

p− 2
p

∫
h(x)|um|p = 2εm +

(
1− 2

q

) ∫
k(x)|um|q ≤ 2εm.

Implying that ∫
h|um|p ≤ 2p

p− 2
εm.

Now, um is a solution, and assuming 0 < λ < λ1 (the case of −λ−1 < λ < 0
follows symmetrically)(

1− λ

λ1

) ∫
|∇um|2 ≤

∫
|∇um|2 − λ

∫
g(x)(um)2

=
∫

k(x)|um|q −
∫

h(x)|um|p ≤
∫

k|um|q ≤ 2q

2− q
εm

establishing that ‖∇um‖ → 0 as εm → 0. �

Proof of Theorem 1.1. Verifying condition (A1), we firstly remark that
functional Iλ ∈ C1(D1,2, RN ) is even. We now verify conditions (A2)–(A5).
Define µm by

µm = sup
u∈Ym⊕X2\{0}

(
(
∫

k(x)|u|q)1/q

(
∫
|∇u|2)1/2

)
.

It is clear that 0 < µm+1 ≤ µm, so µm → µ0 ≥ 0 as m →∞. We now show that
µ0 = 0. For every m ≥ 1, there exists um ∈ Ym ⊕X2 such that ‖∇um‖ = 1 and
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(
∫

k(x)|um|q)1/q > µm/2. By the definition of Ym, um ⇀ u0 in D1,2(RN ), where
u0 ∈ X2. Compactness of the operator Kq

k gives that um → u0 in Lq
k, and so∫

k(x)|um|q →
∫

k(x)|u0|q = 0.

Now, for u ∈ Ym ⊕X2, with λ > 0

Iλ(u) ≥ 1
2

(
1− λ

λ1

)
‖∇u‖2 − µq

m

q
‖∇u‖q +

1
p

∫
h(x)|u|p

≥ 1
2

(
1− λ

λ1

)
‖∇u‖2 − µq

m

q
‖∇u‖q

and this guarantees Iλ(u) remains positive for

(7) ‖∇u‖ >

(
q(1− λ/λ1)

2µq
m

)1/(q−2)

≡ Am.

For λ < 0, Am is similar to expression (7), replacing λ1 with −λ−1

Setting Rm = 2Am ensures condition (A2) is satisfied. As m →∞, µm → 0
and so Am → 0, fulfilling requirement (A3).

Suppose k(x) > 0 almost everywhere. Then ‖ · ‖q,k forms a norm (not simply
a seminorm). Since Y m is finite dimensional all norms are equivalent, and

c1‖∇u‖ ≤
( ∫

k(x)|u|q
)1/q

≤ c2‖∇u‖.

We estimate Iλ from above for u ∈ Y m,

Iλ(u) ≤ 1
2
(1 + |λ|S−1‖g‖N/2)‖∇u‖2 − c1

q
‖∇u‖q +

1
p
S−p/2‖h‖p0‖∇u‖p.

Since q < 2 < p, taking rm > 0 sufficiently small, (A4) is satisfied.
The uniform estimate c1 is stronger than actually required, so suppose k(x) ≥

0 and X2 6= {0}. Let u ∈ Y m. By orthogonality of the decomposition, u 6∈ X2,
so u(x) 6≡ 0 for x ∈ Ω, and thus

∫
k(x)|u|q 6= 0. Since Y m is finite dimensional,

there is a constant cm such that

cm‖∇u‖ ≤
( ∫

k(x)|u|q
)1/q

for all u ∈ Y m. In contrast to the case where X2 = {0}, cm → 0 as m →∞.
For u ∈ Y m,

Iλ(u) ≤ 1
2
(1 + |λ|S−1‖g‖N/2)‖∇u‖2 − cm

q
‖∇u‖q +

1
p
S−p/2‖h‖p0‖∇u‖p,

and Iλ(u) ≤ dm < 0 for ‖∇u‖ = rm sufficiently small. Since cm → 0 as m →∞,
it follows that rm → 0 and dm → 0.

Verification of the Palais–Smale condition (A5) follows from Lemma 4.1
which shows that any (PS)∗-sequence, {un}, is bounded in D1,2. A subsequence,
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again denoted {un}, converges weakly to u0 in D1,2. Consequently un → u0 in
Lp

h, Lq
k, L

N/2
g by Lemma 2.2. Taking limits of 〈I ′(un), un〉 and 〈I ′(un), u0〉

〈I ′λ(un), u0〉 =
∫
|∇u0|2 − λ

∫
g(x)u2

0 −
∫

k(x)|u0|q

+
∫

h(x)|u0|+ o(1) = o(1),

〈I ′λ(un), un〉 =
∫
|∇un|2 − λ

∫
g(x)u2

0 −
∫

k(x)|u0|q

+
∫

h(x)|u0|+ o(1) = o(1),

implying
∫

RN |∇un|2 →
∫

RN |∇u0|2 and u0 must be a critical point. Convergence
of the solutions to zero in D1,2 is proved by a trivial application of Lemma 4.3.�

For a sign-changing h(x), it is possible to recover an infinite number of so-
lutions using the dual fountain theorem. In verifying the conditions (A1)–(A5),
we find that the technique will only elicit solutions at small energies.

Lemma 4.2 no longer applies, and it appears that Lemma 4.3 also fails.
This implies that solutions may have small energies, but not necessarily small
magnitudes.

Proof of Theorem 1.2. Following precisely the proof to Theorem 1.1, we
decompose X = X1⊕X2, where X2 = {u ∈ D1,2(RNN) : u(x) = 0 a.e. x ∈ Ω}.
However, since h(x) changes sign, Iλ is no longer positive definite on X2.

Using the technique from [30], there exists a sufficiently small number R > 0
such that for all u ∈ D1,2(RN ) with ‖∇u‖ < R,

1
p

∫
h(x)|u|p ≤ 1

p
S−p/2‖h‖p0‖∇u‖p ≤ 1

4

(
1− λ

λ1

)
‖∇u‖2.

Consequently, for u ∈ Ym ⊕X2,

Iλ(u) ≥ 1
4

(
1− λ

λ1

)
‖∇u‖2 − µq

m

q
‖∇u‖q.

It follows that Iλ(u) > 0 provided that

‖∇u‖ >

(
q(1− λ/λ1)

4µq
m

)1/(q−2)

≡ Am,

where Am → 0 as m → ∞. Set Rm = 2Am, then by choosing m0 sufficiently
large in condition (A2), Rm0 will fall within the bound R. Conditions (A2)
and (A3) follow immediately and (A4) follows from the proof to Theorem 1.1.
Lemma 4.1 implies (A5) and Theorem 3.5 provides the result. �
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4.2. Proof of Theorem 1.3. When h(x) is non-positive and k(x) is inde-
finite in sign, the nature of the problem is inverted. Solutions exist at positive
energies, and become sequentially unbounded.

For this problem, a slight twist on the fountain theorem is introduced to
facilitate the possibility of h(x) assuming the value zero on a subset of RN . If
h(x) < 0 almost everywhere, then the usual fountain theorem would suffice.

Proof of Theorem 1.3. Define Υ = int{x ∈ RN : h(x) < 0}. Define
X2 = {u ∈ D1,2 : u(x) = 0 for a.e. x ∈ Υ}. As before, X2 forms a closed
subspace which shall be extracted in applying the fountain theorem. Define X1

as the complementary subspace to X2. Define

µm = sup
u∈Ym⊕X2

(
∫
−h(x)|u|p)1/p

‖∇u‖
.

We claim that limm→∞ µm = 0. To see this, firstly note that 0 ≤ µm is a
decreasing sequence as Zm shrinks. For each m ≥ 1, there exists um ∈ Ym ⊕X2

such that ‖∇um‖ = 1 and( ∫
−h(x)|um|p

)1/p

>
µm

2
.

Clearly such a sequence contains a weakly convergent subsequence, um ⇀ u0 ∈
X2. Since p < 2∗, use Lemma 2.2.

(8)
∫
−h(x)|um|p →

∫
−h(x)|u0|p = 0.

We remark that this property is lost when p = 2∗.
We now confirm condition (B2). Since Y m ⊥ X2, each u ∈ Y m satisfies

u(x) 6≡ 0 on Υ, and consequently ‖ · ‖p,(−h) forms a norm on Y m. Since Y m is
finite dimensional, all norms are equivalent and the following estimates hold for
positive constants Ci,m, i = 1, 2, 3: (where C2,m → 0 as m →∞).

0 ≤
∫
|k(x)||u|q ≤ C1,m‖∇u‖q,

C2,m‖∇u‖p ≤
∫
−h(x)|u|p ≤ C3,m‖∇u‖p.

Now,

Iλ(u) ≤ 1
2
(1 + |λ|S−1‖g‖N/2)‖∇u‖2 + C1,m‖∇u‖q − C2,m‖∇u‖p.

For sufficiently large ρm, the final term dominates and Iλ(u) < 0 for all u ∈ Y m,
‖∇u‖ > ρm.
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Next we confirm (B3). Take u ∈ Ym ⊕X2. Then 0 ≤
∫
−h|u|p ≤ µp

m‖∇u‖p.
Consequently,

Iλ(u) ≥ 1
2

(
1− λ

λ1

)
‖∇u‖2 − 1

q

∫
|k(x)||u|q − µp

m

p
‖∇u‖p.

If ‖∇u‖ is sufficiently large, then

1
q

∫
k(x)|u|q ≤ 1

q
S−q/2‖k(x)‖q0‖∇u‖q ≤ 1

4

(
1− λ

λ1

)
‖∇u‖2.

Hence, if um ∈ Ym ⊕X2 lies outside a sufficiently large radius,

Iλ(um) ≥ 1
4

(
1− λ

λ1

)
‖∇um‖2 −

µp
m

p
‖∇um‖p.

Setting

rm =
(

8µp
m

p(1− λ/λ1)

)1/(2−p)

it follows that for um ∈ Ym ⊕X2, ‖∇um‖ = rm, Iλ(um) →∞ as m →∞.
The Palais–Smale condition (B4) follows by Lemma 4.1.
The existence of an infinite sequence of solutions um follows by the fountain

Theorem 3.7. Since cm ≥ inf{Iλ(um) : um ∈ Ym ⊕X2, ‖∇um‖ = rm} → ∞, it
follows trivially that ‖∇um‖ must also diverge. �

4.3. Proof of Theorem 1.4. We now consider the case of 0 ≤ h(x) ∈ L∞

and p = 2∗. A study by Alves et al [1], [2] and by Miyagaki [24], has concluded
the existence of nonnegative solutions to a similar problem on RN , but without
the weighting function h(x). There, g(x) is restricted to positive functions and
a different growth condition imposed.

When h(x) is fixed to a nonnegative function, then a degree of indefiniteness
is eliminated, the (PS)∗-condition is quite easily achieved, and the geometry of
Iλ is suitable for application of the dual fountain theorem.

Development of the dual form of the Palais–Smale condition requires the
introduction of a projection operator. Define Pn to be the orthogonal projector
from D1,2 into the space Y n ⊕ Zn.

The space D1,2(RN ) is decomposed in the same way as for the proofs of
Theorems 1.1 and 1.2. For Ω = int{x ∈ RN : k(x) > 0}, we define X2 = {u ∈
D1,2(RN ) : u(x) = 0 a.e. x ∈ RN} and X1 as the complementary subspace.

Lemma 4.4. Suppose (G1), (K1) and (H1) are satisfied with p = 2∗ Any
bounded (PS)∗-sequence {un} ⊂ D1,2 converges weakly to a weak solution (per-
haps trivial) of equation (1).

Proof. Let {un} be a (PS)∗-sequence, and suppose un ⇀ u0. Take arbi-
trary φ ∈ C∞

0 (RN ). With Pn defined as the orthogonal projector, let φn = Pnφ.
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Now, un is bounded implying that I ′(un) is bounded, and φn − φ → 0 strongly
in D1,2, giving that

(9) 〈I ′λ(un), φ− φn〉 ≤ ‖I ′λ(un)‖‖∇(φ− φn)‖ → 0.

Combining this with a simple decomposition of φ,

〈I ′λ(un), φ〉 = 〈I ′λ(un), φn〉+ 〈I ′λ(un), φ− φn〉 = 〈I ′(un), φn〉+ o(1).

Since {un} is a (PS)∗-sequence, I|′Y n⊕Zn → 0 and according to (9) this implies
〈I ′(un), φ〉 → 0. Using the strong convergence of projection, a simple corollary of
Lemma 2.4 states that for φ ∈ D1,2,

∫
h(x)|un|2

∗−2unφn →
∫

h(x)|u0|2
∗−2u0φ.

Now,∫
∇un∇φ− λ

∫
g(x)unφ−

∫
k(x)|un|q−2unφ +

∫
h(x)|un|2

∗−2unφ → 0

⇒
∫
∇u0∇φ− λ

∫
g(x)u0φ−

∫
k(x)|u0|q−2u0φ +

∫
h(x)|u0|2

∗−2u0φ = 0,

revealing u0 is a weak solution. �

The dual formulation of the Palais–Smale condition can be achieved at all
levels, when h(x) and k(x) are restricted to nonnegative functions.

Lemma 4.5. Assume (G1), (K1), (H1), p = 2∗, h(x), k(x) ≥ 0 are not
identically zero and −λ−1 < λ < λ1. Then Iλ satisfies the (PS)∗-condition.

Proof. Let {un} ⊂ D1,2(RN ) be a (PS)∗-sequence. Lemma 4.1 guarantees
that un is bounded, and so a relabelled subsequence converges weakly, un ⇀ u0.
Let Pn be the orthogonal projector from D1,2 into Y n ⊕ Zn. Now,

(10) 〈I ′(un), un〉 =
∫
|∇un|2 − λ

∫
g(x)u2

n −
∫

k(x)|un|q +
∫

h(x)|un|2
∗

=
∫
|∇un|2 − λ

∫
g(x)u2

0

−
∫

k(x)|u0|q +
∫

h(x)|un|2
∗

+ o(1) = o(1).

Making use of the strong convergence Pnu0 → u0 in D1,2(RN ) and Lemma 2.4,

(11) 〈I ′(un), Pnu0〉 =
∫
∇un∇(Pnu0)− λ

∫
g(x)unPnu0

−
∫

k(x)|un|q−2unPnu0 +
∫

h(x)|un|2
∗−2unPnu0

=
∫
|∇u0|2 − λ

∫
g(x)u2

0

−
∫

k(x)|u0|q +
∫

h(x)|u0|2
∗

+ o(1) = o(1).
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Subtracting (11) from (10),∫
(|∇un|2 − |∇u0|2) +

∫
(h(x)|un|2

∗
− h(x)|u0|2

∗
) → 0.

Lower-semicontinuity of norms and seminorms dictates that

lim inf
n→∞

∫
|∇un|2 ≥

∫
|∇u0|2, lim inf

n→∞

∫
h|un|2

∗
≥

∫
h|u0|2

∗

implying that
∫
|∇un|2 →

∫
|∇u0|2. Combined with almost everywhere conver-

gence, this means un → u0 strongly in D1,2(RN ). �

Proof of Theorem 1.4. Identically to Theorem 1.1 the geometry of the
functional Iλ satisfies conditions (A1)–(A4), guaranteeing the generation of a
(PS)∗c -sequence with c < 0. Lemma 4.1 shows that this sequence must be
bounded in D1,2(RN ). Strong convergence of the sequence follows from Lem-
ma 4.5. Sizes of the solutions are restricted according to Lemma 4.3. �

4.4. Proof of Theorem 1.5. The publication [19] sought solutions in
H1

0 (Ω) for the following problem on a bounded domain Ω:

(12) −∆u = |u|2
∗−2u + µ|u|q−2u

which corresponds to seeking critical points of the functional

Φµ(u) =
1
2

∫
Ω

|∇u|2 − 1
2∗

∫
|u|2

∗
− µ

2

∫
|u|q.

A dual Palais–Smale condition may be formulated:

Lemma 4.6. There exists k̃ > 0 such that, for any µ > 0 and

c <
1
N

SN/2 − k̃µ2∗/(2∗−q)

the functional Φµ satisfies the (PS)∗c-condition.

The functional Φµ can be checked to satisfy the requirements of the dual
fountain theorem, and an infinite sequence of solutions at negative energy results
provided that positive µ is sufficiently small.

For the problem (1), this strategy may be replicated to an extent. However,
the weighting functions and an unbounded domain imply that a (PS)∗c -condition
is not easily achieved, and instead we will utilise the dual fountain theorem
without a Palais–Smale condition.

Similar to the subcritical case, we shall later verify that the geometry of Iλ is
appropriate for use of the dual fountain theorem. However, if {um} is a sequence
of solutions at negative levels −εm → 0, the indefiniteness of h(x) implies that
‖∇um‖ does not necessarily converge to zero. As a consequence of the critical
exponent p = 2∗, concentration is possible and compactness may be lost.



268 E. Tonkes

Proof of Theorem 1.5. Firstly we shall verify the conditions (A1)–(A4)
to generate a family of (PS)∗c -sequences at negative levels. Later we ensure the
convergence of these sequences.

The symmetry condition (A1) follows trivially by the evenness of Iλ. Condi-
tions (A2) and (A3) follow in an identical manner to the proof to Theorem 1.2.
Condition (A4) is verified in the same way as Theorem 1.1. This is sufficient to
generate a family of (PS)∗−εm

-sequences at levels 0 > −εm → 0.
Let un be a (PS)∗c -sequence at level c ∈ R. Then

Iλ(un) =
1
2
‖∇un‖2 −

λ

2

∫
g(x)u2(13)

− 1
q

∫
k(x)|un|q +

1
2∗

∫
h(x)|un|2

∗
→ c,

〈I ′λ(un), un〉 = ‖∇un‖2 − λ

∫
g(x)u2

n(14)

−
∫

k(x)|un|q +
∫

h(x)|un|2
∗
→ 0,

and hence

(15) Iλ(un) =
(

1
2
− 1

q

) ∫
k(x)|un|q −

1
N

∫
h(x)|un|2

∗
+ o(1).

By Lemma 4.1, un is bounded and so un ⇀ u where u is a weak solution by
Lemma 4.4. Let un = u + vn with vn ⇀ 0. Using the Brézis–Lieb Lemma [13]∫

h(x)|un|2
∗

=
∫

h(x)|u|2
∗

+
∫

h(x)|vn|2
∗

+ o(1),

and so (13) becomes

(16) Iλ(un) = Iλ(u) +
1
2
‖∇vn‖2 +

1
2∗

∫
h(x)|vn|2

∗
+ o(1) = c + o(1).

Equation (14) gives that

〈I ′λ(un), un〉 = 〈I ′(u), u〉+ ‖∇vn‖2 +
∫

h(x)|vn|2
∗

+ o(1) = o(1).

Since u is a solution, it follows that for some b ∈ RN , ‖∇vn‖2 → b and∫
h(x)|vn|2

∗ → −b.
If h(x) ≥ 0 almost everywhere, then clearly b = 0, implying that concentra-

tion is impossible, and un → u strongly in D1,2(RN ).
Suppose that h− 6≡ 0, allowing the possibility that b > 0. Then

−
∫

h(x)|vn|2
∗
≤ ‖h−(x)‖∞‖vn‖2

∗

2∗ ,
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and consequently,

‖vn‖22∗ ≥
(

1
‖h−(x)‖∞

∫
−h(x)|vn|2

∗
)2/2∗

.

By Sobolev’s inequality, ‖∇vn‖2 ≥ S‖vn‖22∗ and so

‖∇vn‖2 ≥
S

‖h−(x)‖2/2∗
∞

(
−

∫
h(x)|vn|2

∗
)2/2∗

.

Thus

(17) b ≥
(

S

‖h−(x)‖2/2∗
∞

)N/2

.

So either b = 0, implying strong convergence, or the estimate (17) holds. Enter-
taining the latter scenario and using (15) and (16),

0 ≥ c =
(

1
2
− 1

q

) ∫
k(x)|u|q − 1

N

∫
h(x)|u|2

∗
+

1
N

b(18)

≥ 1
N

(
S

‖h−(x)‖2/2∗
∞

)N/2

− ‖h(x)‖∞
N

S−2∗/2‖∇u‖2
∗

+
(

1
2
− 1

q

)
‖k(x)‖q0S

−q/2‖∇u‖q.

Now we show that the Palais–Smale sequences at negative energies have an
upper bounded dependent upon ‖k(x)‖q0 .

Let un be a (PS)∗c -sequence for Iλ at energy −εm < 0. For sufficiently large
n ∈ N, it must hold that |〈I ′λ(un), un〉| < εm/2. Hence equation (15) gives

1
N

(
‖∇un‖2 − λ

∫
g(x)u2

n

)
−

(
1
q
− 1

2∗

) ∫
k(x)|un|q ≤ −εm

2

and, by Hölder’s and Sobolev’s inequalities,

−εm

2
≥ 1

N

(
1− λ

λ1

)
‖∇un‖2 −

(
1
q
− 1

2∗

)
‖k(x)‖q0S

−q/2‖∇un‖q.

Letting εm assume any positive value, and using lower semicontinuity of norms,
it follows that un ⇀ um with

(19) ‖∇um‖ ≤
(

N(1/q − 1/2∗)S−q/2‖k(x)‖q0

1− λ/λ1

)1/(2−q)

.

Substituting the estimate (19) into expression (18), we have, for positive con-
stants A and B (independent of ‖k‖q0) that

(20)
1
N

(
S

‖h−(x)‖2/2∗
∞

)N/2

≤ A‖k(x)‖2
∗/(2−q)

q0
+ B‖k(x)‖2/(2−q)

q0
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Clearly, if ‖k(x)‖q0 is sufficiently small, then (20) cannot possibly hold, and from
this contradiction we infer that (17) is impossible, b = 0 and concentration cannot
occur. From this, strong convergence to a solution is verified. The generated
(PS)∗−εm

-sequences provide an infinite number of solutions as εm → 0. �

Remark 4.7. We see that as ‖h−‖∞ becomes larger, the above theorem
requires that ‖k(x)‖q0 shrink in order to maintain the convergence of (PS)∗c -
sequences.

Remark 4.8. It would be interesting to determine if Theorem 1.3 can be
extended to the critical case.
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