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MORSE THEORY
APPLIED TO A T2-EQUIVARIANT PROBLEM

Giuseppina Vannella

Abstract. The following T 2-equivariant problem of periodic type is con-
sidered:

(P)

8>>><
>>>:

u ∈ C2(R2, R),

−ε∆u(x, y) + F ′(u(x, y)) = 0 in R2,

u(x, y) = u(x + T, y) = u(x, y + S) for all (x, y) ∈ R2,

∇u(x, y) = ∇u(x + T, y) = ∇u(x, y + S) for all (x, y) ∈ R2.

Using a suitable version of Morse theory for equivariant problems, it is

proved that an arbitrarily great number of orbits of solutions to (P) is

founded, choosing ε > 0 suitably small. Each orbit is homeomorphic to S1

or to T 2.

1. Introduction

In this paper Morse theory is applied in order to look for results concerning an
equivariant problem, that is in the presence of a group G that acts in such a way
to “product”, for each solution u to the problem, a whole orbit G ·u of solutions.
In other words such problem, once expressed in variational form, requires the
study of a G-invariant functional. There is a wide literature regarding this kind
of problems. We just quote Bott, Benci–Pacella, Mawhin–Willem, Mercuri–
Palmieri, among people that studied this argument using Morse theory.
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In the second section some preliminary notions are given, regarding classical
Morse theory and a generalization of it, together with a brief introduction to
group actions.

Third section deals with the following problem of periodic type

(P)


u ∈ C2(R2, R),

−ε∆u(x, y) + F ′(u(x, y)) = 0 in R2,

u(x, y) = u(x + T, y) = u(x, y + S) for all (x, y) ∈ R2,

∇u(x, y) = ∇u(x + T, y) = ∇u(x, y + S) for all (x, y) ∈ R2,

where ε > 0 is a fixed real number, T, S > 0 are two fixed periods and F : R → R
is a coercive function which has exactly k maximum points (k ≥ 1).

Denoting by Ω the set [0, T ]× [0, S] and by H1
S,T the closure of the set

{u ∈ C1(Ω) | u(0, y) = u(T, y), u(x, 0) = u(x, S) for all (x, y) ∈ Ω}

under the norm of H1(Ω), solutions to (P) are critical points of the functional

Aε(u) =
ε

2

∫
Ω

|∇u|2 +
∫

Ω

F (u(x, y)) dx dy

defined on the space H1
S,T on which the compact Lie group G = R2/(ZT × ZS)

(isomorphic to the torus T 2 = S1×S1) acts. It is proved that Aε is a G-invariant
functional, so that if u is a critical point of Aε (i.e. a solution to (P)), then the
orbit of u is a connected manifold of critical points which is homeomorphic
to S1 or to T 2. Consequently such critical points are degenerate (as they are
not isolated), and classical Morse theory cannot be applied to this situation.
However, using a Morse theory for equivariant problems the following result is
obtained.

Theorem 1.1. There exists a decreasing sequence (µi)i∈N which tends to 0
such that if ε ∈ ]µi, µi−1[, then there are at least ki orbits of solutions. Namely,
there are at least ki critical orbits having Morse index in {h, h + 1}, for each
h = 0, 2, . . . , 2(i− 1).

2. Preliminaries

2.1. Recalls about classical Morse theory. Let f be a C1-functional
defined in an open subset U of a Hilbert space V . Some basic definitions are
now recalled

Definition 2.1. A critical point of f is an element x ∈ U such that

df(x) = 0.
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The set of critical points of f will be denoted by Kf . A critical value of f is a
real number c such that

{x ∈ Kf | f(x) = c} 6= ∅.

If c is not a critical value, it is called regular value for f . Moreover, f verifies
the Palais–Smale condition (or briefly, f verifies (PS)) if any sequence (xn)n∈N
such that

lim
n→∞

f(xn) = c and lim
n→∞

df(xn) = 0

has a subsequence which converges to x ∈ U .
If f is a C2-functional and x ∈ Kf , the Morse index of x is the maximal

dimension of a subspace of V on which d2f(x) is negative definite and it is
denoted by m(x). The nullity of x is the dimension of the kernel of d2f(x)
(i.e. the subspace consisting of all y such that d2f(x)(y, z) = 0 for all z ∈ V ).
The large Morse index of x is the sum of the Morse index and the nullity and it
is denoted by m∗(x). A critical point x is called nondegenerate if its nullity is 0,
while in the other case it is called degenerate.

Remark 2.2. If a critical point is nondegenerate, then it is isolated.

Definition 2.3. A functional f : U → R is said a Morse functional if

(a) f is a C1-functional and it is of class C2 in a neighbourhood of its
critical points,

(b) all the critical points of f are nondegenerate,
(c) f verifies (PS),
(d) f can be extended to a functional of class C1 in a neighbourhood of U.

The following definition introduces the first term of the Morse relation

Definition 2.4. If f is a Morse functional, the Morse polynomial of a subset
K of Kf is the following formal series in the variable λ

mλ(K, f) =
∑
x∈K

λm(x)

with the convention that λ∞ = 0.

The following Morse relation is the most famous theorem of classical Morse
theory.

Theorem 2.5. Let a, b ∈ R, a < b be two regular values for f (eventually
b = ∞). Denoting by

f b = {x ∈ U | f(x) ≤ b},
f b

a = {x ∈ U | a ≤ f(x) ≤ b},
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if f is a Morse functional in a neighbourhood A of f b
a, then

mλ(Kf ∩ f b
a, f) = Pλ(f b, fa; Z2) + (1 + λ)Q(λ),

where Q(λ) is a formal series in the variable λ with coefficients in N ∪ {∞},
while Pλ(f b, fa; Z2) is the Poincare polynomial of (f b, fa) with Z2 as coefficient
field.

From now on, Z2 will always be supposed as coefficient field, even if it will
be not specified.

2.2. Morse theory for equivariant problems. In this subsection f will
be a C1 function defined on a Hilbert space V .

Definition 2.6. Let K ⊂ (Kf ∩ f−1(c)), where c ∈ R. The topological
Morse index of K is the formal series

jλ(K) =
∑
q∈N

dim Hq(fc, f c \K)λq.

Remark 2.7. If x0 is a nondegenerate critical point of f , then jλ({x0}) =
λm(x0), so that the topological Morse index is a generalization of the Morse
polynomial.

Let K ⊂ (Kf ∩ f−1(c)) be a connected manifold. For each x ∈ K, V admits
the orthogonal decomposition V = Vx⊕Wx, where Vx = TxK and Wx = (TxK)⊥.
If f is a functional of class C2 in a neighbourhood of K, then each x ∈ K is
certainly degenerate as Vx is included in the kernel of d2f(x), i.e.

d2f(x)(y, z) = 0 for all y ∈ Vx and z ∈ V.

So it makes sense to introduce the following

Definition 2.8. A connected manifold K ⊂ Kf is called nondegenerate
critical manifold if d2f(x) is nondegenerate in the directions which are orthogonal
to K for each x ∈ K.

In other words K is a nondegenerate manifold if, according to the previous
notations, d2f(x)|Wx×Wx

has nullity 0 for each x ∈ K.

Remark 2.9. It can be proved that if K is a nondegenerate manifold, than
it is isolated and m(x) doesn’t depend by x ∈ K, so that it is natural to put
m(x) = m(K).

It is useful to recall the following known results (see for example [3], [6], [13],
[14] for more details).
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Proposition 2.10. If K is a nondegenerate critical manifold such that
m(K) is finite, then

jλ(K) = Pλ(K)λm(K),

where Pλ(K) is the Poincare polynomial of K.

Theorem 2.11. Let f be a C2 functional that verifies (PS) and let a, b

(eventually b = ∞) be two regular values of f . If Kf ∩ f−1( ]a, b[ ) is made only
by isolated critical sets, then the following Morse relation holds

(2.1)
∑

K⊂(Kf∩f−1( ]a,b[ ))

jλ(K) = Pλ(f b, fa) + (1 + λ)Q(λ),

where Q(λ) is a formal series in the variable λ with coefficients in N ∪ {∞}.

2.3. Preliminaries about group actions. Let G be a compact Lie group
and X a topological space, an action of G on X is a function Φ = (g, x) ∈
G×X 7→ gx ∈ X that verifies the following properties:

(G1) 1x = x for all x ∈ X,
(G2) g1(g2x) = (g1g2)x for all g1, g2 ∈ G and x ∈ X.

A space with an action of a group G is called a G-space.

Definition 2.12. The orbit of x is the set O · u = {gx | g ∈ G}, and it can
be seen that two orbits are either disjointed or equal.

If O · u = {x}, then x is said to be a fixed point under the action of G and
the set of the fixed points of X is denoted by Fix(G).

A function f : X → R is said G-invariant if f(gx) = f(x) for all x ∈ X and
g ∈ G.

A function F : X → Y between two G-spaces is G-equivariant if

F (gx) = gF (x) for all x ∈ X and g ∈ G.

If V is a Banach space, an action G on V is said linear representation (on V ) if
the function

Tg = x ∈ V 7→ gx ∈ V

is linear and continuous for each g ∈ G.

Example 2.13. If G is a linear representation on a Banach space V , then
G acts also on its dual space V ′ in the following way:

(gf)(x) = f(g−1x) for all g ∈ G, f ∈ V ′ and x ∈ X.

According to the previous definitions and notations the following results are
easily proved
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Theorem 2.14. Let V be a Banach space and f : V → R a C1-functional, if
G is a linear representation on V and f is G-invariant, then df is G-equivariant.
Consequently, if x is a critical point of f , then its whole orbit O · u is made by
critical points.

Corollary 2.15. If the function f of the previous theorem is C2, then

(2.2) d2f(gx)(y, z) = d2f(x)(g−1y, g−1z) for all x, y, z ∈ V and g ∈ G.

Definition 2.16. If V is a Hilbert space, the action of a group G on V is
said to be orthogonal if

(2.3) 〈gx, gy〉 = 〈x, y〉 for all x, y ∈ V

where 〈 · , · 〉 denotes the inner product of V .

Remark 2.17. If V is a real Hilbert space, G acts orthogonally on V and
f : V → R is a G-invariant C2-functional, then by (2.2) and (2.3) it is easy to
see that

m∗(y) = m∗(x) and m(y) = m(x) for all x ∈ Kf and y ∈ O · u ⊂ Kf .

3. The problem

Let us consider the following problem of periodic type

(P)


u ∈ C2(R2, R),

−ε∆u(x, y) + F ′(u(x, y)) = 0 in R2,

u(x, y) = u(x + T, y) = u(x, y + S) for all (x, y) ∈ R2,

∇u(x, y) = ∇u(x + T, y) = ∇u(x, y + S) for all (x, y) ∈ R2,

where ε > 0 is a fixed real number, T, S > 0 are two fixed periods and F ∈
C2(R, R) is a function which satisfies the following assumptions:

(i) limt→±∞F (t) = ∞,
(ii) there exist a, b ≥ 0 such that |F ′(t)| ≤ a|t|p−1 + b for all t ∈ R, where

p ∈ ]2, 2∗[ and 2∗ = 2n/(n− 2) if n ≥ 3, while p > 2 if n = 2,
(iii) F has exactly k maximum points (k ∈ N\{0}) and has no critical points

except its maximum and minimum points,
(iv) F” 6= 0 in the critical points of F.

Introducing the set Ω = [0, T ] × [0, S] and denoting by H1
S,T the closure of

the set

{u ∈ C1(Ω) | u(0, y) = u(T, y), u(x, 0) = u(x, S) for all (x, y) ∈ Ω}



Morse Theory Applied to a T 2-Equivariant Problem 47

under the norm of H1(Ω), solutions to (P) are critical points of the functional
Aε defined on H1

S,T by

Aε(u) =
ε

2

∫
Ω

|∇u|2 +
∫

Ω

F (u(x, y)) dx dy.

By standard arguments, assumption (ii) assures that Aε is a C1-functional
and

dAε(u)(v) = ε

∫
Ω

∇u · ∇v +
∫

Ω

F ′(u(x, y))v(x, y) dx dy

for each u, v ∈ H1
S,T . Moreover, it is not difficult to verify that

Proposition 3.1. The group G = R2/(ZT × ZS) (isomorphic to the torus
T 2 = S1 × S1) is a linear representation on H1

S,T , acting as follows

(3.1) (Gt,su)(x, y) = u(x + t, y + s) for all (t, s) ∈ G and u ∈ H1
S,T .

Remark 3.2. The fixed points of H1
S,T under the action of G are the con-

stant functions and Aε is a G-invariant functional.

Proposition 3.3. The orbit of each u ∈ KAε \Fix(G) is a critical manifold
(i.e. it is made by critical points for Aε) which is homeomorphic to S1 or to T 2.

Proof. As a consequence of Theorem 2.14, the orbit of each u ∈ KAε \
Fix(G) is a critical set.

Now, if u is a critical point of Aε which is constant with respect to y but not
with respect to x, then

(Gt,su)(x, y) = u(x + t, y + s) = u(x + t, y) = (Gt,0u)(x, y) for all (t, s) ∈ G

so that the orbit of u is a manifold homeomorphic to S1, and the same thing
happens if u depends only by y.

Moreover, the orbit of u may be of S1-type even if u depends on both vari-
ables. This happens when the level curves of u are parallel lines, that is when
there exists p ∈ QS/T = {qS/T | q ∈ Q} such that u is constant on the lines
having equation y = px + r, for each r ∈ R. In this case

Gt,ptu(x, y) = u(x + t, y + pt) = u(x, y) for all t ∈ R/ZT

so that

Gt,s = G(t,pt)+(0,s−pt) = Gt,ptG0,s−pt = G0,s−pt for all (t, s) ∈ G

hence the orbit is still homeomorphic to S1.
It must be remarked that pT/S ∈ Q is required in order to assure the com-

patibility between the existence of such level curves and the periodicity of u. In
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fact if such a p exists and u is periodic of period T with respect to x and S with
respect to y, then

u(x, y) = u

(
x +

S

p
, p

(
x +

S

p

)
+ y − px

)
= u

(
x +

S

p
, y + S

)
= u

(
x +

S

p
, y

)
for all (x, y) ∈ R2; hence u is periodic with respect to x both with period T and
S/p, so, as u is continuous and non constant, pT/S must belong to Q.

In the other cases the two parameters of the group act independently and
the orbit of u is a homeomorphic to a T 2-type manifold. �

Now a few lemmata concerning some properties of the critical points of Aε

will be stated. For the proofs the reader is referred to [22].

Lemma 3.4. Let γ and δ denote the smallest and the greatest of the k + 1
minimum points of F respectively, then

u(x) ∈ [γ, δ] a.e. in Ω, for all u ∈ KAε .

Lemma 3.5. Let u ∈ H1
S,T be a critical point of Aε, then u is a classical

solution to (P), i.e.:
u ∈ C2(R2, R)

−ε∆u(x, y) + F ′(u(x, y)) = 0 in R2,

u(x, y) = u(x + T, y) = u(x, y + S) for all (x, y) ∈ R2,

∇u(x, y) = ∇u(x + T, y) = ∇u(x, y + S) for all (x, y) ∈ R2.

Lemma 3.6. Aε is a coercive functional which satisfies (PS) condition.

Remark 3.7. From previous lemmata it follows that, up to replacing F with
F0 such that F = F0 on [γ, δ] (i.e. without changing the critical points of the
problem), there is no loss of generality in supposing that

(ii’) there exists a, b ≥ 0 such that |F”(t)| ≤ a|t|p−2 + b for each t ∈ R,
where, as in assumption (ii), p ∈ ]2, 2∗[ and 2∗ = 2n/(n− 2) if n ≥ 3,
while p > 2 if n = 2,

where it is evident that assumption (ii’) is stronger than (ii). So Aε becomes
a C2-functional and

(3.2) d2Aε(u)(v, w) = ε

∫
Ω

∇v · ∇w +
∫

Ω

F”(u(x))v(x)w(x) dx

for all u, v, w ∈ H1
S,T .

Remark 3.8. Let us consider the eigenvalues (λi)i∈N of −∆ on Ω with
the required periodicity conditions. They are effectively known, and are all the
numbers of the form 4π2(m2/T 2 + h2/S2) with m,h ∈ N. Only λ0 is simple
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among them, while all the other eigenvalues have at least a double (and in any
case even) multiplicity, so that

(3.3) λ0 = 0 < λ1 = λ2 ≤ λ3 = λ4 ≤ . . .

In the following, if a ∈ R, then the symbol ua will denote the function
assuming constant value a. Moreover, c1, . . . , ck+1 will denote the minimum
points of F and d1, . . . , dk its maximum points, the last ones ordered in such a
way that −F”(d1) ≤ . . . ≤ −F”(dk).

Next lemma computes the Morse index of the elements of KAε
∩ Fix(G).

Lemma 3.9.

(1) m(ucj
) = m∗(ucj

) = 0 if j = 1, . . . , k + 1.
(2) If j = 1, . . . , k, then there exists a decreasing sequence (µj

i )i∈N which
tends to 0 such that udj is nondegenerate if and only if ε 6= µj

i for all
i ∈ N.

(3) If ε ∈ ]µj
i , µ

j
i−1[, then m(udj

) = 2i + 1.
If ε ∈ ]µj

0,∞[, then m(udj ) = 1.

Proof. (1) By assumption (iv) and Remark 3.7 d2Aε(ucj ) is positive definite
and the assertion follows from Definition 2.1.

(2) Let j be fixed in {1, . . . , k} and let µj
i denote the number −F”(dj)/λ2i+1,

so that (µj
i )i∈N clearly is a decreasing sequence which tends to 0. Now udj

is
degenerate if and only if

∃v 6= 0 ∈ H1
S,T s.t. d2Aε(udj

)(v, w) = 0 for all w ∈ H1
S,T

i.e., by (3.2),

ε

∫
Ω

(∇v/∇w) + F”(dj)
∫

Ω

v(x)w(x) dx = 0 for all w ∈ H1
S,T .

This means that v solves the problem −ε∆v+F”(dj)v = 0 in Ω with periodicity
conditions, and, by (3.3), −F”(dj)/ε is one of the eigenvalues λ2i+1. So udj is
nondegenerate if and only if ε 6= µj

i for each i ∈ N.
(3) Letting (eh)h∈N be the orthonormal basis for L2(Ω) such that eh is the

eigenfunction relative to λh, that is −∆eh = λheh, it follows that

d2Aε(udj
)(eh, eh) = ε

∫
Ω

|∇eh|2 + F”(dj)
∫

Ω

e2
h(x) dx = ελh + F”(dj).

If h = 0, then λ0 = 0 and

d2Aε(udj )(e0, e0) = F”(dj) < 0

thus surely m(udj ) ≥ 1.
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If i ≥ 1 and ε < µj
i−1 = −F”(dj)/λ2i−1, then ελh + F”(dj) < 0 for each

h < 2i+1. This fact, together with d2Aε(udj )(es, et) = 0 whenever s 6= t, implies
that d2Aε(udj

) is negative definite on span {e0, . . . , e2i} and thus

(3.4) m(udj
) ≥ 2i + 1.

Finally, in order to establish the desired equality, it can be observed that if
ε > µj

i , then

d2Aε(udj )(eh, eh) > 0 for all h ≥ 2i + 1.

This easily implies that d2Aε(udj
) is positive definite on span{e2i+1, e2i+2, . . . },

so the assert follows from (3.4) and the fact that H1
S,T = span{ei, i ∈ N}. �

In order to avoid degeneracy, from now on it will be assumed that

ε 6= µj
i for all j = 1, . . . , k + 1 and i ∈ N

and that the orbits of the elements of KAε
\ Fix(G) are nondegenerate critical

manifolds, according to definition 2.8.

Theorem 3.10. Denoted by (µj
i )i∈N the sequences of the previous lemma,

if ε ∈ ]µj
ij

, µj
ij−1[ for each j = 1, . . . , k (where ij ≥ 1), then there are at least

i1 + i2 + . . .+ ik critical orbits having Morse index strictly less than 2ik. Namely
there exists at least one critical orbit having Morse index in {2i− 2, 2i− 1} for
each i ∈ {1, . . . , ij} and for each j ∈ {1, . . . , k}.

Proof. Remark 3.7 and Lemma 3.6 assure that Aε satisfies the assumptions
of theorem 2.11 and is bounded from below, thus (2.1) holds, i.e.∑

K⊂KAε

jλ(K) = Pλ(H1
S,T ) + (1 + λ)Q(λ)(3.5)

where ∑
K⊂KAε

jλ(K) =
∑

K⊂KAε∩Fix(G)

jλ(K) +
∑

K⊂KAε\Fix(G)

jλ(K).(3.6)

In these hypothesis, as the previous lemma showed, all the elements of KAε ∩
Fix(G) are nondegenerate critical points, so according to Remark 2.7∑

K⊂KAε∩Fix(G)

jλ(K) = λm(uc1 ) + λm(uc2 ) + . . . λm(uck+1 )(3.7)

+ λm(ud1 ) + λm(ud2 ) + . . . + λm(udk
)

= k + 1 + λ2i1+1 + . . . λ2ik+1

where i1, . . . , ik ≥ 1 by construction.
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Assuming that the critical orbits of KAε
\ Fix(G) are nondegenerate mani-

folds, Proposition 2.10 can be applied and, recalling that Pλ(S1) = 1 + λ and
Pλ(T 2) = (1 + λ)2, by Proposition 3.3:

(3.8)
∑

K⊂KAε\Fix(G)

jλ(K) = (1 + λ)
∑
h∈N

ahλh + (1 + λ)2
∑
h∈N

bhλh

where ah and bh, respectively, are the numbers of orbits of S1-type and of T 2-type
having Morse index h, for each h ∈ N. Moreover, H1

S,T being contractible,

(3.9) Pλ(H1
S,T ) = 1.

By (3.6)–(3.9), equation (3.5) becomes

k+1+λ2i1+1+. . .+λ2ik+1+(1+λ)
∑
h∈N

ahλh+(1+λ)2
∑
h∈N

bhλh = 1+(1+λ)Q(λ).

Hence, denoting by
∑

h∈Nchλh the formal series Q(λ), then dividing for 1 + λ,∑
h∈N

(ah + bh + bh−1)λh =
∑
h∈N

chλh − 1 + λ + . . .− λ2i1 − 1 + λ + . . .− λ2ik .

Now, imposing that the coefficients of the left and right end sides agree,

a0 + b0 = c0 − k

ah + bh + bh−1 = ch + (−1)h−1k if h = 1, . . . , 2i1,

ah + bh + bh−1 = ch + (−1)h−1(k − 1) if h = 2i1 + 1, . . . , 2i2,

. . .

ah + bh + bh−1 = ch + (−1)h−1 if h = 2ik−1 + 1, . . . , 2ik,

so that

a1 + b1 + b0 = c1 + k ≥ k,

. . .

a2i1−1 + b2i1−1 + b2i1−2 = c2i1−1 + k ≥ k,

a2i1+1 + b2i1+1 + b2i1 = c2i1+1 + k − 1 ≥ k − 1,

. . .

therefore there are at least k critical orbits having Morse index in {0, 1}, and
other k for each set {2, 3}, . . . , {2i1 − 2, 2i1 − 1}. Moreover, there are at least
k − 1 critical orbits having index in {2i1, 2i1 + 1}, . . . and so on. So finally the
number of critical orbits of Aε is (at least)

ki1 + (k − 1)(i2 − i1) + . . . + (ik − ik−1) = i1 + i2 + . . . + ik. �
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Corollary 3.11. If F has only one maximum point (that is k = 1), then
there exists a decreasing sequence (ηi)i∈N which tends to 0, such that if ε ∈
]ηi, ηi−1[, then there are at least i orbits of solutions to the problem (P). Namely
there exists at least one orbit having Morse index in {h, h + 1}, for each h =
0, 2, . . . , 2(i− 1).

Proof. It is an immediate consequence of the previous theorem, where ηi =
−F”(d)/λ2i+1 and d is the (only) maximum point of F . �

Proof of Theorem 1.1. Putting µi = µ1
i and recalling that −F”(d1) ≤

−F”(dj) for each j = 1, . . . , k, it results that if ε < µi = µ1
i , then ε < µj

i for
each j, thus

ij ≥ i if j = 1, . . . , k

and by Theorem 3.10, the assert immediately follows. �

Remark 3.12. In analogous way it is possible to study the problem

u ∈ C2(Rn),

−ε∆u(x1, . . . , xn) + F ′(u(x1, . . . , xn)) = 0 in Rn,

u(x1, . . . , xn) = u(x1 + S1, . . . , xn)

= . . . = u(x1, . . . , xn + Sn) for all (x1, . . . , xn) ∈ Rn,

∇u(x1, . . . , xn) = ∇u(x1 + S1, . . . , xn)

= . . . = ∇u(x1, . . . , xn + Sn) for all (x1, . . . , xn) ∈ Rn.

where n > 2, F is a function satisfying assumptions (i)–(iv) and S1, . . . , Sn > 0
are fixed numbers.

The functional relative to this problem is invariant with respect to a group
which is homeomorphic to Tn. Moreover a result that is similar to the statement
of the previous theorem is obtained, namely, using the same notations, for n =
3, 4 there are at least (i1 + . . . + ik)/2 critical orbits having index strictly less
than 2ik, for n = 5, 6 there are at least (i1 + . . . + ik)/3 of them, and for a
generic n there exist at least (i1 + . . . + ik)/[(n + 1)/2] of such orbits.

Acknowledgments. I wish to express my thanks to Professor Vieri Benci
for suggesting the problem and for many stimulating conversations on the sub-
ject.
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