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ON THE EXISTENCE OF POSITIVE ENTIRE SOLUTIONS
OF NONLINEAR ELLIPTIC EQUATIONS

MARCO SQUASSINA

ABSTRACT. Via non-smooth critical point theory, we prove existence of en-
tire positive solutions for a class of nonlinear elliptic problems with asymp-
totic p-Laplacian behaviour and subjected to natural growth conditions.

1. Introduction

In the last few years there has been a growing interest in the study of positive
solutions to variational quasilinear equations in unbounded domains of R™, since
these problems are involved in various branches of mathematical physics (see [4]).

Since 1988, quasilinear elliptic equations of the form
(1) —div(¢(Vu)) = g(z,u) inR"

have been extensively treated, among the others, in [2], [8], [12], [14], [20] by
means of a combination of topological and variational techniques.

Moreover, existence of a positive solution u € H*(R™) for the more general
equation

n 1 n
- Z Dj(a;;(z, w)D;u) + 3 Z Daij(x,u)DiuDju+ b(x)u = g(z,u) in R,

ij=1 t,j=1
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24 M. SQUASSINA

behaving asymptotically (|| — oo) like the problem
—Au+u=u?"t inR"

for some suitable A > 0 and ¢ > 2, has been firstly studied in 1996 in [9] via
techniques of non-smooth critical point theory.
On the other hand, more recently, in a bounded domain 2 of R™ some exis-
tence results for fully nonlinear problems of the type
—div (VeL(z,u, Vu)) + Dy L(x,u, Vu) = g(z,u) in Q,
u=20 on 02,

have been established in [1], [17], [18].
The goal of this paper is to prove existence of a nontrivial positive solution

(2)

in W1P(R") for the nonlinear elliptic equation
(3)  —div(VeL(z,u, Vu)) + DsL(z,u, Vu) + b(z)|[ulP~?u = g(z,u) in R",
behaving asymptotically like the p-Laplacian problem

—div(|Vul[P~2Vu) + Au|P"2u = w7 in R,

for some suitable A > 0 and ¢ > p. In other words, equation (3) tends to
regularize as |x| — oo together with its associated functional f: W1P(R") — R
(4) flu) = L(z,u, Vu) dz + %/ b(x)|ul? dx — G(z,u)dx.

R n R

Since in general f is continuous but not even locally Lipschitzian, unless £
does not depend on u or the growth conditions on L are very restrictive, we shall
refer to the non-smooth critical point theory developed in [7], [10], [11], [13], [16]
and we shall follow the approach of [9].

We assume that 1 < p < n, the function £ : R” x R x R™ — R is measurable
in o for all (s,£) € R x R", of class C! in (s,&) for a.e. z € R™ and L(x,s, -) is
strictly convex and homogeneous of degree p. Take b € L>°(R"™) with b < b(z) < b
for a.e. x € R™ for some b,b > 0. Moreover, we shall assume that:

(H;) there exists v > 0 such that
1
() vIglP < L(z,s,6) < ];Iflp,

for a.e. x € R™ and for all (s,£) € R x R",
(Hz) there exists ¢; > 0 such that

(6) |DsL(x,5,8)] < er|€]”,

for a.e. z € R™ and for all (s,&) € R x R™. Moreover, there exist co > 0
and a € LP (R™) such that

(7) VeL(w,s,6)| < a(z) + col s/ + caléP,
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for a.e. z € R™ and for all (s,&) € R x R",
(Hs) there exists R > 0 such that

(8) s> R= DsL(x,s,&)s >0,

for a.e. z € R™ and for all (s,&) € R x R™.
(H4) uniformly in s € R and &,7 € R™ with €] <1 and || <1

©) i VeL(r.s.€)n = 6%,
(10) | llim D L(x,s8,&)s =0,
(11) | l‘im b(x) = A,

for some A > 0 and with b(z) < A for a.e. x € R™.
(G1) G :R™ xR — R is a Carathéodory function, G(z,s) = [; g(x,t) dt and
there exist § > 0 and ¢ > p such that
(12) $>0=0<qG(z,s) <g(z,s)s,
(13) (q—p)ﬁ(l’,S,g) —Dsﬁ(m,S,g)S > /6)|€‘p7

for a.e. € R™ and for all (s,£) € R x R™. Moreover, there exist
o € ]p,p*[ and ¢ > 0 such that

(14) 9@, )| < d(@) +cfs|]7™",

for a.e. z € R™ and all s > 0, where d € L"(R"), r € [np'/(n + ), p'[.
(G2) we assume that

9(,s)
uniformly in s > 0, and
(16) lim G@9) _ g
|s|]—0 |S|p

uniformly in z € R", and g(x,s) > s97! for each s > 0.

Under the previous assumptions, the following is our main result.
THEOREM 1. The FEuler’s equation of f
(17) —div (VeL(w,u, Vu)) + Dy L(z,u, Vu) + blulP~?u = g(z,u) in R"
admits at least one nontrivial positive solution u € WHP(R™).
This result extends to a more general setting Theorem 2 of [9] dealing with

the case:
n

L(z,s,8) = % > aijx, 9)&;,

ij=1



26 M. SQUASSINA

and Theorem 2.1 of [8] involving integrands of the type:

L(x,€) = —a(x)[¢]",

1
p

where a € L>®(R) and 1 < p < n. Let us remark that we assume (8) for large

values of s, while in [9] it was supposed that, for a.e. x € R™ and all £ € R™,

VseR: Z sDga;j(z,8)€:¢ > 0.
ij=1

This assumption has been widely considered in literature, not only in studying
existence but also to ensure local boundedness of weak solutions (see e.g. [1]).

Condition (13) has been already used in [1], [17], [18] and seems to be a nat-
ural extension of what happens in the quasilinear case [7].

We point out that in a bounded domain, conditions (12) and (13) may be
assumed for large values of s (see e.g. [18]).

Finally (9)—(11) and (15) fix the asymptotic behaviour of (3). By (9) and (10),
there exist two maps €1 : R x Rx R" x R®" — R and &5 : R® x R x R — R
such that

(18) VeLl(z,s,6) - n = [EP72€ -+ erw, 5,6 )€~ ],
(19) DyL(z,s,8)s = ea(w,s,8)IE]",
where ¢1(x,s,£,m) — 0 and e3(z,5,£) — 0 as |z| — oo uniformly in s € R and

§&mneR™

2. Recalls from non-smooth critical point theory
We recall from [7] two basic definitions in a general setting.

DEFINITION 1. Let (X,d) be a metric space, f : X — R a continuous func-
tion and u € X. We denote by |df|(u) the supremum of ¢ € [0, 00| such that
there exist § > 0 and a continuous map H : Bs(u) x [0,d] — X such that, for all
(v,t) € Bs(u) x [0,4],

d(H(v,t),0) <t f(H(v,1)) < f(v) = ot.
We say that the extended real number |df|(u) is the weak slope of f at w.

DEFINITION 2. Let (X,d) be a metric space, f : X — R a continuous func-
tion and v € X. We say that u is a critical point of f if |df|(u) = 0.

We now introduce the following variant of the classical (PS). condition.
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DEFINITION 3. Let ¢ € R. A sequence (up) C WP(R™) is said to be a
concrete Palais-Smale sequence at level ¢ ((CPS).-sequence, in short) for f, if

flun) — ¢,
—div (VeL(z, un, Vup)) + D L(z, upn, Vuy,) € Wb (R™)
eventually, as h — co and
—div (Ve L(z, un, Vup)) + Do L(z, up, Vup,) + b(x)|uh\p_2uh —g(z,up) — 0

strongly in w—Lp' (R™). We say that f satisfies the concrete Palais—Smale condi-
tion at level ¢ ((CPS), in short), if every (CPS).-sequence for f admits a strongly
convergent subsequence.

The following proposition connects the abstract framework of non-smooth
critical point theory with the weak solutions of our problem.

PROPOSITION 1. The functional f is continuous and if |df |(u) < oo it results
—div (VeL(2,u, Vu)) + DsL(z,u, Vu) + blulP~?u — g(x,u) € WLy (R™)
and

| — div (VeL(z, u, Vu)) + DsL(x,u, Vu) + b|u|p_2u — gz, u)||21,p < |df|(w).

PRrROOF. See [7, Theorem 2.1.3]. O
As a consequence, each critical point of f solves (17) in the sense of distri-
butions.
3. The concrete Palais—Smale condition

Let us now set, for a.e. x € R™ and all (s,&) € R x R™,

90 ; B L(x,s,E) ifs>0, _ B g(z,s) ifs>0,
@0 LEsO=9 w0 s<o  TOVT it s < 0.

We define a modified functional f : WP (R™) — R setting

- ~ 1 ~
(21) flu) = L(z,u, Vu)dz + — b(x)|ulP dz — G(z,u)dx.
Rr p Jrn -

Then the Euler’s equation of f is given by

(22)  —div (VeL(z,u, Vu)) + DoL(x, u, Vu) + b(z)[ulP~?u = g(z,u) in R™
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LEMMA 1. Ifu € WHP(R™) is a solution of (22), then u is a positive solution
of (17).
PRrROOF. Let @Q : R — R the Lipschitz map defined by

0 if s >0,
Q(s)=1¢ s if —1<s<0,
-1 ifs<-1.

Testing f'(u) with Q(u) € WP 1 L>°(R™) and taking into account (20) we have
0= f'(u)(Q(u))

= / VgZ(x, u, Vu) - VQ(u) dx + D,L(z,u, Vu)Q(u) dx
n RTL

+/n b(z)|u|p72uQ(u) dx—/ g(z,u)Q(u) dx

n

= / VeL(z,0,Vu) - Vude + / D L(x,u, Vu)Q(u) dx
{—1<u<0} {u<0}

+ [ Qe e [ G wQu ds
:/ pL(x,0,Vu) dx—l—/ b()[ulP~2uQ(v) dx
{—1<u<0} R™

ZQ/ |u|P~2uQ(u) dz > 0.
In particular, it results Q(u) = 0, namely u« > 0. O
Therefore, without loss of generality, we shall suppose that
g(x,8) =0, L(z,s¢) =L(x,0,§) forall s<0,
for a.e. x € R™ and all £ € R™.

LEMMA 2. Let ¢ € R. Then each (CPS).-sequence for f is bounded in
WLP(R™).

PROOF. If (up) is a (CPS).-sequence for f, arguing as in [9, Lemma 2], since
1
Fln) = - f () (un) = e+ o(1)
as h — oo, by (12) and (13) we get

(23) B |Vupl? dv + q;%b/ lup|? dz < C,
RW,

n

for some C > 0, hence the assertion. O
Let us note that there exists M > 0 such that

(24) |DsL(xz,8,8)| < MVeL(z,s,&)-§
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for a.e. x € R™ and for all (s,&) € R x R™.
We now prove a local compactness property for (CPS).-sequences. In the
following, € R™ will always denote an open and bounded subset of R™.

THEOREM 2. Let (up,) be a bounded sequence in WP(R™) and for each v €
C(R™) set
(25) (wp,v) = Vel(z,up, Vuy) - Vodr + D L(x,up, Vup)vdz.
R" R"
If (wp,) is strongly convergent to some w in W’l’p'(Q) for each Q € R™, then

(un) admits a strongly convergent subsequence in WHP(Q) for each Q € R™.

PROOF. Since (up) is bounded in WP(R"), we find u in WHP(R") such
that, up to a subsequence, u, — u in WP (R"). Moreover, for each Q € R", we
have

up, — u in LP(Q), up(z) — u(z) for a.e. z € R™

By a natural extension of [5, Theorem 2.1] to unbounded domains, we have
Vup(xz) — Vu(z) for a.e. x € R"™.

Then, following the blueprint of [18, Theorem 3.4], we obtain for each v €
Ceo(R™)
(26) (w,v) = Vel(z,u, Vu) - Vodr + D, L(x,u, Vu)vde.

Rn Rn

Choose now Q2 € R™ and fix a positive smooth cut-off function n on R™ with
n =1 on . Moreover, let ¢ : R — R be the function defined by

Ms if0<s <R,
MR if s> R,
—Ms if —R<s<0,
MR if s<—R,

(27) O(s) =

where M is as in (24). Since by [18, Proposition 3.1] vy, = nup exp{d(up)} are
admissible test functions for (25), we get

VeL(x,up, Vug) - Vupnexp{0(up)} de — (wp, nus exp{d(up)})
RTL

+ VeLl(x,up, Vug) - Viup, exp{0(up)} dz
]Rn

+ / [DsL(x, un, Vup) + 9 (up)VeL(x, up, Vup) - Vup] nup exp{d(us)} dz = 0.
Let us observe that

VeLl(z,up, Vup) - Vup, — Vel(z,u,Vu) - Vu  for a.e. x € R™.
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Since, for each h € N, we have
[—DsL(x,up, Vuy) — 9 (up)VeL(x, up, Vug) - Vupnup, exp{d(up)} <0,

Fatou’s Lemma yields:

limsup/ [—DsL(x,up, Vup)
h n
— V' (up)VeL(z, un, Vup) - Vup] - nuy, exp{d(up)} dz

< / [—DsL(z,u, Vu) — 9" (u)VeL(z,u, Vu) - Vu] nuexp{d(u)} dz.
R’!L
Therefore, we conclude that

lim sup/ VeL(x,un, Vuy) - Vupnexp{d(us)} dx
h R™

= lim sup { / (=D L(x, up, Vup) — 9 (un)VeL(x, up, Vup) - Vup]
h n

“nup, exp{¥(up) } dz + (wh, nup exp{d(un)})

— VeL(z, un, Vup) - Viuy, exp{¥(up)} dm}
R"'L

< { / [—DsL(x,u, Vu) — ¥ (u)VeL(x,u, Vu) - Vulnuexp{d(u)} dz
R’!L
+ (w, nuexp{d(u)}) — - VeLl(z,u, Vu) - Vyuexp{d(u)} dw}

= VeLl(z,u, Vu) - Vunexp{V(u)}dz,
R”L

where we used (26) with v = nuexp{¥(u)}. In particular, we have
(28) / Vel(z,u, Vu) - Vunexp{d(u)} dx
< limhinf/ VeLl(z,un, Vup) - Vupnexp{¥(up)} dz

< limsup/ Vel(z,un, Vup) - Vupnexp{¥(usp)} dz
h n

(20) < [ VeLlo.u Vo) Vunesp{ou)}do.
R’IL
namely

(30) li}rln VeLl(x,up, Vug) - Vupnexp{0(up)} dx
]R'n.

= VeLl(x,u, Vu) - Vunexp{d(u)} dzx.
RTL

Since L(z, s, ) is p-homogeneous by (5) for each h € N we have

vnp|Vug [P < nexp{d(un)}VeL(x, up, Vup) - Vuy,.
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By the generalized Lebesgue’s theorem we deduce that

lim/ 17|Vuh|pdx:/ n|Vul? dz.
h Jgn Rn

Up to substituting n with nP, we get

lim/ [nVup|?P dx :/ [nVul? d,
h RW, Rn
which implies that nVu, — nVu in LP(R™), namely Vup, — Vu in LP(Q). O
Let us remark that, in general, since the imbedding
WP (R?) < LP(R")
is not compact, we cannot have strong convergence of (CPS). sequences on
unbounded domains of R™. Nevertheless, we have the following result.
LEMMA 3. Assume that (up) is a (CPS).-sequence for f. Then there exists

w in WHP(R™) such that, up to a subsequence, the following facts hold

(a) (up) converges to u weakly in WHP(R™),
(b) (up) converges to u strongly in WHP(Q) for each Q € R,
(¢) w is a positive weak solution to (3).

PROOF. Since the sequence (uy) is bounded in W?(R"), by Lemma 2, of
course (a) holds. Now, for fixed Q@ € R™ we set

wp, = + g(z,up) — blup P 2wy, € W (Q), =0 in WH(Q).

Then (b) follows by Theorem 2 with w = g(z, u)—b|u[P~2u. Finally, by Lemma 1,
(c) is a consequence of equation (26). O

Let us now prove a technical lemma that we shall use later.

LEMMA 4. Let ¢ € R and (up) be a bounded (CPS).-sequence for f. Then
for each € > 0 there exists o > 0 such that

|[Vup|Pde <e for each h € N.
{lun|<eo}
PROOF. Let €,0 > 0 and define, for 6 € ]0,1[, the function ¥J5 : R — R

setting

s if |s] < o,

o+do—0ds ifo<s<po+o/s,
(31) Us(s) = ,

—0—0p—90s if —p—p/d<s<—p,

0 if |s| > o0+ 0/0.
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Since ¥5(up) € WHP(R™) N L (R"™), we get

(wp, 9s(up)) = / VeLl(z, un, Vup) - VOs(up) d

n

+ D L(x, up, Vup)Vs(up) dz
R'Vl

+/ blun P~ 2un9s (un) 7/ g(x, up)Vs(up) de.
Then condition (6), b(z) > 0 and [J5(up)| < ¢ yield

/ Vgﬁ(z, Up,, Vuh) . V195 (uh) dx

< / oz, un)Os(un) d + ollunl?, + lwnll” ., + dllunlls,

1
o'pP’ /Pyr’ /P

Since (up) is bounded in WP (R™), there exists § > 0 such that §|[us ||} , < ev/8,

and

(32) § | Vel(x,up,Vuy) - Vupdr < ev/2,
R’!L

uniformly with h € N so large that (1/p’pp//p5p//p)HwhH’i’Lp, < ev/8. Now, since

/n g(x, up )05 (up) de < / g(z, up )uy, dv

{lun|<o+e/8}
, 1/r
< ldll, / " dx) te / lunl” dz,
{lun|<o+o/d} {lun|<o+o0/6}

we can find ¢ > 0 such that
/ g(x, up)9s(up) de < ev/8

and o||up |, < ev/8. Therefore we obtain

Vel(z,up, Vup) - VOs(up) de < ev/2,
{lun|<o+e/s}

namely, taking into account (32),

/ VeLl(x,up, Vug) - Vup, de < ev.
{lun|<e}

By (5) the proof is complete. O

Let us now introduce the “asymptotic functional” f., : W1P(R?) — R by

setting
1

A 1
foolu) = f/ |VulP do + f/ |ul? do — 7/ |ut|? dx
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and consider the associated p-Laplacian problem
—div(|Vul[P72Vu) + AulP2u = u?"  in R™.

(See [8] for the case p > 2 and [3] for the case p = 2.) We now investigate the
behaviour of the functional f over its (CPS).-sequences.

LEMMA 5. Let (up) be a (CPS
(33) flun) = f(u) + foo (un — u),
(34) f'(un) (un) = f'(u)(u) + fo (un — w)(un — u)

as h — oo, where the notation Ay =~ By, means A, — B — 0.

~—

c-sequence for f and u its weak limit. Then

~—

PROOF. By [6, Lemma 2.2] we have the splitting

1
G(x,up)dzx — G(z,u)dx — 6/ |(up, —u)"|?dz = o(1),
Rn ]R'n.

n

as h — oo. Moreover, we easily get

/ blup|? dx — / blu|? dx — )\/ |up, — ul? de = o(1),
R" R™ R"

as h — 0o. Observe now that thanks to (18) we have

/ VeLl(z, un, Vup) - Vuy do — / |Vup|P de — 0,
{lz|>0} {lz|>0e}

as ¢ — 0o, uniformly in A € N and

Vel(z,u, Vu) - Vudr — / |Vul|P de — 0,
{lz|>e} {lz>e}
as o — oo. Therefore, taking into account that for each o > 0 there esists ¢, > 0
with
[Vupl? < co|VulP + (1 + 0)|Vuy, — Vul?,
we deduce that for each € > 0 there exists ¢ > 0 such that for each h € N

VeL(z,upn, Vup) - Vuy, de — / VeLl(z,u, Vu) - Vudz
{lz|>e} {lz|>e}
- / |V (up, — uw)|P dz < ce,
{lz[>e}
for some ¢ > 0. On the other hand, by Lemma 3, Vup — Vu in LP(B(0, o), R™).
Since we deduce
/ VeLl(z,un, Vuy) - Vuy de = / VeL(z,u, Vu) - Vudz + o(1),

{lz|<e} {lz|<e}
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as h — o0o. Then, for each € > 0, there exists h € N such that

/ VeL(z, upn, Vup) - Vuy, de — / VeLl(z,u, Vu) - Vudz
{l=z|<e} {lz|<e}
— |V (up, — w)|P dz < ce,
{lz|<e}

for each h > h and some ¢ > 0. Putting the previous inequalities together, we
have

VeL(z,up, Vup) - Vuy, dz
R?L

= Vel(z,u, Vu) - Vudz + / |V (up — w)|P do + o(1)
R’IL

n

as h — oo. Taking into account that £(z, s, -) is homogeneous of degree p, (33)
is proved. To prove (34), by the previous step and condition (15), it suffices to
show that

(35) D L(x,up, Vup)up de = D L(x,u, Vu)udz + o(1),
R™ Rn
as h — oo. By (19), we find by, bs > 0 such that for each € > 0 there exists o > 0
with
D L(x,up, Vup)up, dz < bie, / D L(x,u, Vu)udz < bae,

{lz|>e} {lz>e}

uniformly in » € N. On the other hand, combining (b) of Lemma 3 with (13),
the generalized Lebesgue’s Theorem yields

/ D L(x,up, Vup)up de = / DL(x,u, Vu)udz + o(1),

{lz|<e} {lz|<e}

as h — oo. Then (34) follows by the arbitrariness of e. O
Let us recall from [15] the following result:

LEMMA 6. Let 1 < p < oo and 1 < g < oo with q # p*. Assume that (up)
is a bounded sequence in LY(R™) with (Vuy) bounded in LP(R™) and there exists
R > 0 such that

sup / |up|?dz = o(1),
yER™ Jy+Br

as h — co. Then up, — 0 in L*(R"™) for each « € ]g, p*|.

PROOF. See [15, Lemma I.1]. O
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Let (up) denote a concrete Palais-Smale sequence for f and let us assume
that its weak limit w is 0. If np//(n+p’) < r < p/, recalling that by (35) it
results

DsL(x,up, Vup)up dz = o(1),
]Rn
as h — oo, we get

pe=pf(up) — f(un)(un) +o(1) < / g(x, up)up, dr + o(1)

n

<|ldllr[lunllr + ellunllg + o1).

Hence, either ||upl|, or ||up||s does not converge strongly to 0. If we now apply
Lemma 6 with p = ¢ (note also that p < 1/, o < p*), taking into account that
(up) is bounded in WHP(R™) we find C' > 0 and a sequence (y,) C R" with

|yn| — oo such that
/ lup|P dx > C,
yn+Br

for some R > 0. In particular, if 7,up(x) = up(z — yp), we have

/ |Thuh|p dx Z C
Br

and there exists u # 0 such that

(36) TRUp — U in Wl’p(R").

If r = np'/(n + p'), the same can be obtained in a similar fashion since for each
€ > 0 there exist

/

np

4 n
di € L°(R"), ée]va

/{, dy. € an'/(n-i-p’)(Rn)

such that d = dy . +da . and ||da.c||np' /(n+p) < €. We now show that @ is a weak
solution of:

(37) —div(|VulP2Vu) + AulP2u = w7 in R™.

LEMMA 7. Let (up) a (CPS).-sequence for f with up, — 0. Then @ is a weak
solution of (37). Moreover, u > 0.

PROOF. For all p € C®(R") and h € N we set (7"¢)(z) := ¢(x +y4) for all
x € R™. Since (up,) is a (CPS).-sequence for f, we have that f(up)(7"p) = o(1),
for all ¢ € C°(R™) namely, as h — oo,

Vel(z, un, Vup) - Vrheds + Dy L(x,up, Vup) " dx
Rn R™

+/ b(x)|uh|p72uhrhgpdz—/ g(x,up) ™" dr = o(1).
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Of course, as h — oo, we have

/ b(x)|uh\p_2uh7'hg0 dx = / b(x — yh)|7'huh|p_27'huh<p dx
" supt ¢
— /\/ [a|P % ¢ de,

/ g(a, up)m" o da = / 9(& —yn, mun)pdz — | [ut|" pde.
" supt ¢ R”

Next we have

Vel(z, un, Vup,) - Ve dx
R?L

= / VeL(z — yp, Thun, VTrup) - Vo dz — |Va[P~—2Va - Vi da.
supt ¢ R™

Now, for each € > 0, Lemma 4 gives a o > 0 such that

D L(z,up, Vuh)Thgo dr < ¢e + / D L(x,up, Vuh)Thgo dzx.
RTI,

{lun|>o}
On the other hand, by (10), we have
D L(x,up, Vup)"o dx
{lun|>o}
= / D3£($ — Yh, ThUp, VT}Luh)@dm = 0(1)7

supt eN{|Thun|>0}
as h — oo. By arbitrariness of € we conclude the proof. Finally w > 0 follows by
Lemma 1 and @ > 0 follows by [19, Theorem 1.1]. O

LEMMA 8. Let (up) be a (CPS).-sequence for f with up, — 0. Then

foo(u) < limhinf foo(Thun).

PRrROOF. Since (up,) weakly goes to 0, Lemma 5 gives f._(up)(up) — 0 as
h — o0, so that fL_(mhup)(mhup) — 0 as h — oo, namely

/ |V7hup|P de + A |Thun|P dx — / (thuf)?dx — 0

R’IL
as h — oo. Therefore
1 1
foo(Thup) — (—)/ mu ) de — 0.
(Thun) . ()
Similarly, Lemma 7 yields

Joo(@) = (; - ;) /n [a|? d,

and the assertion follows by Fatou’s Lemma. O
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LEMMA 9. If (up) is a (CPS).-sequence for f with up, — 0, then fo(u) < c.

PROOF. Since Lemma 5 yields f(up) = foo(Thun) as h — oo, by the previous
Lemma we conclude the proof. O

We finally come to the proof of the main result of this paper.

PROOF OF THEOREM 1. Since G is superlinear at co (12), we have
Yu € WHP(R™\ {0} : u>0= Jim f(tu) = —oo.

Let v € C°(R™) positive be such that f(tv) < 0 for all ¢ > 1 and define the

minimax class
I'={y € C([0,1], WHP(R™)) : 4(0) = 0, (1) = v},

and the minimax value

— inf ).
c ;Ielmgl[gﬁ]f(’v( )

Let us remark that, for each u € WHP(R™),
b
) = vIVal+ 2y - | Gy da.

Then, by (16), it results
lim 7‘[R" Gla,wn) =
b lwallf,
for each (wy,) that goes to 0 in W1P(R"), f has a mountain pass geometry, and by
the deformation Lemma of [7] there exists a (CPS).-sequence (up) C W1P(R™)
for f. By Lemma 3 it results that (up) converges weakly to a positive weak
solution u of (3). Therefore, if u # 0, we are done. On the other hand, if u =0
let us consider w. We now prove that u is a weak solution to our problem. Since,

for each u € WHP(R™) \ {0}, we have

u>0= tlim foo(tu) = —o0,
we find R > 0 so large that
Ya,b>0: a+b=R = fo(lau+ bv) <O0.

Define the path ~ : [0,1] — W1P(R") by

3RtT if ¢ €1[0,1/3],

vy#)=< (Bt—1)Rv+ (2—3t)Ru ifte[1/3,2/3],

(3R+3t—3Rt—2)v  ifte[2/3,1].

Of course we have v € T, foo(7y(¢)) < 0 for each t € ]1/3, 1] and by [8, Lemma 2.4]

e foo (V) = foo(@).



38 M. SQUASSINA

Hence, by Lemma 8 and the assumptions on £ and g, we have
< t) < t)) = u) <c.
¢ < max f((1) < max foo(y(1)) = foo(T) <
Therefore, since 7 is an optimal path in I', by the non-smooth deformation
Lemma of [7], there exists ¢ € ]0,1[ such that «(¢) is a critical point of f at
level ¢. Moreover, v(t) = U, otherwise

F(r(B) £ fos (7)) < foo(@) = ¢,
in contradiction with f(y(¢)) = ¢. Then @ is a positive solution to (3). O

REMARK 1. Let 1 <p <mn, g>pand A > 0. As a by-product of Theorem 1,
taking

1 A 1
L(z,5,8) = —[€[" + —[s]" — ~s]*,
p p q
we deduce that the problem
(38) —div (|[Vul|P2Vu) + MulP7?u = |u|9"%u  in R",

has at least one nontrivial positive solution u € WHP(R™) (see also [8], [20]).
In some sense, Theorem 1 implies that the e-perturbed problem

(39) —div (1 + &(z, u, Vu) |[VulP72Vu) + Nu[P~2u = |u[?"?u  in R",
has at least one nontrivial positive solution u € WP (R™).

REMARK 2. By [1, Lemma 1.4] we have a local boundedness property for
solutions of problem (3), namely, for each @ € R™ each weak solution u €
WLP(Q) of (3) belongs to L>(€) provided that in (14) is d € L3(2) for a
sufficiently large s (see [1], [7]).

Acknowledgments. The author warmly thanks Marco Degiovanni for pro-
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