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ON THE EXISTENCE OF POSITIVE ENTIRE SOLUTIONS
OF NONLINEAR ELLIPTIC EQUATIONS

Marco Squassina

Abstract. Via non-smooth critical point theory, we prove existence of en-
tire positive solutions for a class of nonlinear elliptic problems with asymp-

totic p-Laplacian behaviour and subjected to natural growth conditions.

1. Introduction

In the last few years there has been a growing interest in the study of positive
solutions to variational quasilinear equations in unbounded domains of Rn, since
these problems are involved in various branches of mathematical physics (see [4]).

Since 1988, quasilinear elliptic equations of the form

(1) −div(ϕ(∇u)) = g(x, u) in Rn

have been extensively treated, among the others, in [2], [8], [12], [14], [20] by
means of a combination of topological and variational techniques.

Moreover, existence of a positive solution u ∈ H1(Rn) for the more general
equation

−
n∑

i,j=1

Dj(aij(x, u)Diu) +
1
2

n∑
i,j=1

Dsaij(x, u)DiuDju + b(x)u = g(x, u) in Rn,
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behaving asymptotically (|x| → ∞) like the problem

−∆u + λu = uq−1 in Rn,

for some suitable λ > 0 and q > 2, has been firstly studied in 1996 in [9] via
techniques of non-smooth critical point theory.

On the other hand, more recently, in a bounded domain Ω of Rn some exis-
tence results for fully nonlinear problems of the type

(2)

{
−div (∇ξL(x, u,∇u)) + DsL(x, u,∇u) = g(x, u) in Ω,

u = 0 on ∂Ω,

have been established in [1], [17], [18].
The goal of this paper is to prove existence of a nontrivial positive solution

in W 1,p(Rn) for the nonlinear elliptic equation

(3) −div (∇ξL(x, u,∇u)) + DsL(x, u,∇u) + b(x)|u|p−2u = g(x, u) in Rn,

behaving asymptotically like the p-Laplacian problem

−div(|∇u|p−2∇u) + λ|u|p−2u = uq−1 in Rn,

for some suitable λ > 0 and q > p. In other words, equation (3) tends to
regularize as |x| → ∞ together with its associated functional f : W 1,p(Rn) → R

(4) f(u) =
∫

Rn

L(x, u,∇u) dx +
1
p

∫
Rn

b(x)|u|p dx−
∫

Rn

G(x, u) dx.

Since in general f is continuous but not even locally Lipschitzian, unless L
does not depend on u or the growth conditions on L are very restrictive, we shall
refer to the non-smooth critical point theory developed in [7], [10], [11], [13], [16]
and we shall follow the approach of [9].

We assume that 1 < p < n, the function L : Rn×R×Rn → R is measurable
in x for all (s, ξ) ∈ R× Rn, of class C1 in (s, ξ) for a.e. x ∈ Rn and L(x, s, · ) is
strictly convex and homogeneous of degree p. Take b ∈ L∞(Rn) with b ≤ b(x) ≤ b

for a.e. x ∈ Rn for some b, b > 0. Moreover, we shall assume that:

(H1) there exists ν > 0 such that

(5) ν|ξ|p ≤ L(x, s, ξ) ≤ 1
p
|ξ|p,

for a.e. x ∈ Rn and for all (s, ξ) ∈ R× Rn,
(H2) there exists c1 > 0 such that

(6) |DsL(x, s, ξ)| ≤ c1|ξ|p,

for a.e. x ∈ Rn and for all (s, ξ) ∈ R×Rn. Moreover, there exist c2 > 0
and a ∈ Lp′(Rn) such that

(7) |∇ξL(x, s, ξ)| ≤ a(x) + c2|s|p
∗/p′ + c2|ξ|p−1,
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for a.e. x ∈ Rn and for all (s, ξ) ∈ R× Rn,
(H3) there exists R > 0 such that

(8) s ≥ R ⇒ DsL(x, s, ξ)s ≥ 0,

for a.e. x ∈ Rn and for all (s, ξ) ∈ R× Rn.
(H4) uniformly in s ∈ R and ξ, η ∈ Rn with |ξ| ≤ 1 and |η| ≤ 1

lim
|x|→∞

∇ξL(x, s, ξ) · η = |ξ|p−2ξ · η,(9)

lim
|x|→∞

DsL(x, s, ξ)s = 0,(10)

lim
|x|→∞

b(x) = λ,(11)

for some λ > 0 and with b(x) ≤ λ for a.e. x ∈ Rn.
(G1) G : Rn ×R → R is a Carathéodory function, G(x, s) =

∫ s

0
g(x, t) dt and

there exist β > 0 and q > p such that

s > 0 ⇒ 0 < qG(x, s) ≤ g(x, s)s,(12)

(q − p)L(x, s, ξ)−DsL(x, s, ξ)s ≥ β|ξ|p,(13)

for a.e. x ∈ Rn and for all (s, ξ) ∈ R × Rn. Moreover, there exist
σ ∈ ]p, p∗[ and c > 0 such that

(14) |g(x, s)| ≤ d(x) + c|s|σ−1,

for a.e. x ∈ Rn and all s > 0, where d ∈ Lr(Rn), r ∈ [np′/(n + p′), p′[.
(G2) we assume that

(15) lim
|x|→∞

g(x, s)
sq−1

= 1,

uniformly in s > 0, and

(16) lim
|s|→0

G(x, s)
|s|p

= 0,

uniformly in x ∈ Rn, and g(x, s) ≥ sq−1 for each s > 0.

Under the previous assumptions, the following is our main result.

Theorem 1. The Euler’s equation of f

(17) −div (∇ξL(x, u,∇u)) + DsL(x, u,∇u) + b|u|p−2u = g(x, u) in Rn

admits at least one nontrivial positive solution u ∈ W 1,p(Rn).

This result extends to a more general setting Theorem 2 of [9] dealing with
the case:

L(x, s, ξ) =
1
2

n∑
i,j=1

aij(x, s)ξiξj ,
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and Theorem 2.1 of [8] involving integrands of the type:

L(x, ξ) =
1
p
a(x)|ξ|p,

where a ∈ L∞(R) and 1 < p < n. Let us remark that we assume (8) for large
values of s, while in [9] it was supposed that, for a.e. x ∈ Rn and all ξ ∈ Rn,

∀s ∈ R :
n∑

i,j=1

sDsaij(x, s)ξiξj ≥ 0.

This assumption has been widely considered in literature, not only in studying
existence but also to ensure local boundedness of weak solutions (see e.g. [1]).

Condition (13) has been already used in [1], [17], [18] and seems to be a nat-
ural extension of what happens in the quasilinear case [7].

We point out that in a bounded domain, conditions (12) and (13) may be
assumed for large values of s (see e.g. [18]).

Finally (9)–(11) and (15) fix the asymptotic behaviour of (3). By (9) and (10),
there exist two maps ε1 : Rn × R × Rn × Rn → R and ε2 : Rn × R × Rn → R
such that

∇ξL(x, s, ξ) · η = |ξ|p−2ξ · η + ε1(x, s, ξ, η)|ξ|p−1|η|,(18)

DsL(x, s, ξ)s = ε2(x, s, ξ)|ξ|p,(19)

where ε1(x, s, ξ, η) → 0 and ε2(x, s, ξ) → 0 as |x| → ∞ uniformly in s ∈ R and
ξ, η ∈ Rn.

2. Recalls from non-smooth critical point theory

We recall from [7] two basic definitions in a general setting.

Definition 1. Let (X, d) be a metric space, f : X → R a continuous func-
tion and u ∈ X. We denote by |df |(u) the supremum of σ ∈ [0,∞[ such that
there exist δ > 0 and a continuous map H : Bδ(u)× [0, δ] → X such that, for all
(v, t) ∈ Bδ(u)× [0, δ],

d(H(v, t), v) ≤ t, f(H(v, t)) ≤ f(v)− σt.

We say that the extended real number |df |(u) is the weak slope of f at u.

Definition 2. Let (X, d) be a metric space, f : X → R a continuous func-
tion and u ∈ X. We say that u is a critical point of f if |df |(u) = 0.

We now introduce the following variant of the classical (PS)c condition.
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Definition 3. Let c ∈ R. A sequence (uh) ⊂ W 1,p(Rn) is said to be a
concrete Palais–Smale sequence at level c ((CPS)c-sequence, in short) for f , if
f(uh) → c,

−div (∇ξL(x, uh,∇uh)) + DsL(x, uh,∇uh) ∈ W−1,p′(Rn)

eventually, as h →∞ and

−div (∇ξL(x, uh,∇uh)) + DsL(x, uh,∇uh) + b(x)|uh|p−2uh − g(x, uh) → 0

strongly in W−1,p′(Rn). We say that f satisfies the concrete Palais–Smale condi-
tion at level c ((CPS)c in short), if every (CPS)c-sequence for f admits a strongly
convergent subsequence.

The following proposition connects the abstract framework of non-smooth
critical point theory with the weak solutions of our problem.

Proposition 1. The functional f is continuous and if |df |(u) < ∞ it results

−div (∇ξL(x, u,∇u)) + DsL(x, u,∇u) + b|u|p−2u− g(x, u) ∈ W−1,p′(Rn)

and

‖ − div (∇ξL(x, u,∇u)) + DsL(x, u,∇u) + b|u|p−2u− g(x, u)‖−1,p′ ≤ |df |(u).

Proof. See [7, Theorem 2.1.3]. �

As a consequence, each critical point of f solves (17) in the sense of distri-
butions.

3. The concrete Palais–Smale condition

Let us now set, for a.e. x ∈ Rn and all (s, ξ) ∈ R× Rn,

(20) L̃(x, s, ξ) =

{
L(x, s, ξ) if s ≥ 0,

L(x, 0, ξ) if s < 0,
g̃(x, s) =

{
g(x, s) if s ≥ 0,

0 if s < 0.

We define a modified functional f̃ : W 1,p(Rn) → R setting

(21) f̃(u) =
∫

Rn

L̃(x, u,∇u) dx +
1
p

∫
Rn

b(x)|u|p dx−
∫

Rn

G̃(x, u) dx.

Then the Euler’s equation of f̃ is given by

(22) −div (∇ξL̃(x, u,∇u)) + DsL̃(x, u,∇u) + b(x)|u|p−2u = g̃(x, u) in Rn.
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Lemma 1. If u ∈ W 1,p(Rn) is a solution of (22), then u is a positive solution
of (17).

Proof. Let Q : R → R the Lipschitz map defined by

Q(s) =


0 if s ≥ 0,

s if − 1 ≤ s ≤ 0,

−1 if s ≤ −1.

Testing f̃ ′(u) with Q(u) ∈ W 1,p ∩L∞(Rn) and taking into account (20) we have

0 = f̃ ′(u)(Q(u))

=
∫

Rn

∇ξL̃(x, u,∇u) · ∇Q(u) dx +
∫

Rn

DsL̃(x, u,∇u)Q(u) dx

+
∫

Rn

b(x)|u|p−2uQ(u) dx−
∫

Rn

g̃(x, u)Q(u) dx

=
∫
{−1<u<0}

∇ξL(x, 0,∇u) · ∇u dx +
∫
{u<0}

DsL̃(x, u,∇u)Q(u) dx

+
∫

Rn

b(x)|u|p−2uQ(u) dx−
∫
{u<0}

g̃(x, u)Q(u) dx

=
∫
{−1<u<0}

pL(x, 0,∇u) dx +
∫

Rn

b(x)|u|p−2uQ(u) dx

≥ b

∫
Rn

|u|p−2uQ(u) dx ≥ 0.

In particular, it results Q(u) = 0, namely u ≥ 0. �

Therefore, without loss of generality, we shall suppose that

g(x, s) = 0, L(x, s, ξ) = L(x, 0, ξ) for all s ≤ 0,

for a.e. x ∈ Rn and all ξ ∈ Rn.

Lemma 2. Let c ∈ R. Then each (CPS)c-sequence for f is bounded in
W 1,p(Rn).

Proof. If (uh) is a (CPS)c-sequence for f , arguing as in [9, Lemma 2], since

f(uh)− 1
q
f ′(uh)(uh) = c + o(1)

as h →∞, by (12) and (13) we get

(23) β

∫
Rn

|∇uh|p dx +
q − p

p
b

∫
Rn

|uh|p dx ≤ C,

for some C > 0, hence the assertion. �

Let us note that there exists M > 0 such that

(24) |DsL(x, s, ξ)| ≤ M∇ξL(x, s, ξ) · ξ
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for a.e. x ∈ Rn and for all (s, ξ) ∈ R× Rn.
We now prove a local compactness property for (CPS)c-sequences. In the

following, Ω b Rn will always denote an open and bounded subset of Rn.

Theorem 2. Let (uh) be a bounded sequence in W 1,p(Rn) and for each v ∈
C∞

c (Rn) set

(25) 〈wh, v〉 =
∫

Rn

∇ξL(x, uh,∇uh) · ∇v dx +
∫

Rn

DsL(x, uh,∇uh)v dx.

If (wh) is strongly convergent to some w in W−1,p′(Ω) for each Ω b Rn, then
(uh) admits a strongly convergent subsequence in W 1,p(Ω) for each Ω b Rn.

Proof. Since (uh) is bounded in W 1,p(Rn), we find u in W 1,p(Rn) such
that, up to a subsequence, uh ⇀ u in W 1,p(Rn). Moreover, for each Ω b Rn, we
have

uh → u in Lp(Ω), uh(x) → u(x) for a.e. x ∈ Rn.

By a natural extension of [5, Theorem 2.1] to unbounded domains, we have

∇uh(x) → ∇u(x) for a.e. x ∈ Rn.

Then, following the blueprint of [18, Theorem 3.4], we obtain for each v ∈
C∞

c (Rn)

(26) 〈w, v〉 =
∫

Rn

∇ξL(x, u,∇u) · ∇v dx +
∫

Rn

DsL(x, u,∇u)v dx.

Choose now Ω b Rn and fix a positive smooth cut-off function η on Rn with
η = 1 on Ω. Moreover, let ϑ : R → R be the function defined by

(27) ϑ(s) =


Ms if 0 < s < R,

MR if s ≥ R,

−Ms if −R < s < 0,

MR if s ≤ −R,

where M is as in (24). Since by [18, Proposition 3.1] vh = ηuh exp{ϑ(uh)} are
admissible test functions for (25), we get∫

Rn

∇ξL(x, uh,∇uh) · ∇uhη exp{ϑ(uh)} dx− 〈wh, ηuh exp{ϑ(uh)}〉

+
∫

Rn

∇ξL(x, uh,∇uh) · ∇ηuh exp{ϑ(uh)} dx

+
∫

Rn

[DsL(x, uh,∇uh) + ϑ′(uh)∇ξL(x, uh,∇uh) · ∇uh] ηuh exp{ϑ(uh)} dx = 0.

Let us observe that

∇ξL(x, uh,∇uh) · ∇uh → ∇ξL(x, u,∇u) · ∇u for a.e. x ∈ Rn.
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Since, for each h ∈ N, we have

[−DsL(x, uh,∇uh)− ϑ′(uh)∇ξL(x, uh,∇uh) · ∇uh]ηuh exp{ϑ(uh)} ≤ 0,

Fatou’s Lemma yields:

lim sup
h

∫
Rn

[−DsL(x, uh,∇uh)

− ϑ′(uh)∇ξL(x, uh,∇uh) · ∇uh] · ηuh exp{ϑ(uh)} dx

≤
∫

Rn

[−DsL(x, u,∇u)− ϑ′(u)∇ξL(x, u,∇u) · ∇u] ηu exp{ϑ(u)} dx.

Therefore, we conclude that

lim sup
h

∫
Rn

∇ξL(x, uh,∇uh) · ∇uhη exp{ϑ(uh)} dx

= lim sup
h

{ ∫
Rn

[−DsL(x, uh,∇uh)− ϑ′(uh)∇ξL(x, uh,∇uh) · ∇uh]

· ηuh exp{ϑ(uh)} dx + 〈wh, ηuh exp{ϑ(uh)}〉

−
∫

Rn

∇ξL(x, uh,∇uh) · ∇ηuh exp{ϑ(uh)} dx

}
≤

{ ∫
Rn

[−DsL(x, u,∇u)− ϑ′(u)∇ξL(x, u,∇u) · ∇u]ηu exp{ϑ(u)} dx

+ 〈w, ηu exp{ϑ(u)}〉 −
∫

Rn

∇ξL(x, u,∇u) · ∇ηu exp{ϑ(u)} dx

}
=

∫
Rn

∇ξL(x, u,∇u) · ∇uη exp{ϑ(u)} dx,

where we used (26) with v = ηu exp{ϑ(u)}. In particular, we have∫
Rn

∇ξL(x, u,∇u) · ∇uη exp{ϑ(u)} dx(28)

≤ lim inf
h

∫
Rn

∇ξL(x, uh,∇uh) · ∇uhη exp{ϑ(uh)} dx

≤ lim sup
h

∫
Rn

∇ξL(x, uh,∇uh) · ∇uhη exp{ϑ(uh)} dx

≤
∫

Rn

∇ξL(x, u,∇u) · ∇u η exp{ϑ(u)} dx,(29)

namely

(30) lim
h

∫
Rn

∇ξL(x, uh,∇uh) · ∇uhη exp{ϑ(uh)} dx

=
∫

Rn

∇ξL(x, u,∇u) · ∇uη exp{ϑ(u)} dx.

Since L(x, s, · ) is p-homogeneous by (5) for each h ∈ N we have

νηp|∇uh|p ≤ η exp{ϑ(uh)}∇ξL(x, uh,∇uh) · ∇uh.
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By the generalized Lebesgue’s theorem we deduce that

lim
h

∫
Rn

η|∇uh|p dx =
∫

Rn

η|∇u|p dx.

Up to substituting η with ηp, we get

lim
h

∫
Rn

|η∇uh|p dx =
∫

Rn

|η∇u|p dx,

which implies that η∇uh → η∇u in Lp(Rn), namely ∇uh → ∇u in Lp(Ω). �

Let us remark that, in general, since the imbedding

W 1,p(Rn) ↪→ Lp(Rn)

is not compact, we cannot have strong convergence of (CPS)c sequences on
unbounded domains of Rn. Nevertheless, we have the following result.

Lemma 3. Assume that (uh) is a (CPS)c-sequence for f . Then there exists
u in W 1,p(Rn) such that, up to a subsequence, the following facts hold

(a) (uh) converges to u weakly in W 1,p(Rn),
(b) (uh) converges to u strongly in W 1,p(Ω) for each Ω b Rn,
(c) u is a positive weak solution to (3).

Proof. Since the sequence (uh) is bounded in W 1,p(Rn), by Lemma 2, of
course (a) holds. Now, for fixed Ω b Rn we set

wh = γh + g(x, uh)− b|uh|p−2uh ∈ W−1,p′(Ω), γh → 0 in W−1,p′(Ω).

Then (b) follows by Theorem 2 with w = g(x, u)−b|u|p−2u. Finally, by Lemma 1,
(c) is a consequence of equation (26). �

Let us now prove a technical lemma that we shall use later.

Lemma 4. Let c ∈ R and (uh) be a bounded (CPS)c-sequence for f . Then
for each ε > 0 there exists % > 0 such that∫

{|uh|≤%}

|∇uh|p dx ≤ ε for each h ∈ N.

Proof. Let ε, % > 0 and define, for δ ∈ ]0, 1[, the function ϑδ : R → R
setting

(31) ϑδ(s) =


s if |s| ≤ %,

% + δ%− δs if % < s < % + %/δ,

−%− δ%− δs if − %− %/δ < s < −%,

0 if |s| ≥ % + %/δ.
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Since ϑδ(uh) ∈ W 1,p(Rn) ∩ L∞(Rn), we get

〈wh, ϑδ(uh)〉 =
∫

Rn

∇ξL(x, uh,∇uh) · ∇ϑδ(uh) dx

+
∫

Rn

DsL(x, uh,∇uh)ϑδ(uh) dx

+
∫

Rn

b|uh|p−2uhϑδ(uh)−
∫

Rn

g(x, uh)ϑδ(uh) dx.

Then condition (6), b(x) > 0 and |ϑδ(uh)| ≤ % yield∫
Rn

∇ξL(x, uh,∇uh) · ∇ϑδ(uh) dx

≤
∫

Rn

g(x, uh)ϑδ(uh) dx + %‖uh‖p
1,p +

1
p′pp′/pδp′/p

‖wh‖p′

−1,p′ + δ‖uh‖p
1,p.

Since (uh) is bounded in W 1,p(Rn), there exists δ > 0 such that δ‖uh‖p
1,p ≤ εν/8,

and

(32) δ

∫
Rn

∇ξL(x, uh,∇uh) · ∇uh dx ≤ εν/2,

uniformly with h ∈ N so large that (1/p′pp′/pδp′/p)‖wh‖p′

−1,p′ ≤ εν/8. Now, since∫
Rn

g(x, uh)ϑδ(uh) dx ≤
∫

{|uh|≤%+%/δ}

g(x, uh)uh dx

≤ ‖d‖r

( ∫
{|uh|≤%+%/δ}

|uh|r
′
dx

)1/r′

+ c

∫
{|uh|≤%+%/δ}

|uh|σ dx,

we can find % > 0 such that∫
Rn

g(x, uh)ϑδ(uh) dx ≤ εν/8

and %‖uh‖p
1,p ≤ εν/8. Therefore we obtain∫

{|uh|≤%+%/δ}

∇ξL(x, uh,∇uh) · ∇ϑδ(uh) dx ≤ εν/2,

namely, taking into account (32),∫
{|uh|≤%}

∇ξL(x, uh,∇uh) · ∇uh dx ≤ εν.

By (5) the proof is complete. �

Let us now introduce the “asymptotic functional” f∞ : W 1,p(Rn) → R by
setting

f∞(u) =
1
p

∫
Rn

|∇u|p dx +
λ

p

∫
Rn

|u|p dx− 1
q

∫
Rn

|u+|q dx
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and consider the associated p-Laplacian problem

−div(|∇u|p−2∇u) + λ|u|p−2u = uq−1 in Rn.

(See [8] for the case p > 2 and [3] for the case p = 2.) We now investigate the
behaviour of the functional f over its (CPS)c-sequences.

Lemma 5. Let (uh) be a (CPS)c-sequence for f and u its weak limit. Then

f(uh) ≈ f(u) + f∞(uh − u),(33)

f ′(uh)(uh) ≈ f ′(u)(u) + f ′∞(uh − u)(uh − u)(34)

as h →∞, where the notation Ah ≈ Bh means Ah −Bh → 0.

Proof. By [6, Lemma 2.2] we have the splitting∫
Rn

G(x, uh) dx−
∫

Rn

G(x, u) dx− 1
q

∫
Rn

|(uh − u)+|q dx = o(1),

as h →∞. Moreover, we easily get∫
Rn

b|uh|p dx−
∫

Rn

b|u|p dx− λ

∫
Rn

|uh − u|p dx = o(1),

as h →∞. Observe now that thanks to (18) we have∫
{|x|>%}

∇ξL(x, uh,∇uh) · ∇uh dx−
∫

{|x|>%}

|∇uh|p dx → 0,

as % →∞, uniformly in h ∈ N and∫
{|x|>%}

∇ξL(x, u,∇u) · ∇u dx−
∫

{|x|>%}

|∇u|p dx → 0,

as % →∞. Therefore, taking into account that for each σ > 0 there esists cσ > 0
with

|∇uh|p ≤ cσ|∇u|p + (1 + σ)|∇uh −∇u|p,
we deduce that for each ε > 0 there exists % > 0 such that for each h ∈ N∫
{|x|>%}

∇ξL(x, uh,∇uh) · ∇uh dx−
∫

{|x|>%}

∇ξL(x, u,∇u) · ∇u dx

−
∫

{|x|>%}

|∇(uh − u)|p dx < c̃ε,

for some c̃ > 0. On the other hand, by Lemma 3, ∇uh → ∇u in Lp(B(0, %), Rn).
Since we deduce∫

{|x|≤%}

∇ξL(x, uh,∇uh) · ∇uh dx =
∫

{|x|≤%}

∇ξL(x, u,∇u) · ∇u dx + o(1),
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as h →∞. Then, for each ε > 0, there exists h ∈ N such that∫
{|x|≤%}

∇ξL(x, uh,∇uh) · ∇uh dx−
∫

{|x|≤%}

∇ξL(x, u,∇u) · ∇u dx

−
∫

{|x|≤%}

|∇(uh − u)|p dx < ĉε,

for each h ≥ h and some ĉ > 0. Putting the previous inequalities together, we
have∫

Rn

∇ξL(x, uh,∇uh) · ∇uh dx

=
∫

Rn

∇ξL(x, u,∇u) · ∇u dx +
∫

Rn

|∇(uh − u)|p dx + o(1)

as h →∞. Taking into account that L(x, s, · ) is homogeneous of degree p, (33)
is proved. To prove (34), by the previous step and condition (15), it suffices to
show that

(35)
∫

Rn

DsL(x, uh,∇uh)uh dx =
∫

Rn

DsL(x, u,∇u)u dx + o(1),

as h →∞. By (19), we find b1, b2 > 0 such that for each ε > 0 there exists % > 0
with ∫

{|x|>%}

DsL(x, uh,∇uh)uh dx ≤ b1ε,

∫
{|x|>%}

DsL(x, u,∇u)u dx ≤ b2ε,

uniformly in h ∈ N. On the other hand, combining (b) of Lemma 3 with (13),
the generalized Lebesgue’s Theorem yields∫

{|x|≤%}

DsL(x, uh,∇uh)uh dx =
∫

{|x|≤%}

DsL(x, u,∇u)u dx + o(1),

as h →∞. Then (34) follows by the arbitrariness of ε. �

Let us recall from [15] the following result:

Lemma 6. Let 1 < p ≤ ∞ and 1 ≤ q < ∞ with q 6= p∗. Assume that (uh)
is a bounded sequence in Lq(Rn) with (∇uh) bounded in Lp(Rn) and there exists
R > 0 such that

sup
y∈Rn

∫
y+BR

|uh|q dx = o(1),

as h →∞. Then uh → 0 in Lα(Rn) for each α ∈ ]q, p∗[.

Proof. See [15, Lemma I.1]. �
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Let (uh) denote a concrete Palais–Smale sequence for f and let us assume
that its weak limit u is 0. If np′/(n + p′) < r < p′, recalling that by (35) it
results ∫

Rn

DsL(x, uh,∇uh)uh dx = o(1),

as h →∞, we get

pc = pf(uh)− f ′(uh)(uh) + o(1) ≤
∫

Rn

g(x, uh)uh dx + o(1)

≤‖d‖r‖uh‖r′ + c‖uh‖σ
σ + o(1).

Hence, either ‖uh‖r′ or ‖uh‖σ does not converge strongly to 0. If we now apply
Lemma 6 with p = q (note also that p < r′, σ < p∗), taking into account that
(uh) is bounded in W 1,p(Rn) we find C > 0 and a sequence (yh) ⊂ Rn with
|yh| → ∞ such that ∫

yh+BR

|uh|p dx ≥ C,

for some R > 0. In particular, if τhuh(x) = uh(x− yh), we have∫
BR

|τhuh|p dx ≥ C

and there exists u 6≡ 0 such that

(36) τhuh ⇀ u in W 1,p(Rn).

If r = np′/(n + p′), the same can be obtained in a similar fashion since for each
ε > 0 there exist

d1,ε ∈ L`(Rn), ` ∈
]

np′

n + p′
, p′

[
, d2,ε ∈ Lnp′/(n+p′)(Rn)

such that d = d1,ε +d2,ε and ‖d2,ε‖np′/(n+p′) ≤ ε. We now show that u is a weak
solution of:

(37) −div(|∇u|p−2∇u) + λ|u|p−2u = uq−1 in Rn.

Lemma 7. Let (uh) a (CPS)c-sequence for f with uh ⇀ 0. Then u is a weak
solution of (37). Moreover, u > 0.

Proof. For all ϕ ∈ C∞
c (Rn) and h ∈ N we set (τhϕ)(x) := ϕ(x + yh) for all

x ∈ Rn. Since (uh) is a (CPS)c-sequence for f , we have that f ′(uh)(τhϕ) = o(1),
for all ϕ ∈ C∞

c (Rn) namely, as h →∞,∫
Rn

∇ξL(x, uh,∇uh) · ∇τhϕ dx +
∫

Rn

DsL(x, uh,∇uh)τhϕ dx

+
∫

Rn

b(x)|uh|p−2uhτhϕ dx−
∫

Rn

g(x, uh)τhϕ dx = o(1).
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Of course, as h →∞, we have∫
Rn

b(x)|uh|p−2uhτhϕ dx =
∫

supt ϕ

b(x− yh)|τhuh|p−2τhuhϕ dx

→ λ

∫
Rn

|u|p−2u ϕ dx,∫
Rn

g(x, uh)τhϕ dx =
∫

supt ϕ

g(x− yh, τhuh)ϕ dx →
∫

Rn

|u+|q−1ϕ dx.

Next we have∫
Rn

∇ξL(x, uh,∇uh) · ∇τhϕ dx

=
∫

supt ϕ

∇ξL(x− yh, τhuh,∇τhuh) · ∇ϕ dx →
∫

Rn

|∇u|p−2∇u · ∇ϕ dx.

Now, for each ε > 0, Lemma 4 gives a % > 0 such that∫
Rn

DsL(x, uh,∇uh)τhϕ dx ≤ c̃ε +
∫

{|uh|>%}

DsL(x, uh,∇uh)τhϕ dx.

On the other hand, by (10), we have∫
{|uh|>%}

DsL(x, uh,∇uh)τhϕ dx

=
∫

supt ϕ∩{|τhuh|>%}

DsL(x− yh, τhuh,∇τhuh)ϕ dx = o(1),

as h →∞. By arbitrariness of ε we conclude the proof. Finally u ≥ 0 follows by
Lemma 1 and u > 0 follows by [19, Theorem 1.1]. �

Lemma 8. Let (uh) be a (CPS)c-sequence for f with uh ⇀ 0. Then

f∞(u) ≤ lim inf
h

f∞(τhuh).

Proof. Since (uh) weakly goes to 0, Lemma 5 gives f ′∞(uh)(uh) → 0 as
h →∞, so that f ′∞(τhuh)(τhuh) → 0 as h →∞, namely∫

Rn

|∇τhuh|p dx + λ

∫
Rn

|τhuh|p dx−
∫

Rn

(τhu+
h )q dx → 0

as h →∞. Therefore

f∞(τhuh)−
(

1
p
− 1

q

) ∫
Rn

(τhu+
h )q dx → 0.

Similarly, Lemma 7 yields

f∞(u) =
(

1
p
− 1

q

) ∫
Rn

|u|q dx,

and the assertion follows by Fatou’s Lemma. �
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Lemma 9. If (uh) is a (CPS)c-sequence for f with uh ⇀ 0, then f∞(u) ≤ c.

Proof. Since Lemma 5 yields f(uh) ≈ f∞(τhuh) as h →∞, by the previous
Lemma we conclude the proof. �

We finally come to the proof of the main result of this paper.

Proof of Theorem 1. Since G is superlinear at ∞ (12), we have

∀u ∈ W 1,p(Rn) \ {0} : u ≥ 0 ⇒ lim
t→∞

f(tu) = −∞.

Let v ∈ C∞
c (Rn) positive be such that f(tv) < 0 for all t > 1 and define the

minimax class

Γ = {γ ∈ C([0, 1],W 1,p(Rn)) : γ(0) = 0, γ(1) = v},

and the minimax value
c = inf

γ∈Γ
max

t∈[0,1]
f(γ(t)).

Let us remark that, for each u ∈ W 1,p(Rn),

f(u) ≥ ν‖∇u‖p
p +

b

p
‖u‖p

p −
∫

Rn

G(x, u) dx.

Then, by (16), it results

lim
h

∫
Rn G(x,wh)
‖wh‖p

1,p

= 0

for each (wh) that goes to 0 in W 1,p(Rn), f has a mountain pass geometry, and by
the deformation Lemma of [7] there exists a (CPS)c-sequence (uh) ⊂ W 1,p(Rn)
for f . By Lemma 3 it results that (uh) converges weakly to a positive weak
solution u of (3). Therefore, if u 6= 0, we are done. On the other hand, if u = 0
let us consider u. We now prove that u is a weak solution to our problem. Since,
for each u ∈ W 1,p(Rn) \ {0}, we have

u ≥ 0 ⇒ lim
t→∞

f∞(tu) = −∞,

we find R > 0 so large that

∀a, b ≥ 0 : a + b = R ⇒ f∞(au + bv) < 0.

Define the path γ : [0, 1] → W 1,p(Rn) by

γ(t) =


3Rtu if t ∈ [0, 1/3],

(3t− 1)Rv + (2− 3t)Ru if t ∈ [1/3, 2/3],

(3R + 3t− 3Rt− 2)v if t ∈ [2/3, 1].

Of course we have γ ∈ Γ, f∞(γ(t)) < 0 for each t ∈ ]1/3, 1] and by [8, Lemma 2.4]

max
t∈[0,1/3]

f∞(γ(t)) = f∞(u).
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Hence, by Lemma 8 and the assumptions on L and g, we have

c ≤ max
t∈[0,1]

f(γ(t)) ≤ max
t∈[0,1]

f∞(γ(t)) = f∞(u) ≤ c.

Therefore, since γ is an optimal path in Γ, by the non-smooth deformation
Lemma of [7], there exists t ∈ ]0, 1[ such that γ(t) is a critical point of f at
level c. Moreover, γ(t) = u, otherwise

f(γ(t)) ≤ f∞(γ(t)) < f∞(u) = c,

in contradiction with f(γ(t)) = c. Then u is a positive solution to (3). �

Remark 1. Let 1 < p < n, q > p and λ > 0. As a by-product of Theorem 1,
taking

L(x, s, ξ) =
1
p
|ξ|p +

λ

p
|s|p − 1

q
|s|q,

we deduce that the problem

(38) −div (|∇u|p−2∇u) + λ|u|p−2u = |u|q−2u in Rn,

has at least one nontrivial positive solution u ∈ W 1,p(Rn) (see also [8], [20]).
In some sense, Theorem 1 implies that the ε-perturbed problem

(39) −div ((1 + ε(x, u,∇u))|∇u|p−2∇u) + λ|u|p−2u = |u|q−2u in Rn,

has at least one nontrivial positive solution u ∈ W 1,p(Rn).

Remark 2. By [1, Lemma 1.4] we have a local boundedness property for
solutions of problem (3), namely, for each Ω b Rn each weak solution u ∈
W 1,p(Ω) of (3) belongs to L∞(Ω) provided that in (14) is d ∈ Ls(Ω) for a
sufficiently large s (see [1], [7]).

Acknowledgments. The author warmly thanks Marco Degiovanni for pro-
viding helpful discussions.
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