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EXISTENCE AND RELAXATION PROBLEMS
IN OPTIMAL SHAPE DESIGN

Zdzis law Denkowski

Abstract. A general abstract theorem on existence of solutions to op-

timal shape design problems for systems governed by partial differential
equations, or variational inequalities or hemivariational inequalities is for-

mulated and two main properties (conditions) responsible for the existence

are discussed. When one of them fails one have to make “relaxation” in
order to get some generalized optimal shapes. In particular, some relax-

ation “in state”, based on Γ convergence, is presented in details for elliptic,
parabolic and hyperbolic PDEs (and then for optimal shape design prob-

lems), while the relaxation “in cost functional” is discussed for some special

classes of functionals.

1. Introduction

Optimization of shape is one of the most important task in engineering. It
is enough to mention looking for optimal shape of airplane wings, or of the
submarine under the constraint that its volume is prescribed, the shaping of
anode in electromachining problems, or optimal shape of the contact surface in
elasticity, and so on.

The mathematical theory of such kind of problems, called also optimal shape
design (OSD for short) deals with the existence problems of optimal shapes,
their characterization and numerical approximation, or relaxation (i.e. looking
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for some kind of generalized solutions in the case there are no classical ones).
It started in 70-ties and developed then quickly with papers and monographs
by Céa, Chenais, Miele, Murat and Simon, Pironneau, Buttazzo and Dal Maso,
Dal Maso and Garroni, Sokoowski and Zolesio, Neittaanmäkki, Liu and Rubio,
Šverák and many others (see References).

The aim of this paper is to present some ideas and results concerning the
existence, non-existence and relaxation problems in optimal shape design. For
the detailed proofs we refer to original papers.

Thus, in Section 2 after the statement of general OSD problem for systems
governed by a relation, which can be a partial differential equation (PDE) or
a variational inequality (VI) or hemivariational inequality (HVI), we quote an
abstract existence results ([15]) based on direct method of Calculus of Variations
and then we discuss two conditions responsible for existence. Lack one of them
may produce nonexistence as it is illustrated by an example in Section 5. Start-
ing with preliminaries of Section 3 we concentrate on OSD problems governed by
PDE’s. In Section 4 we quote relaxation results for elliptic, parabolic and hyper-
bolic equations. These kinds of problems dealing with determining the minimal
classes of equations closed under some passages to the limit (see Remark 2.2)
are interesting in themselves and were largely investigated in connection with
the homogenization theory. Section 5 is devoted to relaxation of cost functionals
and some existence results for OSD of systems governed by evolution PDE’s (the
results in hyperbolic case extend those obtained in [25] for parabolic case).

We present a unified approach for stationary and evolution case based on γA-
convergence which was introduced by Dal Maso and Mosco ([31], [42], see also
[1], [2]) for symmetric operators A (the case of general A bases on capacitary
methods developed by Dal Maso and Garroni [11], [12]). This convergence is
related to the Γ-convergence (defined by De Giorgi and Franzoni – see also [2]
and [9]) of energy functionals.

Relaxation in state leads to generalized shapes being Borel measures (classi-
cal shapes being geometrical domains). Some analogy one can find in construct-
ing reals starting from minimization problems in the set of rational numbers
(e.g. minQ(x−

√
2)2).

2. Statement of OSD-problems and an existence theorem

2.1. A mathematical model of (OSD)R. A very general OSD problem
for systems described by a relation R can be formulated as follows:

(OSD)R


find (Ω∗, u∗) ∈

⋃
Ω∈B

(Ω× SR(Ω)) such that

J (Ω∗, u∗) = min
Ω∈B

min
v∈SR(Ω)

J (Ω, v).
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The meaning of the symbols above is following:

(1) B is a fixed subclass of the class O = Oad of all admissible shapes
(geometrical domains in RN ),

(2) R stands for the state relation (it can be a PDE or VI or HVI), e.g.

(PDE) Au = f, u ∈ V (Ω),

a(u, v − u) + Φ(v)− Φ(u) ≥ 〈f, v − u〉 for all v ∈ K(Ω),(VI)

a(u, v − u) +
∫

Ω

j0(u, v − u) dx ≥ 〈f, v − u〉 for all v ∈ K(Ω),(HVI)

with some differential operator A, bilinear form a, convex function
Φ, Clark generalized directional derivative j0 of superpotential j, and
closed convex subset K of a suitable Sobolev space and so on (see [15],
[16], [17], [18]),

(3) SR(Ω) ⊂ V (Ω) denotes the set of solutions to the state relation R,
(4) the function

J :
⋃

Ω∈B
(Ω× SR(Ω)) 3 (Ω, u) → J(Ω, u) ∈ R

denotes a cost functional.

Definition 2.1. The pair (Ω∗, u∗) above is called the optimal solution for
(OSD)R.

Remark 2.1. The solution set SR(Ω) reduces to the one element for “well
posed” problems as it will be the case below for elliptic, parabolic and hyperbolic
PDE’s, (but in general it contains more than one element, e.g. for (HVI) – see
[17]). In such a case the double minimization in (OSD)R also reduces to the
single one.

2.2. An abstract existence theorem. Let V = V(G) denote a “universal”
space of functions (defined on a big set e.g. G = B(0, R) or G = RN ) in which
all the sets (of states) SR(Ω), Ω ∈ B can be embedded (using for instance a
prolongation operator).

We admit the hypothesis:

(H) Assume some topologies τO (on the set of admissible shapes) and τV

(on the “universal” set of states) are introduced in such a way that:

(i) The family B is τO-closed subset of O = Oad.
(ii) The minimizing sequence (Ωn, un) ∈

⋃
Ω∈B(Ω× SR(Ω)), n = 1, 2, . . . is

compact in the sense that it possesses a convergent subsequence in the
product topology τO × τV .
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(iii) The multifunctionO 3 Ω 7→ SR(Ω) ⊂ V (with nonempty values !) is τO-
usc (upper semicontinuous in Kuratowski sense), i.e. we have implication

(2.1) {Ωn ⊂ B, Ωn
τO−→ Ω, un ∈ SR(Ωn), un

τV−→ u} ⇒ u ∈ SR(Ω).

(iv) The functional

J :
⋃

Ω∈B
(Ω× SR(Ω)) 3 (Ω, u) 7→ J(Ω, u) ∈ R

is sequentially lsc (lower semicontinuous) in the product topology τO ×
τV , i.e.

(2.2) J(Ω, u) ≤ lim infn→∞J(Ωn, un) for all (Ωn, un) → (Ω, u).

Now the direct method for OSD problems can be summarized as follows:

Theorem 2.1. If the hypothesis (H) is satisfied, then the problem (OSD)R
admits at least one optimal solution.

The difficulties in applications of this theorem lay in defining the space V and
good topologies satisfying hypothesis (H) (as a priori there is no linear neither
convex structure in the set of admissible shapes).

Remark 2.2. The condition (2.1) means some “closedness” property of the
class of relations {R} (e.g. it was extensively investigated in papers concern-
ing the asymptotic behavior of some classes of equations in the homogenization
theory – an example due to Cioranescu and Murat ([8]) shows the lack of such
property (see also [10]).

Relaxation in state means looking for the smallest (in some sense, e.g. see
Propositions 4.2–4.5) closed class of relations containing R.

Remark 2.3. The condition (2.2), where integral depends also on the do-
main of integration, shows that relaxation in the cost (i.e. looking for lsc envelope
of the cost functional) is more difficult than in classical Calculus of Variations,
where the domain is fixed.

Remark 2.4. There is a “conflict” of topologies in the existence result above.
Choosing stronger topologies τO×τV we easier get the lsc property for functional
J in (iv), while the compactness properties for minimizing sequences in (ii) we
easier obtain for the weaker topologies. Thus, in order to obtain an existence
result we have to find a compromise between these two tendencies.

Finally, we would like to mention that such kind of conditions are satisfied
in some restrictive classes of shapes considered in the literature where the ex-
istence of optimal shapes was proved, e.g. Murat and Simon [21] developed the
so called mapping method where the shapes were images of a fixed set by regu-
lar transformations, Pironneau [22] considered the shapes contained “between”
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two fixed sets with the Hausdorff “complementary metric”, i.e. dHc(Ω1,Ω2) =
dH(G \ Ω1, G \ Ω2), Chenais [6] used the “cone property” in order to preserve
the shapes from “wild oscillations” of their boundary (which occur in homog-
enization theory for periodic structures), while Šverák [27] assumed that the
complements of admissible shapes had uniformly bounded number of connected
components.

3. Preliminaries

Let G be an open and bounded subset of RN . Admissible shapes are defined
as elements of the set A(G) := {Ω ⊂ G : Ω is open}. So we do not impose other
restrictions on shapes, i.e. B = A(G).

Given a matrix of functions ai,j ∈ L∞(G), i, j = 1, . . . , N, satisfying the
usual coercivity assumption

N∑
i,j=1

ai,jξiξj ≥ c|ξ|2 for all ξ ∈ RN

for some c > 0, we set

Au = −
N∑

i,j=1

Di(ai,j(x)Dju).

So we obtain the whole family A : H1
0 (Ω) → H−1(Ω), (Ω ∈ A(G)) of linear

elliptic operators defined on usual Sobolev spaces and with values in their duals.
After [13] we admit

Definition 3.1. By the harmonic capacity of E with respect to G we mean

cap(E,G) = inf{‖u‖H1
0 (G) : u ∈ H1

0 (G), u(x) ≥ 1 on a neighbourhood of E}.

The set U ⊂ G is called quasi open if for every ε > 0 there exists E ⊂ G

such that cap(E,G) < ε and U ∪E is open. In such a case the set G\U is called
quasi closed. We say that some property P (x) holds quasi everywhere in E (q.e.
for short) if it is satisfied for all x ∈ E except a set N with cap(N,G) = 0.

Definition 3.2. By M0(G) we denote the set of all nonnegative Borel mea-
sures on G, possibly infinite and satisfying properties:

(i) µ(B) = 0 for all B with cap(B,G) = 0,
(ii) µ(B) = inf{µ(E) : E is quasi open, B ⊂ E}.

As examples of measures in the class M0(G) we quote:

(1) ϕLN ∈M0(G), for all ϕ ∈ L∞(G), ϕ ≥ 0 (LN being the N -dimensional
Lebesgue measure),
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(2) Hα ∈ M0(G), for all N − 2 < α ≤ N , Hα being the α-dimensional
Hausdorff measure.
(This is a consequence of the two following implications: HN−2(B) <
∞⇒ cap(B,G) = 0, cap(B,G) = 0 ⇒ HN−2+ε(B) = 0, for all ε > 0).

(3) The measure

∞S(B) =

{
0 if cap(B ∩ S,G) = 0,

∞ otherwise,

belongs to M0(G) for every quasi closed set S, and so does the measure
which plays important role in the sequel: µΩ = ∞G\Ω for every open
Ω ⊂ G, i.e.

(3.1) µΩ(B) =

{
0 if cap(B \ Ω, G) = 0,

∞ otherwise.

4. Relaxation in state

As we have already mentioned in Remark 2.2, the classes of PDE’s which
appear in natural way in formulating OSD problems are in general not closed
under the passage to the limit of their solutions (extended in some way in order
they were defined on the same domain). Thus it appears the problem of finding
the smallest (in the sense of dense embedding) classes of equations which are
closed in suitable topologies. It appears that suitable topology for the shapes will
be in all cases (elliptic, parabolic and hyperbolic) the so called γA-convergence
(τO = γA), while the topology for the solutions will depend on the case.

4.1. Elliptic case. In 1974 it appeared (in connection with the homoge-
nization theory) the paper [8] by Cioranescu-Murat in which the authors proved
that in the periodically perforated domains with suitable critical size of holes the
solutions of homogeneous Dirichlet problems converge to a function which is the
solution of some modified equation with an additional term “venu d’ailleurs”.

This and similar examples have led Dal Maso and Mosco (see [13], [14] and
also [3], [4], [5]) to considering, together with the class of let say “classical”
Dirichlet problems:

(DP)Ω

{
Au = f,

u ∈ H1
0 (Ω),

(Ω ∈ A(G), f ∈ H−1(Ω)), the new class introduced by them and called the
relaxed Dirichlet problems:

(RDP)µ

{
Au+ µu = f,

u ∈ Vµ(G),

with µ ∈M0(G), f ∈ V ′µ(G).
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The meaning of the solutions to these problems is precised in the definitions
below for which besides the standard Gelfand–Lions triplet of Sobolev spaces
V (Ω) = H1

0 (Ω), H(Ω) = L2(Ω), V ′(Ω) = H−1(Ω) (for any Ω ∈ A(G)) with
dense and continuous embeddings (V (Ω) ⊂ H(Ω) ⊂ V ′(Ω)) we have to introduce
the new spaces. Namely, we set

(4.1) Vµ = Vµ(G) := H1
0 (G) ∩ L2

µ(G)),

where L2
µ(G) denotes the space of all square summable functions with respect to

the measure µ.
The space Vµ becomes the Hilbert space with the scalar product

(4.2) (u, v)µ =
∫

G

DuDvdx+
∫

G

uvdµ.

Let V ′µ denote the dual space of Vµ and 〈 · , · 〉µ be the duality pairing. Since in
this case Vµ is (in general) not dense in L2(G) and the latter is not the pivot
space we do not identify the isomorphic spaces Vµ and V ′µ.

Remark 4.1 (see [3]). Even if the transposed mappings to the embeddings
of Vµ into H1

0 (G) and into L2(G) are not injective the spaces H−1(G) and L2(G)
can be considered as the linear subspaces of V ′µ and we have:

〈f, v〉µ = 〈f, v〉G for f ∈ H−1(G), v ∈ Vµ

and, in particular,

〈f, v〉µ =
∫

G

fv dx for f ∈ L2(G), v ∈ Vµ

where for any Ω ∈ A(G) we denote by 〈 · , · 〉Ω the duality pairing between V (Ω)
and V ′(Ω).

Definition 4.1. The function uΩ is called the solution of (DP)Ω if and only
if {

〈AuΩ, v〉Ω = 〈f, v〉Ω for all v ∈ H1
0 (Ω),

uΩ ∈ H1
0 (Ω),

We then set

ũΩ =

{
uΩ on Ω,

0 on G \ Ω.

Definition 4.2. The function uµ is called the solution of (RDP)µ with fixed
f ∈ V ′µ(G) if and only if{

〈Auµ, v〉G +
∫

G
uµv dµ = 〈f, v〉µ for all v ∈ Vµ(G),

uµ ∈ Vµ(G).

For the justification (with the use of the Riesz–Fréchet representation theo-
rem for the scalar product in Vµ(G)) see [3].
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Due to the well known Lax–Milgram lemma one can get

Proposition 4.1. The (RDP)µ problem has the unique solution but it can-
not be understood in the distributional sense (unless µ is a Radon measure) as
in general the set C∞0 (G) is not contained in Vµ(G).

Roughly speaking the idea of elliptic relaxation for symmetric operators,
based on Γ convergence (the general case is based on capacitary methods [11],
[12]), can be described in three steps.

(1) First: consider the injective mapping A(G) 3 Ω → FΩ ∈ SΨ(H1
0 (G))

where

FΩ(u) =

{
〈Au, u〉Ω − 2〈f, u〉Ω on H1

0 (Ω),

∞ on H1
0 (G) \H1

0 (Ω),

is the energy functional for (DP)Ω, and the space SΨ(H1
0 (G)) (of all

w-lsc functionals bounded from below by a w-lsc and coercive function
Ψ) is (see [9]) compactly metrizable by the metric dΓ introduced by the
De Giorgi Γ convergence.

(2) Next: transport this metric to the set of shapes

d(Ω1,Ω2) = dΓ(FΩ1 , FΩ2).

(3) Finally: make standard completion operation of the so obtained metric
space (A(G), d) getting the new space of “generalized shapes” isomor-
phic to the space of measures M0(G) with corresponding metric called
“γA convergence”.

Hence and from the well known (see [9]) properties of Γ convergence one
can justify the formal definition and characterization of γA convergence given
precisely below and obtain the following statements.

Definition 4.3. Given a sequence {µn} and µ in M0(G) we admit:

µn
γA

−→ µ
df⇐⇒ uµn(f)

w−H1
0 (G)−−−−−−→ uµ(f) for all f ∈ L2(G),

where by uµ(f) we denote the solution to (RDP)µ with the right-hand side f .

Let put wµ = uµ(1). These solutions (µ ∈ M0(G)) play important role in
relaxation as it is seen from remarks below (see [11], [3]).

Remark 4.2. The γA convergence defined above is equivalent to the condi-
tion

wµn
:= uµn

(1)
w−H1

0 (G)−−−−−−→ uµ(1) =: wµ,

as well as (in the case of symmetric A) to the Γ convergence of the energy
functionals Fµn

→ Fµ.
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The energy functionals above are defined by

Fµ(u) =

 〈Au, u〉G +
∫

G

u2 dµ on H1
0 (Ω),

∞ on L2(G) \H1
0 (Ω).

Remark 4.3. Let us fix µ ∈M0(G).

(1) The sets

R(µ) := {x ∈ G : wµ(x) > 0}, S(µ) := {x ∈ G : wµ(x) = 0}

are called the regular and singular sets for µ and, respectively, they are
quasi open and quasi closed subsets of G.

(2) The family of functions {ϕwµ}ϕ∈C∞0 (G) is dense in Vµ(G).
(3) The closure operations (in the strong topologies) lead to results:

clH1
0 (G)(Vµ(G)) = H1

0 (R(µ)),

clL2
µ(G)Vµ(G) = {u ∈ L2(G) : u(x) = 0 µ a.e. on S(µ)}.

Proposition 4.2. The classical Dirichlet problems {(DP)Ω}Ω∈A(G) can be
embedded in the new class of relaxed Dirichlet problems {(RDP)µ}µ∈M0(G) by
means of the measure µΩ given by (3.1), i.e. we have:

u ∈ H1
0 (Ω)is the solution of (DP)Ω ⇔ uµΩ = ũΩ is the solution of (RDP)µ,

or in other words
Au = f,

u ∈ H1
0 (Ω),

u(x) = 0 q.e. in G \ Ω,

⇔

{
AũΩ + µΩũΩ = f,

ũΩ ∈ VµΩ(G).

Proposition 4.3. The embedding (of classical shapes into generalized ones)

A(G) 3 Ω → µΩ ∈M0(G)

is dense with respect to γA convergence.

Proposition 4.4 (Compactness). Every sequence of measures in M0(G)
contains a γA convergent subsequence.

Proposition 4.5. The class {(RDP )µ}µ∈M0(G) is closed under the γA con-
vergence. We have even stronger implication:

fn
s−H−1(G)−−−−−−→ f, µn

γA

−→ µ ⇒ uµn
(fn)

w−H1
0 (G)−−−−−−→ uµ(f)

(as before uµ(f) being the solution to (RDP)µ with the right-hand side f).

(Thus, the condition (2.1) is satisfied!)
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4.2. Parabolic case. In this subsection we base on results by M. Smo lka
(see Ph. D. Thesis 1999 [24]). J. P. Raymond (U. P. S. Toulouse) has obtained
similar results (private communication).

We consider the class of parabolic problems (Ω ∈ A(G), QΩ = (0, T )× Ω):

(PP)Ω


u′ +Au = f in QΩ,

u(0) = u0 on Ω,

u ∈W (0, T ; Ω),

where the weak solution is understood in the sense of Lions-Magenes ([19]) and

W (0, T ; Ω) := {u ∈ L2(0, T ;H1
0 (Ω));u′ ∈ L2(0, T ;H−1(Ω))}

(the time derivative u′ above is taken in the distributional sense).
The analogous as in elliptic case “closedness” property for the above problems

leads to the new class of relaxed parabolic problems with “measure coefficients”
(µ ∈M0(G)):

(RPP)µ


u′ +Au+ µu = f,

u(0) = u0,

u ∈Wµ(0, T ;G).

For the existence of solutions to (RPP)µ the problem is to find a good evo-
lution triple (and then apply the general theory of PDEs as, for instance in
Lions-Magenes [19]). Setting

Vµ(G) = H1
0 (G) ∩ L2

µ(G),

Hµ(G) = the (s− L2(G))-closure of Vµ(G),

V ′µ(G) = the dual of Vµ(G)

we have Vµ(G) ⊂ Hµ(G) ⊂ V ′µ(G) with all the embeddings above being contin-
uous, dense and compact (see [24]).

So (using e.g. the Galerkin method) we can obtain

Proposition 4.6. The (RPP)µ posseses the unique solution (in the sense
of the definition below)

u ∈Wµ = Wµ(0, T ;G) := {u ∈ L2(0, T );Vµ); u′ ∈ L2(0, T ;V ′µ)}

and the last space is continuously imbeded in C([0, T ];Hµ), so the initial condi-
tion has sense.

Definition 4.4. By the solution to the relaxed problem (RPP)µ above we
mean a function u ∈Wµ(0, T ;G), satisfying the initial condition and the follow-
ing equation

〈u′(t), v〉µ + 〈Au(t), v〉G +
∫

Ω

u(t)vdµ = 〈f(t), v〉µ
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for every v ∈ Vµ and a.e. in (0, T ) or, equivalently the equation:∫ T

0

〈u′(t), vψ(t)〉µ dt+
∫ T

0

〈Au(t), vψ(t)〉G dt

+
∫ T

0

∫
Ω

u(t, x)v(x)ψ(t)dµ(x) dt =
∫ T

0

〈f(t), vψ(t)〉µdt

for every v ∈ Vµ and ψ ∈ C∞0 ((0, T )) (〈 · , · 〉µ being the duality between Vµ and
V ′µ).

Similarly as in elliptic case, we have

Proposition 4.7. The class of classical parabolic problems can be embedded
in the new class of relaxed parabolic problems by means of measures µΩ given by
(3.1), i.e. for any Ω ∈ A(G) it holds{

u ∈W (0, T ; Ω)

is the solution of (PP)Ω
⇔

{
uµΩ = ũ ∈WµΩ(0, T ;G)

is the solution of (RPP)µΩ ,

where we admited

ũ =

{
u on (0, T )× Ω,

0 on (0, T )× (G \ Ω).

We have also the closedness theorem for the new class of (RPP)µ problems.
Let us consider the whole sequence of problems:

(RPP)µn


u′n +Aun + µnun = fn,

un(0) = u0
n,

un ∈Wµn
(0, T ;G).

We have (see [24])

Theorem 4.1. Let u and un be solutions of (RPP)µ and (RPP)µn
, respec-

tively and assume f, fn ∈ L2(QG), u0 ∈ Vµ(G), u0
n ∈ Vµn(G). Suppose

(i) µn
γA

−→ µ,
(ii) fn → f weakly in L2(QG),
(iii) u0

n → u0 weakly in H1
0 (G),

(iv) ||u0
n||L2

µn
(G) ≤M , for some M > 0 and for all n ∈ N.

Then un → u weakly in W (0, T ;G). Moreover,

(1) un → u strongly in L2(QG),
(2) un → u strongly in C(0, T ;L2(G)),
(3) un → u weakly ∗ in L∞(0, T ;H1

0 (G)),
(4) u′n → u′ weakly in L2(QG),
(5) un(t) → u(t) weakly in H1

0 (G) for all t ∈ [0, T ].
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4.3. Hyperbolic case. For the result of this section one can also consult
R. Toader [28] who extended some results of paper [7].

Let us consider the class of hyperbolic problems (Ω ∈ A(G), QΩ = (0, T )×Ω):

(HP)Ω


u′′ +Au = f in QΩ,

u(0) = u0, u′(0) = u1 on Ω,

u = 0 on (0, T )× ∂Ω,

where we extend the solution u to the function ũ setting

(4.3) ũ =

{
u on (0, T )× Ω,

0 on (0, T )× (G \ Ω).

The same (as in parabolic case) “closedness” property for the above class of
problems leads to the new class of relaxed hyperbolic problems with “measure
coefficients” (µ ∈M0(G)):

(RHP)µ


u” +Au+ µu = f in QG,

u(0) = u0, u′(0) = u1,

u ∈Wµ(0, T ;Vµ,Hµ).

In analogy to the standard notation for the space of solutions to the “classi-
cal” (HP)Ω problem:

W (0, T ;H1
0 (Ω), L2(Ω))

= {u ∈ L2(0, T ;H1
0 (Ω)) : u′ ∈ L2(0, T ;L2(Ω)), u′′ ∈ L2(0, T ;H−1(Ω))},

for the relaxed problem (RHP)µ we admit as the space of solutions:

Wµ(0, T ;Vµ(G),Hµ(G))

= {u ∈ L2(0, T ;Vµ(G)) : u′ ∈ L2(0, T ;Hµ(G)), u” ∈ L2(0, T ;V ′µ(G))}.

The meaning of such relaxed problem is clarified by the definition:

Definition 4.6. A function u ∈ Wµ(0, T ;Vµ,Hµ) is called the solution of
(RHP)µ with f ∈ L2(QG), u0 ∈ Vµ, u1 ∈ Hµ if and only if it satisfies the initial
conditions above and for every v ∈ Vµ the equality

d2

dt2

∫
G

u(t)v dx+
∫

G

N∑
i,j=1

ai,j(x)Diu(t)Djv dx+
∫

G

u(t)v dµ =
∫

G

f(t)v dx

holds in the distributional sense on [0, T ], i.e. for every ψ ∈ C∞0 ((0, T )) we have:∫ T

0

d2

dt2
〈u(t), vψ(t)〉G dt+

∫ T

0

〈Au(t), vψ(t)〉G dt

+
∫ T

0

∫
G

u(t)vψ(t) dµ dt =
∫ T

0

〈f(t), vψ(t)〉G dt for all v ∈ Vµ.
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For this class similar results as in parabolic case can be obtained. Namely,
we have:

Proposition 4.8 (Existence and regularity). For given µ ∈ M0(G), f ∈
L2(QG), u0 ∈ Vµ, u1 ∈ Hµ there exists the unique solution uµ of the problem
(RHP)µ and moreover, we have uµ ∈ C0(0, T ;Vµ) ∩ C1(0, T ;Hµ) (so the both
initial conditions have sense).

Proposition 4.9 (Dense embedding). The class of the classical hyperbolic
problems {(HP)Ω}Ω∈A(G) can be (densely) embedded (by means of measures µΩ

given by (3.1)) into the new class of {(RHP)µ}µ∈M0(G), i.e. for given Ω ∈ A(G)
and ũ given by (4.3) it holds{

u ∈W (0, T ;H1
0 (Ω), L2(Ω))

is the solution of (HP)Ω
⇔

{
uµΩ = ũ ∈WµΩ(0, T ;VµΩ ,HµΩ)

is the solution of (RHP)µΩ .

We also have the closedness theorem for the new class of {(RHP)µ}µ∈M0(G))
problems (see [28]). Namely, let us consider the whole sequence of problems

(RHP)µn


u′′n +Aun + µnun = fn,

un(0) = u0
n, u

′
n(0) = u1

n,

un ∈Wµn(0, T ;Vµ,Hµ).

Theorem 4.2. Let µn, µ ∈M0(G) and un be solutions of (RHP)µn
problems

and assume f, fn ∈ L2(QG), u0
n ∈ Vµn , u1

n ∈ Hµn . Suppose

(i) µn
γA

−→ µ,
(ii) fn → f weakly in L2(QG),
(iii) u0

n → u0 weakly in H1
0 (G),

(iv) ||u0
n||L2

µn
(G) ≤M , for all n ∈ N, for some M > 0,

(v) u1
n → u1 weakly in L2(G) and u1 ∈ Hµ.

Then u0 ∈ Vµ and

un → u in w − ∗ − L∞(0, T ;H1
0 (G)),

u′n → u′ in w − ∗ − L∞(0, T ;L2(G)),
||un||L∞(0,T ;Vµ) ≤ C,

where u is the solution of (RHP)µ and C is a constant independent of n. More-
over, for every Θ ∈ H−1(G) it holds

〈Θ, un( · )〉G → 〈Θ, u( · )〉G in s− C0([0, T ])

(i.e. un(t) → u(t) in w −H1
0 (G), uniformly in t ∈ [0, T ]).
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5. Relaxation in OSD-problems

5.1. An abstract relaxation scheme. Let (Y, σ), (Z, τ) be two topological
spaces (τ satisfying the I-axiom of countability for simplicity sake) with contin-
uous and dense embedding Y ⊂ Z. Given a functional J : Y → R := R ∪ {±∞}
we admit the definition.

Definition 5.1. The functional J : Z −→ R is called relaxation of J iff J

is the greatest functional τseq-lsc and majorized by J on Y , i.e. J |Y ≤ J .

We have for every z ∈ Z

J(z) = inf{lim inf
n→∞

J(yn) : yn → z}

and the following theorem hold:

Theorem 5.1. If J is coercive, i.e.

∀t ∈ R ∃Kt(compact) ⊂ Z; {z : J(z) ≤ t} ⊂ Kt,

then it admits its minimum: (exists z0 ∈ Z such that)

J(z0) = min
Z
J = inf

Y
J.

Moreover, for any minimizing sequence {yk} of J we have implication

ykν

τ−→ z ⇒ J(z) = min
Z
J = inf

Y
J

and also some “inverse” implication holds:

J(z) = min
Z
J ⇒ ∃(m.s. {yk} ⊂ Y ), yk

τ−→ z.

(Above m.s. stands for “minimizing sequence”).
In (OSD)PDE-problems considered previously we set:

Y = A(G), Z = M0(G), (Ω ∼ µΩ) σ = τ = γA-convergence.

5.2. Statement of OSD problems for evolution equations. OSD prob-
lems for systems governed by elliptic Dirichlet problems (DP) were considered
in papers [3], [4], [5], so we omit here this case.

For statement of OSD problems for evolution case it is imporant to define
how to generate, respectively, from fixed f ∈ L2(QG) (the right-hand side of the
equation) and u0 ∈ H1

0 (G) (the initial condition in (PP) or in (HP) problem)
and also from u1 ∈ L2(G) (the initial condition for velocity in (HP) problem)
the appropriate values in L2(QΩ) and the initial conditions on moving domains
(Ω ∈ A(G)) in the case of classical (OSD) problems or in moving spaces Vµ,
(µ ∈M0(G)), in the case of relaxed (ROSD) problems below. This can be done,
respectively, by taking the restrictions f |QΩ and solving an additional relaxed
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elliptic problem. Namely, let us define operator Pµ : H1
0 (G) → Vµ by setting

Pµv = uµ, where uµ is the solution to the problem:

(RDP)µ

{
Au+ µu = Av,

u ∈ Vµ.

Since for Ω ∈ A(G) we have VµΩ = H1
0 (Ω) (where µΩ is given by (3.1)) thus

setting u0
Ω = PµΩu

0 we get the initial condition in the required space also in the
classical (OSD)PP problem below.

This family of operators can be considered also as applications from H1
0 (G)

into itself and it has good properties for our purposes. Namely, we have (see [25]
and also Proposision 4.5 above):

Proposition 5.1. The operators Pµ are linear and uniformly bounded, i. e.
there exists constant C > 0 such that

||Pµ||L(H1
0 (G),Vµ) ≤ C, for all µ ∈M0(G).

Moreover, if µn
γA

−→ µ, then Pµn
v

w−H1
0 (G)−−−−−−→ Pµv, for all v ∈ H1

0 (G).

In the sequel for more compact writing we denote, respectively by SPP(Ω),
SRPP(µ), SHP(Ω), SRHP(µ) the one element sets of solutions, respectively to
(PP)Ω, (RPP)µ, and so on (see Remark 2.1).

Now, given f ∈ L2(QG) and u0 ∈ H1
0 (G) we consider the classical and relaxed

(OSD) problems:

(OSD)PP min
Ω∈A(G)

{J(Ω, u) : u ∈ SPP(Ω), u(0) = PµΩu
0},

(ROSD)PP min
µ∈M0(G)

{J(uµ) : uµ ∈ SRPP(µ), uµ(0) = Pµu
0}.

Analogous OSD problems can be considered for hyperbolic state equations
with a bit more regular initial condition (u1 ∈ H1

0 (G))

(OSD)HP min
Ω∈A(G)

{J(Ω, u) : u ∈ SHP (Ω), u(0) = PµΩu
0, u′(0) = PµΩu

1},

(ROSD)HP min
µ∈M0(G)

{J(uµ);uµ ∈ SRHP (µ), uµ(0) = Pµu
0, u′µ(0) = Pµu

1}.

5.3. Results in OSD for evolution systems. Natural cost functionals
for OSD in evolution problems have the form

J(Ω, u) =
∫ T

0

∫
Ω

j(t, x, u(t, x), Du(t, x)) dt dx+
∫

Ω

ĵ(x, u(T, x), Du(T, x)) dx.

Concerning integrands we assume hypothesis H(J):

(J1) j : QG × R× RN → R and ĵ : Ω× R× RN → R are Borel functions,
(J2) j(t, x, · , · ) and ĵ(x, · , · ) are lsc for almost all t ∈ (0, T ) and x ∈ Ω,
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(J3) j(t, x, s, · ) and ĵ(x, s, · ) are convex for almost all t ∈ (0, T ), x ∈ Ω and
all s ∈ R,

(J4) there exist functions a1 ∈ L1(QG), a2 ∈ L1(Ω) and constants b1, b2, c1,
c2 ∈ R, such that

j(t, x, s, ξ) ≥ a1(t, x)− b1|s|2 − c1|ξ|2,
ĵ(x, s, ξ) ≥ a2(x)− b2|s|2 − c2|ξ|2,

for almost all t ∈ (0, T ), x ∈ Ω and all s ∈ R i ξ ∈ RN .

We formulate first the case the functional does not depend explicitly on the
domain of integration, we assume it is fixed and equal to G.

Theorem 5.2. Under the above assumptions the relaxed functional for

J : A(G) 3 Ω → J(G, uΩ) ∈ R

is given by
J : M0(G) 3 µ→ J(G, uµ) ∈ R,

where uΩ is the solution to (PP)Ω, (respectively, (HP)Ω), uµ is the solution to
the corresponding relaxed evolution equation (RPP)µ , (respectively, (RHP)µ).

Proof. The proof follows from Theorem 4.1 (respectively, Theorem 4.2)
and from already classical results (e.g. see [2] [9]) for lower semicontinuity of the
integral functionals appearing in the definition of J . �

Next we can apply general Theorem 5.2 of relaxation getting the following
result in the parabolic case (similar result holds for the hyperbolic case so its
formulation will be omitted):

Theorem 5.3. Under hypothesis H(J) the problem (ROSD)PP admits the
solution and we have

min
µ∈M0(G)

J(G, uµ) = inf
Ω∈A(G)

J(G, uΩ).

Moreover, for a function u ∈W (0, T ;G) the following two conditions are equiv-
alent:

(i) there exists a minimizing sequence {Ωn} of the problem (OSD)PP such
that uΩn

→ u weakly in W (0, T ;G),
(ii) there exists the minimal point of the relaxed problem (ROSD)PP such

that u = uµ.

Proof. It follows directly from Theorem 5.1 and Theorem 5.2. �

Remark 5.1. The calculation of the relaxed functional J for general cost
functional J(Ω, u) is much more complicated. We quote here only a simplified
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version of the example from [5] concerning the elliptic OSD problem. Namely,
for

J(Ω, u) =
∫

Ω

j(u, uΩ(x) dx,

where u = uΩ is the solution of (DP)Ω, under anologous hypothesis as H(J) the
γA-lsc regularization is given by the formula

J(uµ) =
∫

R(µ)

j(x, uµ(x)) dx+ inf
{ ∫

B\R(µ)

j(x, 0) dx; B ∈ B
}
,

where R(µ) is the regular set of µ (see Remark 4.3),

B := {B : B is Borel subset of G, B ⊃ R(µ)}

and as usual we admit the convention that inf taken over the empty set is equal
to ∞.

5.4. Nonexistence of optimal solutions to OSD problems. The nonex-
istence in OSD problems could be a consequence of lack either of the “closedness
property” (2.1) for state relation or of the “lsc-property” (2.2) for functionals.

For the convenience of the reader we quote an example due to Buttazzo–Dal
Maso [3] concerning the elliptic case which was generalized by Smo lka [25] to the
parabolic case (it can be also modified for the hyperbolic case).

Let w0 be the solution of the Dirichlet problem on G = B(0, R) ⊂ R2:{
−∆w0 = 1,

w0 ∈ H1
0 (G).

So w0(x) = (R2 − |x|2)/4 for |x| < R. We consider:

(OSD)DP min
Ω∈A(G)

∫
G

|2uΩ − w0|2 dx

where

uΩ =

{
u in Ω,

0 in G \ Ω,
and u is the solution to the following Dirichlet problem

(DP)Ω

{
−∆u = 1,

u ∈ H1
0 (Ω).

Thus, above we have R = DP , SDP (Ω) = {u}, V = H1
0 (G) and the cost

functional (“deviation” from the fixed function) does depend on the shape Ω
only by the solution to the state equation, i.e.

J(Ω, u) = J(uΩ) =
∫

G

|2uΩ − w0|2 dx.

There is no optimal solution to the above (OSD)DP. Indeed, one can construct
a minimizing sequence {(Ωn, un)} for J and prove J(uΩn

) → 0, uΩn
→ u in the
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weak topology of H1
0 (G), but there is no Ω ∈ A(G) such that u ∈ SDP(Ω). So

it is not satisfied the “closedness” condition (2.1).
On the contrary, there exist optimal solution to the relaxed problem:

(ROSD)DP min
µ∈M0(G)

J(uµ),

where J is the γ-lsc regularization of J (here J = J), and uµ is the solution of

(RDP)µ

{
−∆u+ µu = 1,

u ∈ Vµ(G) (Vµ(G) := H1
0 (G) ∩ L2

µ(G)).

Namely, the optimal solution is given by the measure (“generalized” shape) µ∗ =
(1/w0(x))L2 belonging to M0(G) and the corresponding uµ∗ = w0/2 being the
solution to (RDP)µ∗ , i.e. we have J(uµ∗) = 0.

Finally, we would like to underline that there are still many open questions
in this field, especially for problems with Neumann type boundary conditions
and the relaxation for OSD problems with states described by (HVI)s. For the
characterization of optimal solutions to OSD problems we refer to [3], [21], [25],
[26], where some necessary conditions for optimality are given.
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1993.
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