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RELATIVE VERSIONS OF THE MULTIVALUED
LEFSCHETZ AND NIELSEN THEOREMS

AND THEIR APPLICATION TO ADMISSIBLE SEMI-FLOWS

Jan Andres1 — Lech Górniewicz2 — Jerzy Jezierski3

Abstract. The relative Lefschetz and Nielsen fixed-point theorems are

generalized for compact absorbing contractions on ANR-spaces and nilman-

ifolds. The nontrivial Lefschetz number implies the existence of a fixed-
point in the closure of the complementary domain. The relative Nielsen

numbers improve the lower estimate of the number of coincidences on the

total space or indicate the location of fixed-points on the complement. Non-
trivial applications of these topological invariants (under homotopy) are

given to admissible semi-flows and differential inclusions.

1. Introduction

In the theory of ordinary differential equations and, more generally, differen-
tial inclusions, the existence and multiplicity results for solutions with prescribed
properties (i.e. under some constraints) belong to the main interest. If some re-
lated subdomains are (positively) flow-invariant, then a natural question arises,
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whether or not these domains, their complements or the closures of their comple-
ments contain fixed-points, somehow associated to solutions. If so, then another
question follows, namely how many fixed-points are there. Sometimes, the exis-
tence, additivity and excision properties of the fixed-point index can be applied
to this goal, of course, provided it is well defined. However, if e.g. fixed-points
are allowed on the boundaries, then the invariance under homotopy of fixed-point
index cannot be employed in order to simplify the situation. Frequently, simply
connected domains involve subdomains which can contain several essential fixed-
point classes, but the standard Nielsen number on the total domain (equal 1)
informs, in this case, only about the sole existence.

On the other hand, C. Bowszyc [7] introduced in 1968 a relative Lefschetz
number for a compact map of pairs of invariant ANR-spaces (one being involved
in another) whose nontriviality implies the existence of a fixed-point in the clo-
sure of the complement. For this topological invariant, defined in terms of the
relative singular homology on the pair over the rationals Q, the fixed-points on
the boundaries are allowed. Besides another, it can serve to make the more pre-
cise location of a fixed-point. The result of C. Bowszyc has been generalized in
various ways (see e.g. [16], [22], [30], [31]). Nevertheless, the similar idea of ad-
missible index pairs, which is essential in the Conley index theory, based on the
celebrated Ważewski topological principle, can be recognized also there (cf. [21],
[24], [28], [29] and the references therein).

In 1986, H. Schirmer [25] introduced the relative Nielsen number for a lower
bound of the number of fixed-points on the total space X, for compact maps
on pairs of spaces A ⊂ X, F : (X,A) → (X,A), which can make better lower
estimate than the standard Nielsen number. Later on, other relative Nielsen
numbers were defined, which provide lower bounds for either the number of fixed-
points on X \A or on X \A, in order to study the location of fixed-points. The
essential idea underlying the definitions, allowing us to make the estimates on the
total space or on the complement, uses the concept of (weakly) common essential
fixed-point classes (for more details and the computation of these topological
invariants, see [9]–[12], [17], [26], [27], [32]–[36] and the references therein).

Although, in the single-valued case, the relative Lefschetz and Nielsen num-
bers have been already several times applied to dynamical systems and ordinary
differential equations (see e.g. [30], [31] and [27]), the application of only nonrel-
ative multivalued Lefschetz and Nielsen-type theorems in this direction is very
rare (see [2]–[5] and [21]). To eliminate this handicap, our applications here are
just oriented in that way.

Hence, the paper is organized as follows. At first, the notion of compact absorb-
ing contractions (CAC-maps), including only a certain amount of compactness,
which are suitable for definitions of the relative Lefschetz and Nielsen fixed-point
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theorems, is established. Then the fixed-point index for CAC-maps is developed.
Finally, the relative theorems are applied to admissible semi-flows and differential
inclusions for obtaining existence and multiplicity criteria concerning, for exam-
ple, periodic trajectories. The obtained results bring new information also in
the single-valued case and we believe that they deserve a further interest into
the future. On this basis, we would like to develope and apply, besides another,
the multivalued Conley index theory (cf. [15], [21]), elsewhere.

2. Compact absorbing contractions

All topological spaces are assumed to be metric. A space X is called an
absolute neighbourhood retract (absolute retract) if, for any space Y and its closed
subset B ⊂ Y, any continuous map f : B → X has a continuous extension over
a neighbourhood U of B in Y (over Y ) f̃ : U → X (f̃ : Y → X), where
f̃(x) = f(x), for every x ∈ B. We let:

X ∈ ANR⇔ X is an absolute neighbourhood retract,

X ∈ AR⇔ X is an absolute retract.

Of course, if X ∈ AR, then X ∈ ANR.
A continuous map p : Y → X is called Vietoris, when:

(i) p is onto, i.e. p(Y ) = X,
(ii) p is proper, i.e. p−1(K) is compact, for every compact K ⊂ Y ,
(iii) p−1(x) is an acyclic set, for every x ∈ Y , where acyclicity is under-
stood in the sense of Čech homology functor with compact carriers and
coefficients in the field Q of rationals (for details, see [15]).

In what follows, the symbol p : Y ⇒ X (or Y
p
=⇒ X) is reserved for Vietoris

maps.
For given two pairs of metric spaces (X,A) and (Y,B), by a map f : (X,A)→

(Y,B), we understand a continuous map from X to Y such that f(A) ⊂ B.
If f : (X,A)→ (Y,B) is a map of pairs, then we denote by fX : X → Y and

fA : A → B the induced mappings by f , i.e. fX(x) = f(x) and fA(x) = f(x),
for every x ∈ X and x ∈ A, respectively.
A map p : (Y,B) → (X,A) is called a Vietoris map of pairs if B = p−1(A)

and both pY : Y ⇒ X and pB : B ⇒ A are Vietoris maps.
Similarly as above, we reserve the symbol p : (Y,B) ⇒ (X,A) for Vietoris

maps of pairs.
In what follows, by a multivalued map ϕ : X  Y we understand a map

such that, for every x ∈ X, the values ϕ(x) are compact nonempty subsets of Y .
A map ϕ : X  Y is called u.s.c. (l.s.c.) if, for every open U ⊂ Y, the set:

{x ∈ X | ϕ(x) ⊂ U} ({x ∈ X | ϕ(x) ∩ U 6= ∅})
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is open. An u.s.c. map ϕ : X  Y is called compact if there exists a compact
subset K ⊂ Y such that

ϕ(X) =
⋃
x∈X

ϕ(x) ⊂ K.

ϕ is called locally compact if, for every x ∈ X, there exists an open neighbourhood
Ux of x in X such that the restriction ϕ̃ : Ux  Y of ϕ to Ux is a compact map.
Assume that we have a diagram X

p⇐= Γ q−→ Y in which q is a continuous
map. The above diagram induces a multivalued map ϕ = ϕ(p, q) : X  Y by
the following formula:

ϕ(x) = q(p−1(x)) for every x ∈ X.

It is easy to see (cf. [15]) that ϕ(p, q) is an u.s.c. map. Moreover, ϕ(p, q) is
compact, whenever q is compact.
A pair (p, q) determines a multivalued map ϕ(p, q) = qp−1, although this

presentation is not unique. We shall sometimes overuse the notation and call
(p, q) a multivalued map, where it leads to no misunderstanding. The (p, q) as
above with p Vietoris will be called admissible map (cf. [6]). Note that the class
of admissible maps is quite large, in particular, it contains acyclic mappings and
their compositions.
The following two notations are equivalent:

X
p⇐= Γ q−→ Y and (p, q) : X  Y.

Consider a multivalued map (p, q) : X  X. Denoting the sets of coincidence
points and fixed-points as

C(p, q) = {z ∈ Γ | p(z) = q(z)},
Fix (p, q) = {x ∈ X | x ∈ q(p−1(x))},

we have:

Proposition 2.1. p(C(p, q)) = Fix (p, q). In particular, C(p, q) 6= ∅ if and
only if Fix (p, q) 6= ∅.

Define the composition of pairs X
p⇐= Γ q−→ Y and Y

p′⇐= Γ′ q
′

−→ Z as a pair

X
p⇐= Γ q−→ Z, where Γ = {(u, u′) ∈ Γ × Γ′ | q(u) = p′(u′)}, p(u, u′) = p(u),

q(u, u′) = q′(u′). Notice that the composition of the corresponding multivalued
maps are equal φ(p, q) = φ(p′, q′) ◦ φ(p, q).
In this light, for a given admissible map (p, q) : X  X, by (p, q)n : X  X

we denote its n-th iterate, i.e.

(p, q)n = (p, q) ◦ . . . ◦ (p, q)︸ ︷︷ ︸, n = 1, 2, . . .

n-times

Obviously, (p, q)1 = (p, q).
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Definition 2.2 (cf. [14]). An admissible map (p, q) : X  X is called
a compact absorbing contraction (written (p, q) ∈ CAC(X)) if:

(2.2.1) there exists an open subset U ⊂ X such that the restriction (̃p, q) : U  
U of (p, q) to the pair (U,U) is a compact map,

(2.2.2) for every x ∈ X, there exists n = n(x) such that (p, q)n(x) ⊂ U, where

(̃p, q) = (p̃, q̃) and p̃ : p−1(U) → X, p̃(x) = p(x), q̃ : p−1(U) → U ,
q̃(x) = q(x), for every x ∈ p−1(U).

Let us note that the class of compact absorbing contractions contains com-
pact, eventually compact, asymptotically compact and compact attraction map-
pings, provided they are locally compact (for more details see [14] or [15]).
We consider also multivalued mappings of pairs. Namely, a diagram

(X,A)
p⇐= (Γ,Γ0)

q−→ (Y,B)

is called an admissible map of pairs. We shall denote it as follows:

(p, q) : (X,A) (Y,B).

Then (p, q)X = (pΓ, qΓ) : X  Y and (p, q)A = (pΓ0 , qΓ0) : A  B are induced
mappings by (p, q).

Definition 2.3. An admissible map (p, q) : (X,A)  (Y,B) is compact
(compact absorbing contraction) if both (p, q)X and (p, q)A are compact (compact
absorbing contractions).

3. The fixed-point index for compact absorbing contractions

A general fixed-point index for admissible maps is studied in [18]. Below, we
shall present a slight generalization and application of results obtained in [18].
LetM denote the class of all triples (X,W, (p, q)), where X ∈ ANR, W is open
in X, (p, q) ∈ CAC and Fix (p, q)∩ ∂W = ∅, where ∂W denotes the boundary of
W in X. The aim of this section is to generalize the fixed-point index overM.
Consider a triple (X,W, (p, q)). Since (p, q) ∈ CAC(X), there exists an open

U ⊂ X satisfying conditions (2.2.1) and (2.2.2). Let us observe that Fix (p, q)
is a compact subset of U and U ∈ ANR as an open subset of X ∈ ANR.
Consequently, the triple (U,U ∩W, (̃p, q)) is in B in the sense of W. Kryszewski
(see [18]).

Therefore, the fixed-point index ind (U,U ∩ W, (̃p, q)) of the triple (U,U ∩
W, (̃p, q)) is well-defined, according to [18]. Note that (̃p, q) : U  U is compact
admissible.
We define the fixed-point index Ind (X,W, (p, q)) of the triple (X,W, (p, q))

as follows:

(3.1) Ind (X,W, (p, q)) = ind (U,U ∩W, (̃p, q)).
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The above definition (3.1) is correct, i.e. it does not depend on the choice of U .
In fact, it follows immediately from the additivity property (or, more precisely,
from the localization or excision properties of the fixed-point index in B (see [18]
or [15])).
The fixed-point index Ind defined in (3.1) satisfies all the usual properties

(see again [18] or [15]). Below, we list the properties which are necessary in
Section 4.

(3.2) (Excision) If (X,W, (p, q)) ∈M and Fix (p, q) ⊂W , then

Ind (X,W, (p, q)) = Ind (X,X, (p, q)).

(3.3) (Contraction) If (p, q)(W ) ⊂ A, A ∈ ANR and the restriction (p, q) :
A  A, (p, q)(x) = (p, q)(x), for every x ∈ A, is a compact absorbing
contraction, then

Ind (X,W, (p, q)) = Ind (A,A ∩W, (p, q)).

(3.4) (Normalization) Ind (X,X, (p, q)) = Λ(p, q), where Λ(p, q) denotes the
generalized Lefschetz number of (p, q) (cf. [14], [15] or [18]).

We left to the reader the formulations of further properties of the fixed-point
index defined in (3.1).

4. The relative Lefschetz fixed-point theorem

Let us recall that in [14] the following theorem is proved.

Theorem 4.1. If X ∈ ANR and (p, q) ∈ CAC(X), then the generalized
Lefschetz number Λ(p, q) of (p, q) is well-defined and Λ(p, q) 6= 0 implies that
Fix (p, q) 6= ∅.

Observe that (4.1) is the most general formulation of the Lefschetz fixed-point
theorem for multivalued mappings on ANRs.
We shall use the following proposition:

Proposition 4.2 ([15], [16]). Let ϕ : (X,A) (X,A) be an admissible map.
If any two maps of (p, q), (p, q)X , (p, q)A are the Lefschetz maps (subsequently,
the generalized Lefschetz number is well-defined), then so is the third and in that
case

Λ(p, q) = Λ((p, q)X)− Λ((p, q)A).

Now, we are able to prove the following generalization of (4.1).

Theorem 4.3 (The Lefschetz fixed-point theorem for pairs of spaces). Let
X,A ∈ ANR and (p, q) : (X,A)  (X,A) be an admissible compact absorbing
contraction mapping on pairs. Then

(4.3.1) the generalized Lefschetz number Λ(p, q) of (p, q) is well-defined (al-
though it does not follow from (4.2), it can be proved similarly), and
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(4.3.2) Λ(p, q) 6= 0 implies Fix (p, q) ∩ X \A 6= ∅, where X \A denotes the
closure of X \A in X.

Proof. At first, in view of (4.2) and (4.1), we see that (p, q) is a Lefschetz
map and

(4.4) Λ(p, q) = Λ((p, q)X)− Λ((p, q)A).

To prove the second part of our theorem, assume that Λ(p, q) 6= 0 and (p, q) has
no fixed-points inX \A, i.e. Fix (p, q) ⊂ X\(X \A). LettingW = X\(X \A) =
intA, then W is an open subset of X and, moreover, W ⊂ A. Therefore, from
(3.2) and (3.4), we get

(4.5) Ind (X,W, (p, q)X) = Ind (X,X, (p, q)X) = Λ((p, q)X).

Analogously, since W = IntXA ⊂ A, we obtain:

(4.6) Ind (A,W, (p, q)A) = Ind (A,A, (p, q)A) = Λ(p, q)A).

Now, using the contraction property of the fixed-point index, we get:

Ind (X,W, (p, q)X) = Ind (A,W, (p, q)A).

From this, when taking into account (4.4), (4.5) and (4.6), we finally obtain that
Λ((p, q)) = 0, and the proof is complete. �

5. Relative Nielsen fixed-point theorem

By a multivalued map we mean again a pair of (single-valued) maps X
p⇐=

Γ
q−→ X. In [4], [5], a Nielsen-type numberN(p, q) is defined. This is a homotopy

invariant and a lower bound of the cardinality of coincidences (see [4] for details).
Here, we consider multivalued maps between pairs of spaces and we generalize
the Nielsen theory into this situation. In the case of single-valued mapping (i.e.
qp−1(x) is a singleton, for each x ∈ X), we get the relative Nielsen number
introduced by H. Schirmer in 1986 [25].
We assume that the considered spaces are ANRs. Let us recall that X (as

an ANR) admits a universal covering pX : X̃ → X.
We need the following assumptions:

(A) For any x ∈ X, the restriction q|p−1(x) : p−1(x) → X admits a lift q̃ to
the universal covering space i.e. pX q̃ = q.

(B) There exists a normal subgroup H ⊂ π1X of a finite index, satisfying
q̃!p̃
!(H) ⊂ H. Here, q̃!p̃ ! denotes a homomorphism of the fundamental

group induced by the admissible map X
p⇐= Γ q−→ X, satisfying (A).

If (p, q) represents a single-valued map (i.e. q(p−1(x)) is a singleton, for
each x ∈ X), then q̃!p̃ ! coincides with the induced homomorphism f#.
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It is proved in [14] that, for a CAC-mapping, the generalized Lefschetz number
Λ(p, q) is well-defined which is a homotopy invariant and Λ(p, q) 6= 0 implies
a coincidence. On the other hand, it is proved in [5] (see also [4]) that (A) and (B)
imply a Nielsen number NH(p, q), a homotopy invariant satisfying NH(p, q) ≤
#C(p, q), where C (p, q) denotes the coincidence set of the pair (p, q).
Let A ⊂ X be a closed connected ANR, satisfying q(p−1(A)) ⊂ A. Denote

ΓA = p−1(A) and consider the restriction A
p|⇐= ΓA

q|−→ A. If U ⊂ X is an
open subset in the definition of a CAC-mapping, for (p, q), then U ∩ A can be
associated to the CAC-mapping of (p|, q|). Let H0 = i−1# (H) ⊂ π1A. Since
the induced homomorphism i# : (π1A)/H0 → (π1X)/H is mono, H0 is also
a normal subgroup of a finite order. Hence, A

p|⇐= ΓA
q|−→ A (where p|, q|

denote the natural restrictions) also satisfies the assumptions (A) and (B).
Let us note that the diagram

A
p|←−−−− ΓA

q|−−−−→ A

i

y iΓ

y i

y
X

p←−−−− Γ q−−−−→ X

where the vertical lines are natural inclusions, is commutative.
Let pX : X̃ → X, pA : Ã → A be fixed coverings corresponding to the

subgroups H,H0, respectively. In view of the results [4], there exist lifts q̃, q̃A
making the diagrams

X̃
ep←−−−− Γ̃ eq−−−−→ X̃H

pX

y pΓ

y pX

y
X

p←−−−− Γ q−−−−→ X

Ã
epA←−−−− Γ̃A

eqA−−−−→ Ã

pA

y pΓA

y pA

y
A

p|←−−−− ΓA
q|−−−−→ A

commutative, where

Γ̃ = {(x̃, z) ∈ X̃ × Γ; pX(x̃) = p(z)}, p̃(x̃, z) = x̃, pΓ(x̃, z) = z,

Γ̃A = {(ã, z) ∈ Ã× ΓA; pA(ã) = pA(z)}, p̃A(ã, z) = ã, pΓA(ã, z) = z.

Let OX = {α : X̃ → X̃; pXα = pX}, OA = {α : Ã→ Ã; pAα = pA} denote
the groups of the covering transformations. Recall that OX ≈ π1X, OA ≈ π1A.

Lemma 5.1. There exist maps ĩ : Ã→ X̃, ĩΓ : Γ̃A → Γ̃ making the following
diagrams commutative.

Ã
ei−−−−→ X̃

pA

y pX

y
A

i−−−−→ X

Γ̃A
eiΓ−−−−→ Γ̃

pΓA

y pΓ

y
ΓA

iΓ−−−−→ Γ
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Let us fix such maps ĩ, ĩΓ. Then, for any α0 ∈ OA, there is exactly one α ∈ OA
making the following diagram

�
Ã

epA

Γ̃A
α0eqA

Ã

A
ep|

ΓA
eq|

A

pA

pΓA pA

X̃

ep

Γ̃
αeq

X̃

X
p

Γ
q

X

pX pΓ

pX

ei

eiΓ ei

i iΓ i

commutative.

Proof. Since (ipA)#(π1Ã) = i#(H0) ⊂ H = im (pX)#, there exists a lift ĩ
making the first diagram commutative. We define ĩΓ : Γ̃A → Γ̃ by putting
ĩΓ(ã, z) = (̃i(ã), iΓ(z)), and the second diagram commutes.

Now, we consider the big diagram. The commutativity of all squares, but
the deck ones, follow from the already discussed diagrams. It remains to check
the commutativity of the deck squares. One can easily check that p̃ ĩΓ = ĩ p̃A.
Then we can examine the right deck square. At first, we notice that pX(q̃ ĩΓ) =
pX (̃iα0qA). Thus, q̃ ĩΓ, ĩα0qA are lifts of the same map qiΓ = iq|, by which there
is exactly one α ∈ OX such that αq̃ ĩΓ = ĩα0qA. �

Remark 5.2. We can replace the lifts q̃, q̃A by those for which the above
big diagram commutes (i.e. it commutes for α0 and α being identities). Then
the mapping OA 3 α0 → α ∈ OX defined in the Lemma (5.1) coincides with the
homomorphism π1A→ π1X, induced by the inclusion A→ X. So, we denote it
by i#.

Let us recall that a pair (p, q) satisfying (A) induces a homomorphism q̃!p̃
! :

OX → OX , corresponding, in the single-valued case (ρ = qp−1), to ρ : π1X →
π1X. We define the action of OX on itself γ ◦ α = γαq̃!p̃ !(γ−1)). By an analogy
with the single-valued case, we define the quotient set, the set of Reidemeister
classes, and we denote it by RH(p, q). We define the Nielsen class corresponding
to a class [α] ∈ R(p, q), as pΓ(C(p̃, αq̃)). This splits C (p, q) into disjoint Nielsen
classes and defines the natural injection η : NH(p, q)→ RH(p, q). If L (p̃, αq̃) 6= 0,
then C (p̃, αq̃) 6= ∅, and the Nielsen class corresponding to [α] ∈ RH(p, q) is called
essential. We define the H-Nielsen number as the number of essential classes and
denote it by N(p, q).
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Lemma 5.3. The homomorphism i# in Remark 5.2 induces a map of the
Reidemeister sets R(i) : RH0(p|, q|)→ RH(p, q).

Proof. It is enough to show the commutativity of the diagram

OA ×OA
◦−−−−→ OA

i#×i#
y i#

y
OX ×OX

◦−−−−→ OX

where the horizontal lines are given by the Reidemeister action

(γ, α)→ γ ◦ α = γα(q̃!p̃ !γ)−1.

In fact, i# is a homomorphism which implies i#(γ ◦ α) = i#(γα(q̃!p̃ !γ)−1) =
i#(γ) · i#α · i#(q̃!p̃ !γ)−1) = i#(γ) · i#α · (q̃!p̃ !(i#γ))−1) = i#γ ◦ i#α. �

Lemma 5.4. The following diagram commutes

NH0(p|, q|)
N (i)−−−−→ NH(p, q)

η

y η

y
RH0(p|, q|)

R(i)−−−−→ RH(p, q)

Let SH(p, q;A) ⊂ RH(p, q) denote the set of essential Reidemeister classes
which contain no essential class from RH0(p|, q|).

Theorem 5.5. Under the assumptions (CAC), (A) and (B), the pair (p, q)
has at least NH(p, q) + (#SH(p, q;A)) coincidences.

Proof. We choose a point z1, . . . , zk ∈ C(f|, g|), from each essential class of
f|, g|, and a point w1, . . . , wl ∈ C(f, g) from, each one in SH(p, q;A). It remains
to show that i(z) 6= w, for any z = z1, . . . , zk, w = w1, . . . , wl. Suppose the
contrary. Then, by Lemma 5.4, the essential Nielsen class (of p|, q|) containing z
is involved in the class (of p, q) containing w. Since the last class belongs to
SH(p, q;A), we get a contradiction. �

Remark 5.6. Since any essential Reidemeister class corresponds always to
a nonempty Nielsen class, in the definition of SH(p, q;A), the name of Reidemeis-
ter can be replaced by Nielsen: SH(p, q;A) becomes the set of Nielsen classes
(from NH(p, q)) which contains no essential Nielsen class (from NH0(p|, q|)).

The following theorem gives a lower bound for the number of coincidences
of the pair (p, q) lying outside ΓA (cf. the surplus Nielsen number in [35]). Let
SNH(p, q;A) be the cardinality of the set of essential classes inRH(p, q)\imR(i).
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Theorem 5.7. Under the assumptions (CAC), (A) and (B), the pair (p, q)
has at least SNH(p, q;A) coincidences in Γ \ ΓA.

Proof. We can observe that each essential class from RH(p, q) \ imR(i) is
non-empty and disjoint from ΓA. �

6. Applications to multivalued semi-flows

Following e.g. [28], [29] (in the single-valued case), we give at first suitable
definitions of (periodic) [semi-] processes and proper pairs.
Assume that X is a metrizable space and Φ : D  X is a CAC-mapping,

where D ⊂ R×X ×R [D ⊂ R×X ×R+0 ] is an open set. Denoting the mapping
Φ(σ, · , t) by Φ(σ,t), we can give the definition of admissible (multivalued) [semi-]
processes as follows.

Definition 6.1. Φ is called a generalized local [semi-] process (on the space
X) if the following conditions are satisfied:

(i) for all σ ∈ R, x ∈ X : {t ∈ R [t ≥ 0] | (σ, t, x) ∈ D} is an interval,
(ii) for all σ ∈ R : Φ(σ,0) = id,
(iii) for all σ, t, s ∈ R [for all σ ∈ R, t ≥ 0, s ≥ 0] : Φ(σ,s+t) ⊂ [=]Φ(σ+s,t) ◦
Φ(σ,s).

In the case D = R×X×R [R×X×R+0 ], we call Φ a generalized (global) [semi-]
process.
For (σ, x) ∈ R×X, under the assumption that

Φ(σ,t)(x) = {y(σ,t)(x) ∈ X | y(σ, · )(x) is a continuous function with
y(σ,0)(x) = x and (σ, x, t) ∈ D},

the set

{(σ + t, y(σ,t)(x)) ∈ R×X | y(σ,t)(x) ⊂ Φ(σ,t) is a single-valued
continuous selection and (σ, x, t) ∈ D}

is called the set of trajectories of (σ, x) in Φ.
If T > 0 is an integer and Φ still fulfills

(iv) for all σ, t ∈ R [for all σ ∈ R, t ≥ 0] : Φ(σ,t) = Φ(σ+T,t),

we call Φ a T -periodic local (or global) generalized [semi-] process.
For σ = 0 a generalized local (or global) [semi-] process Φ(0,t) is called a gen-

eralized local (or global) generalized [semi-] dynamical system.
A local generalized process Φ on X determines a local generalized [semi-] flow

Φ∗ on R×X by
Φ∗t (σ, x) = (σ + t,Φ(σ,t)(x)).
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Denoting

Z(t) = {x ∈ X | (t, x) ∈ Z},
for every Z ⊂ R×X and σ ∈ R, we call the set Z to be T -periodic if, for every
t ∈ R,

Z(σ) ≡ Z(σ + T ).
In this case, we put

Z =
{(
exp
(
2πiσ
T

)
, x

)
∈ S1 × Z(σ)

}
,

i.e. there is a circumference by identifying σ and σ + T .

Assuming that (A,B) is a pair of subsets of R × X, where A ⊂ B, we can
give

Definition 6.2. (A,B) is called a proper pair if

(i) A(σ) and B(σ) are ANR-spaces, for each σ ∈ R,
(ii) there is a generalized [semi-] process Φ on X such that A and B are
[positively-] invariant under the flow Φ∗, defined as above.

If still

(iii) A and B are T -periodic, then we speak about a T -periodic proper pair.

Now, consider the system

(6.3) y′ ∈ F (t, y),

where F : R×Ω Rn is an (upper) Carathéodory multivalued function, which
is essentially bounded in t and linearly bounded in y, and Ω ⊂ Rn is an open
subset (possibly, the whole space Rn). Denoting by y(t) = y(σ, x, t), [t ≥ σ], its
(Carathéodory-like) solution, satisfying y(σ) = x, the generalized [semi-] process
φ generated by (6.3) takes the form [t ≥ 0]

ϕ(σ,t)(x) = ϕ(σ, x, t) = {y(σ, x, t+ σ)}.

In particular, ϕ(0,t)(x) = {y(0, x, t)} or

ϕ(σ,t)(x) = {y(σ, x, t+ σ)} = ϕ(σ+T,t)(x) = {y(σ + T, x, t+ σ + T )},

provided F (t, y) ≡ F (t+ T, y), represent a generalized [semi-] dynamical system
or a generalized T -periodic [semi-] process generalized by (6.3), respectively.
It follows from the following investigations that if (A,B), where B ⊂ A ⊂

R × X, is a proper pair for a generalized [semi-] process ϕ : (A(σ), B(σ))  
(A(σ), B(σ)), then the generalized Lefschetz number Λ(ϕ) is well-defined, for
every σ ∈ R, satisfying Λ(ϕ) = Λ(ϕA(σ))−Λ(ϕB(σ)), where ϕA(σ) : A(σ) A(σ)
and ϕB(σ) : B(σ) B(σ) are particular [semi-] flows on A(σ) and B(σ), σ ∈ R.
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Moreover, for every σ ∈ R, t ∈ R [t ∈ R+0 ], ϕ(σ,t) ' ϕ(σ,0) = id, a homotopy
is given by ϕ(σ,kt), k ∈ [0, 1].
In particular, for a T -periodic proper pair (A,B), T > 0

ϕ0 ' ϕT : (A(0), B(0)) (A(t), B(T )),

by which (in view of the invariance under homotopy)

Λ(ϕ∗0) = Λ(ϕT ) = Λ(ϕ0) = χ(A(0))− χ(B(0)),

where χ stands for the Euler–Poincaré characteristic.
Thus, if χ(A(0)) 6= χ(B(0)), then there exists a fixed-point z∗ ∈ {0} ×

A(0) \B(0) of the semi-flow ϕ∗T : {0} × A(0)  {T} × A(T ), i.e. z∗ ∈ ϕ∗T (z∗),
and subsequently also a T -periodic trajectory of (0, z∗) is ϕA.

Hence, we can give the first statement of this section.

Theorem 6.4. If (A,B), where B ⊂ A ⊂ R × X, is a T -periodic proper
pair for the T -periodic semi-flow ϕ∗ : (A,B)  (A,B), determined by some T -
periodic semi-process ϕ on X × X, then there exists a T -periodic trajectory of
some point (0, z∗) ∈ {0} ×A(0) \B(0) in ϕA(0) : A(0) A(T ), provided

ϕA(0)(x) = {y(0,t)(x) ∈ A(t) | y(0, · )(x) is a continuous function
with y(0,0)(x) = x and (x, t) ∈ A(t)× [0, T ]}.

For the differential system (6.3), where F (t, y) ≡ F (t + T, y), a T -periodic
semi-process can be generated by means of the associated Poincaré translation
operator along the trajectories of (6.3) at the time kT , k ∈ [0, 1], defined as
follows:

(6.5) ΦkT = {y(x, kT ) | y(x, · ) is a solution of (6.3) with y(x, 0) = x}.

It is known (see e.g. [1], [15]) that Φ is admissible. More precisely, it is a compact
composition Φ = ψ2 ◦ ψ1 of an Rδ-mapping ψ1 and a continuous (single-valued)
evaluation mapping ψ2, which is homotopic (in the same class of maps) to iden-
tity.
Therefore, if A1, B1, where B1 ⊂ A1 ⊂ Ω ⊂ Rn, are compact ENR-spaces

such that

(6.6) ΦkT (A1) ⊂ A1 and ΦkT (B1) ⊂ B1 for all k ∈ [0, 1],

then ΦkT becomes a CAC (in fact, compact) -mapping. We can even put

Φ∗kT (0, x) = (kT,Φ(0,kT )(x)) = (kT,ΦkT (x)),

in order to demonstrate the correspondence to a T–periodic generalized semi–
flow in the above sense.
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After all, assuming (6.6) and

(6.7) χ(A1) 6= χ(B1),

system (6.3) admits a T -periodic solution y(t) with y(0) ∈ A1 \B1.
Condition (6.6) can be expressed more explicitly by means of locally Lip-

schitzean bounding functions. For this, we use the following lemma, which is
stated without the proof, because it is only a slight modification of the well-
known results (see e.g. [13], [19], [23], and the references therein).

Lemma 6.8. Let Vu(t, y) ≡ Vu(t + T, y) ∈ C([0, T ] × Ω,R) be a family of
(bounding) functions and c ∈ R. Set M = [Vu ≤ c] = {y ∈ Ω | Vu(t, y) ≤ c}; the
set [Vu > c] is defined analogously. Assume that, for each u ∈ ∂M and t ∈ [0, T ],
there exists ε > 0 such that Vu is locally Lipschitzean in [Vu > c] ∩ B(u, ε),
uniformly w.r.t. t ∈ [0, T ], and

lim sup
h→0+

1
h
[Vu(t+ h, y + hf)− Vu(t, y)] ≤ 0,

for every y ∈ [Vu > c] ∩ B(u, ε) and f ∈ F (t, y). Then M is positively flow-
invariant for (6.3), i.e. ΦkT (M) ⊂ M , k ∈ [0, 1], where Φ is the associated
translation operator in (6.5).

We are in position to give the second theorem of this section.

Theorem 6.9. Let A1 and B1, where B1 ⊂ A1 ⊂ Ω ⊂ Rn, be compact
ENR-spaces such that (6.7) holds. Assume the existence of a family of bound-
ing functions Vu(t, u), Wu(t, y) and constants c1, c2 satisfying the conditions
of Lemma 6.8, for A1 = [Vu ≤ c1] and B1 = [Wu ≤ c2]. Then the sys-
tem (6.3), where F (t, y) ≡ F (t + T, y), admits a T -periodic solution y(t) with
y(0) ∈ A1 \B1.

Remark 6.10. Instead of Lemma 6.8, we could employ other criteria (see
e.g. [13]) ensuring the strong positive flow-invariance of A1, B1, when the bound-
aries ∂A1 and ∂B1 are not reached by a solution from the interior of A1 and B1.
Then, the additivity, excision and existence properties of the fixed-point index
could be also applied for the same aim (see e.g. [15]). However, since fixed-points
of the translation operator in (6.5) are allowed in Theorem 6.9, for any k ∈ [0, 1],
on the boundaries ∂A1 and ∂B1, Theorem 6.9 can be regarded as a nontrivial
example of an application of the relative Lefschetz number. The same is all the
better true for Theorem 6.4.

Now, we would like to make a nontrivial application of the relative Nielsen
number. If Ω is a nilmanifold (for its definition and more details, see e.g. [20], [33]
and the references therein), for example, a torus or an open disk with one hole
in R2, then the well-known result of D. Anosov asserts that, for a single-valued
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self-map f : Ω → Ω, we have N(f) = |Λ(f)|, where N and Λ stands for the
(well-defined) Nielsen and Lefschetz numbers, respectively. If Ω is an AR-space
(not necessarily a nilmanifold), then N(f) = Λ(f) = 1.
Furthermore, if Ω1, ω2 are compact ANR-spaces such that Ω2 ⊂ Ω1 (Ω2 is

assumed to be closed) and f : (Ω1,Ω2)→ (Ω1,Ω2), then (cf. e.g. Definitions 2.2.
and 2.3 in [27])

N(f ; Ω1,Ω2) = N(fΩ1) +N(fΩ2)−N(fΩ1 , fΩ2),

where N(fΩ1 , fΩ2) is the relative Nielsen number of the map f : (Ω1,Ω2) →
(Ω1,Ω2), N(fΩ1) is the Nielsen number of f |Ω1 : Ω1 → Ω1, N(fΩ2) is the one of
f |Ω2 : Ω2 → Ω2 and N(fΩ1 , fΩ2) is the number of essential common fixed-point
classes of f |Ω1 and f |Ω2 . Let us note that, under suitable assumptions, P. Wong
generalized in [33] D. Anosov’s result to N(f ; Ω1,Ω2), for compact manifolds.
Therefore, if (M1,M2) = (R×Ω1,R×Ω2), where Ω2 ⊂ Ω1 ⊂ X are connected

nilmanifolds or AR-spaces (Ω2-closed) having (if they are not compact) finitely
generated abelian fundamental groups (⇒ B-property; see [5]), is a proper pair
for the semi-flow ϕ∗ : (M1,M2)  (M1,M2), determined by a semi-process
ϕ = ψ2 ◦ψ1 on X×X, where ψ1 is a Rδ-mapping and ψ2 is a continuous (single-
valued) mapping (⇒ A-property; see [5]), then (in view of the obvious invariance
under homotopy) we arrive at (see the foregoing section and cf. [4], [5])

NH(p, q) + (]SH(p, q; Ω2)) =NH(f ◦ ϕ(0,T ); Ω1,Ω2) = N(f ◦ id; Ω1,Ω2)
N(f ; Ω1,Ω2) =N(fΩ1) +N(fΩ2)−N(fΩ1 , fΩ2)

|Λ(fΩ1)|+ |Λ(fΩ2)| −N(fΩ1 , fΩ2),

where
Ω1

p←− Γf◦ϕ(0,T )
q−→ Ω1 and Ω2

p←− Γf◦ϕ(0,T )
q−→ Ω2.

In many situations N(f ; Ω1,Ω2) = |Λ(fΩ1)| when Λ(fΩ1) 6= 0, according to P.
Wong’s result in [33], by which “only”N(f ; Ω1,Ω2) = N(fΩ1). Thus, a nontrivial
situation can be mostly expected, when Λ(fΩ1) = 0. In our (more general, but
not so explicit) situation, there exist at least

|Λ(fΩ1)|+ |Λ(fΩ2)| −N(fΩ1 , fΩ2)(≥ |Λ(fΩ2)|)

coincidences of the pair (p, q) associated to the mapping f ◦ ϕ(0,T ) : Ω1  Ω1
Moreover, there is a one-to-one correspondence between the coincidences

and the trajectories (t, y(0,t)(x∗)) ∈ [0, T ] × Ω1 in ϕ(0,t), satisfying y(0,0)(x∗) =
f(y(0,T )(x∗)), where x∗ is a fixed-point of f ◦ ϕ(0,T ), provided

ϕ(0,t)(x) =
{
y(0,t)(x) ∈ Ω1

∣∣∣∣ y(0, · )(x) ⊂ ψ1 is a continuous selection,
ψ1 =

⋃
y(0, · )(x) and ϕ = ψ2 ◦ ψ1

}
.
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If the homotopy endomorphisms

(fΩi)∗ : H∗(Ωi,Q)→ H∗(Ω1,Q), i = 1, 2,

are known for nilmanifolds Ωi (for AR-spaces Ωi, we have Λ(fΩi) = 1), then still
(cf. [20])

(6.11) |Λ(fΩi)| =
∣∣∣∣∑
n

(−1)ntr(fΩi)n∗
∣∣∣∣, i = 1, 2.

We can summarize our investigation about the relative Nielsen number (on the
total space) as follows.

Theorem 6.12. Assume that (M1,M2) = (R×Ω1,R×Ω2) is a proper pair
for the semi-flow ϕ∗ : (M1,M2)  (M1,M2), determined by some generalized
semi-process ϕ = ψ2 ◦ψ1 on X ×X, where Ω2 ⊂ Ω1 ⊂ X are connected nilman-
ifolds or AR-spaces (Ω2 is closed), having finitely generated abelian fundamental
groups, ψ1 is an Rδ-mapping and ψ2 is a continuous (single-valued) mapping
such that ϕ(0,t)(x) = {y(0,t)(x) ∈ Ω1 | y(0, · )(x) ⊂ ψ1 is a continuous selec-
tion, ψ1 =

⋃
y(0, · )(x) and ϕ = ψ2 ◦ ψ1}. Furthermore, let f : (Ω1,Ω2) →

(Ω1,Ω2) be a continuous (single-valued) mapping. Then there exist at least
(|Λ(fΩ1)| + |Λ(fΩ2)| − N(fΩ1 , fΩ2)) trajectories (t, y(0,t)(x

∗)) ∈ [0, T ] × Ω1 in
ϕ(0,t), satisfying y(0,0)(x∗) = f(y(0,T )(x∗)), for some (one or more) x∗ ∈ Ω1.
For nilmanifolds Ωi, the generalized Lefschetz number |Λ(fΩi)|, i = 1, 2, can be
computed by means of (6.11) and N(fΩ1 , fΩ2) denotes the number of essential
common fixed-point classes of fΩ1 = f |Ω1 and fΩ2 = f |Ω2 .

We have already pointed out that the translation operator in (6.5), associated
to (6.3), generates a generalized semi-process Φ(σ,kT )(x) as well as the generalized
semi-flow Φ∗(σ, t) = (σ+kT,Φ(σ,kT )(x)), which are exactly of the type as above.
Moreover, there is a one-to-one correspondence between the coincidences and
the solutions of (6.3). Hence, Theorems 6.9 and 6.12 can be still specified in the
following way.

Theorem 6.13. Let A1 and B1, where B1 ⊂ A1 ⊂ Ω ⊂ Rn, be bounded
connected either nilmanifolds and ENR-spaces or AR-spaces; B1-closed and A1-
having a finitely generated abelian fundamental group, when it is not closed.
Furthermore, let f : (A1, B1)→ (A1, B1) be a continuos (single-valued) mapping
such that f |A1 : A1 → A1, when A1 is assumed to be open. At last, assume the
existence of a family of bounding functions Vu(t, u),Wu(t, u) and constants c1, c2,
satisfying the conditions of Lemma 6.8, for A1 = [Vu ≤ c1] and B1 = [Wu ≤ c1].
Then system (6.3) admits at least (|Λ(fA1)| + |Λ(fA2)| − N(fA1 , fA2)) solu-
tions y(t), with y(0) = f(y(T )), y(0) ∈ A1. For nilmanifolds Ai, the gener-
alized Lefschetz number Λ(fAi), i = 1, 2, can be computed by means of (6.11)
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and N(fA1 , fA2)) denotes the number of essential common fixed-point classes of
fA1 = f |A1 and fA2 = f |A2 .

Remark 6.14. If A1 is assumed to be open, then another possibility con-
sists in application of a different criterion of a flow-invariance of A1, under the
translation operators, namely the one ensuring a strong positive flow-invariance
of A1, as mentioned in Remark 6.10 Then we need not assume (rather unnatu-
rally) that f |A1 : A1 → A1. If A1 is an AR-space, then |Λ(fA1)| ≥ N(fA1 , fA2),
by which the lower estimate of solutions y(t) of (6.3) with y(0) = f(y(T )) reduces
either to 1 or to |Λ(fA2)|.

Remark 6.15. In fact, in Theorems 6.12 and 6.13, the same amount of
trajectories (t+ σ, y) and solutions y exists, for every σ ∈ R, satisfying

y(σ,0)(x
∗
σ) = f(y(σ,T )(x

∗
σ)) and y(σ) = f(y(σ + T )),

respectively. Therefore, only the notion of local semi-dynamical systems was
appropriate for conclusions in Theorems 6.12 and 6.13. On the other hand, if
e.g. f = id, then we can get at least (|χ(Ω1)|+ |χ(Ω2)|−N(fΩ1 , fΩ2)) T -periodic
trajectories or (|χ(A1)|+ |χ(A2)| −N(fA1 , FA2)) T -periodic solutions, for every
σ ∈ R, under the suitable T -periodicity assumptions, as in Theorems 6.4 and 6.9.
For f = −id, much more interesting multiplicity results can be obtained (cf. [4]),
under suitable restrictions, for anti-periodic trajectories or solutions.

As we could see, the relative Lefschetz number was concerned to the existence
of a fixed-point on the closure of the complement, while the relative Nielsen
number to the lower estimate of the number of coincidences on the total space.
We conclude, therefore, this section by the application of a special relative Nielsen
number (introduced for the first time in [34]), estimating from below the number
of coincidences just on the complement (see Theorem 5.7 and, in the single-valued
case, cf. the surplus number in [35]).

If Ω1, Ω2 are ANR-spaces such that Ω2 ⊂ Ω1 (Ω2 is assumed again to be
closed connected), then

(SN(f ; Ω2) ≥)N(f ; Ω1 \ Ω2) = N(fΩ1)− E(fΩ1 , fΩ2)

is the so called Nielsen number of essential weakly common fixed-point classes of
fΩ1 and fΩ2 , i.e. if there exists a path α from a point x0 of an essential fixed-
point class to a point in Ω2 so that α is homotopic to f ◦ α, under a homotopy
of the form (I, 0, 1) → (Ω1, x0,Ω2), I = [0, 1]; for more details (including the
computation of N(f ; Ω1 \ Ω2)), see [26], [27], [33]–[36].
Replacing the relative Nielsen number (on the total space) by the above

Nielsen number on the complement; Theorems 6.12 and 6.13 can be reformulated
as follows.
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Corollary 6.16. Under the assumption of Theorem 6.12, there exist at
least |Λ(fΩ1)| −E(fΩ1 , fΩ2) trajectories (t, y(0,t)(x∗)) ∈ [0, T ]×Ω1 \Ω2 in ϕ(0,t),
satisfying y(0,0)(x∗) = f(y(0,T )(x∗)), for some (one or more) x∗ ∈ Ω1 \ Ω2. The
number of essential weakly common fixed-point classes E(fΩ1 , fΩ2) of fΩ1 and
fΩ2 is defined as above and, for a nilmanifold Ω1, Λ(fΩ1) can be computed by
means of (6.11).

Corollary 6.17. Under the assumption of Theorem 6.13, there exist at
least |Λ(fA1)| − E(fA1 , fA2) solutions y(t) of (6.3) satisfying y(0) = f(y(T )),
y(0) ∈ A1 \ A2, where E(fA1 , fA2) stands for the number of essential weakly
common fixed-point classes of fA1 and fA2 , and Λ(fA1) can be computed, for a
nilmanifold A1, by means of (6.11).

Let us still add two concluding notes. In the single-valued case, Ω2 need not
be connected (cf. [27]). Moreover, if Ω1 or Ω2 is particularly the 2-dimensional
disk containing a finite number of fixed-points on the boundary ∂Ω1 or ∂Ω2,
then, under certain special additional restrictions, some further fixed-points can
be implied in the interior intΩ1 or intΩ2 (see e.g. [6], [8]).

If we would have used for our applications (in the single-valued case) contin-
uos flows Φ(σ,t), where t can take also negative values, then, for every σ, t ∈ R,

Φ ' Φ̂ : (A(σ), B(σ))→ (A(σ + t), B(σ + t)),

a homotopy is given by

Φ̂(σ+(1−s)t,st) ◦ Φ(σ+t,−st) ◦ Φ(σ,t) for s ∈ [0, 1].

Nevertheless, the semi-flows seem to be more appropriate for our applications,
in the single-valued case, as well.
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