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BIFURCATION PROBLEMS FOR SUPERLINEAR
ELLIPTIC INDEFINITE EQUATIONS

Isabeau Birindelli — Jacques Giacomoni

Abstract. In this paper, we are dealing with the following superlinear

elliptic problem:

(P)

(
−∆u = λu + h(x)up in RN ,

u ≥ 0,

where h is a C2 function from RN to R changing sign such that Ω+ := {x ∈
RN | h(x) > 0}, Γ := {x ∈ RN | h(x) = 0} are bounded.

For 1 < p < (n + 2)/(n− 2) we prove the existence of global and
connected branches of solutions of (P) in R−×H1(RN ) and in R×L∞(RN ).

The proof is based upon a local approach.

1. Introduction

In this paper, we consider the following superlinear elliptic problem:

(P)

{
−∆u = λu+ h(x)up in RN,

u ≥ 0.
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We suppose that h satisfies the following assumptions:

(H1) h ∈ C2(RN ,R), Ω+ := {x ∈ RN | h(x) > 0} is bounded.
(H2) For all x ∈ Γ := {x ∈ RN | h(x) = 0}, ∇h(x) 6= 0.

Clearly (H1) and (H2) imply that

Γ = Ω+ ∩ Ω− and it is bounded.

Our purpose is to prove the existence of solutions and to give the structure
of solutions set with respect to the bifurcation parameter λ. The method we
use involves studying a “local problem”, (PΩR

), in a bounded domain ΩR ⊃ BR

where BR is the ball centered at 0 and with radius R

(PΩR
)

{
−∆u = λu+ h(x)up in ΩR,

u ∈ H1
0 (ΩR) u ≥ 0,

and then we pass to the limit when R goes to ∞.
To our knowledge, this type of superlinear problems has mainly been inves-

tigated when h(x) is strictly positive, see e.g. ([12]) and ([11]). In this direction,
we can also cite [2] and [20]. In these two works, the authors consider the global
bifurcation problem:

(PΩ)

{
−∆u = λu+ h(x)up in Ω,

u(x) = 0 for all x ∈ ∂Ω u ≥ 0,

where Ω is unbounded (precisely Ω = R× [−π/2, π/2] in [2] and Ω = RN in [20])
and h is strictly positive and it satisfies symmetric assumptions. They prove the
existence of a global connected branch which bifurcates from the essential spec-
trum in R−×Lσ(RN ), with σ depending on N , p and the asymptotic behaviour
of h; they use a local approach. The assumptions about symmetry of h yield
symmetric properties of solutions of (PΩ). For the local problem the uniform
bounds had been proved by Gidas and Spruck in [14] while, using the symmetry,
the compactness of the solutions are obtained studying an ODE.

On the other hand when h(x) changes sign, the nature of the problem is
completely different and requires new tools. Let us mention for example the
papers of Alama and Tarantello [1] and of Ramos, Terracini and Troestler [19].
The nature of the problem studied in the present paper is closer to the work of
Berestycki, Capuzzo Dolcetta and Nirenberg [3]. They use a blow up technique
combined with some Liouville theorems in cones, to obtain uniform a priori
bounds and some existence results for equation (PΩ) with Ω a bounded domains
for 1 < p < (n+ 2)/(n− 1) and λ = 0. In that paper they ask whether the
results were still true for all p subcritical. In [7] Chen and Li answer positively
to that question i.e. they obtain some a priori bounds for positive solutions when
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p is subcritical (i.e. p < (N + 2)/(N − 2)). Precisely they consider the following
problem {

−∆u = h(x)up in Ω,

u ∈ H1
0 (Ω) u ≥ 0,

where h satisfies (H1), (H2) and Γ ⊂ Ω. They prove that every solution is
uniformly bounded and that the a priori bound depends only on the geometry
of Ω, p and h. The very elegant proof of this result is carried out dividing the
domain in three regions and then solving the following steps:

(1) boundedness of solutions in the region where h(x) ≤ −δ, for a fixed
δ > 0,

(2) boundedness of solutions in the region where |h(x)| is small,
(3) boundedness of solutions in the region where h(x) ≥ δ.

Each step involves different techniques:

(1) In the region where h(x) is strictly negative, the uniform estimate is
obtained by an Harnack inequality and an integral estimate.

(2) In the region where |h(x)| is small, the a priori bound results from the
moving plane technique and from the above estimate.

(3) In the last region, a classical blow up analysis is used in each peak of
the solution.

Chen and Li had already used a similar technique to treat the critical case,
see [6].

In the present work, we prove the existence of global connected branches of
solutions of (P) in R×H1(RN ) and in R× L∞(RN ).

Before describing our results let us mention that to our knowledge global
bifurcation in unbounded domains with indefinite non-linearity has only been
treated by Cingolani and Gamez in [8] where they consider the following problem:{

−∆u = λh1(x)u+ h2(x)up in RN ,

u ∈ D1,2(RN ) u ≥ 0,

where h1, h2 change sign and among other hypothesis they are in some Lq spaces
which ensure the existence of two isolated eigenvalues for the above problem and
hence they can use a local approach and prove the existence of a global branch
bounded and connected in R × D1,2(RN ) bifurcating from the two eigenvalues.
Let us mention that since they use the result of Berestycki, Capuzzo Dolcetta
and Nirenberg the range of p is bounded by (n+ 2)/(n− 1).

Here we consider the branches CR of solutions of the problem (PΩR
) and we

want to study their behaviour as R tends to ∞. The existence of CR is obtained
by the global bifurcation theory of Rabinowitz (see [18]). To give the behaviour
of CR, we need some uniform a priori estimates. Using the main ingredients of [7],
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we prove that every solution of (PΩR
) is bounded and the bound is uniform if

λ is bounded, which is an extension of the result in [7]. Precisely, concerning
(PΩR

), we show the following main results:

Proposition 1.1. Suppose that (H1), (H2) are satisfied, that 1 < p < (N +
2)/(N − 2) and that ΩR is large enough that Γ ⊂ ΩR. Let λ1(Ω+) be the first
eigenvalue to −∆ in Ω+. Then,

(i) if λ ≥ λ1(Ω+), there are no non trivial solutions of (PΩR
),

(ii) for any λ0 ≤ λ1(Ω+), there is a constant C (= C(λ0)) such that if (λ, u)
is a solution of (PΩR

) and λ ≥ λ0 then

‖u‖H1,L∞ ≤ C

and C depends only on λ0, ΩR and h.

Consider φR > 0 an eigenfunction associated to the first eigenvalue λ1(ΩR)
which satisfies: {

−∆φR = λ1(ΩR)φR in ΩR,

φ ≥ 0,

and let ΠR denote the projection onto R.

Theorem 1.2. Assume that the conditions of Proposition 1.1 are satisfied.
Then, there is a global branch of nontrivial solutions of (PΩR

), CR, connected in
R×H1 ∩ L∞(ΩR), bifurcating from (λ1(ΩR), 0) such that

(i) ΠRCR = ]−∞, λ0] with λ1(Ω+) > λ0 ≥ λ1(ΩR). Moreover,

if
∫

ΩR

h(x)φR
p < 0, then λ0 > λ1(ΩR).

(ii) Let (λn, un) ∈ CR such that λn → −∞ as n → ∞. Then, up to subse-
quences, ‖un‖H1,L∞ →∞.

Passing to the limit the branches CRn
, with limn→∞Rn = ∞, converge to C

a global branch of nontrivial solutions of (P) connected in R− ×H1(RN ). This
process uses the results of Whyburn (see [21]) which ensure that the connected-
ness of the branches CRn

are preserved at the limit when Rn →∞:

Definition 1.1 (Whyburn). Let be G any infinite collection of point sets.
The set of all points x such that every neighbourhood of x contains points of
infinitely many sets of G is called the superior limit of G (lim supG).

The set of all points y such that every neighbourhood of y contains points of
all but a finite number of sets of G is called the inferior limit of G (lim inf G).
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Theorem 1.3 (Whyburn). Let {An}n∈N be a sequence of connected closed
sets such that

lim inf{An} 6≡ ∅.
Then, if the set

⋃
n∈N An is relatively compact, lim sup{An} is a closed, con-

nected set.

We apply Theorem 1.3 as follows: Set Λ < 0 and let An be the connected
component (not necessary unique) in

{Λ ≤ λ ≤ 1/Λ} ×H1(RN ) ∩ CRn

such that ΠRAn = [Λ, 1/Λ].
Proving that

⋃
n∈N An is relatively compact in R × H1(RN ) and applying

Theorem 1.3, we obtain that lim supn→∞An = CΛ is a connected set of nontrivial
solutions of (P) in R ×H1(RN ). Passing to the limit Λ → −∞, we prove that
C := limΛ→−∞ CΛ is a global branch of nontrivial solutions of (P).

The important step in this process is to prove that the a priori bound, proved
in Proposition 1.2, for solutions of (PΩRn

) does not depend on ΩRn
.

The main results are the following:

Theorem 1.4. Assume that (H1), (H2) are satisfied. Then, there exists C,
a global branch of nontrivial solutions of (P), connected in R− ×H1(RN ) such
that

(i) ΠRC = ]−∞, 0[, C ⊂ R− × L∞(RN ).
(ii) Taking (λn, un) ∈ C such that λn → 0, then, up to subsequences, un →

u in D1,2(RN ) where (0, u) is a solution of (P). Consequently, C is
connected and closed in R × D1,2(RN ) and it is still imbedded in R ×
L∞(RN ).

(iii) If (λ, uλ) ∈ C and λ→ −∞ then ‖uλ‖H1,L∞ →∞.

Working in R × L∞(RN ), we add the following assumption concerning the
asymptotic behaviour of h:

(H3) h(x) → −∞ when |x| → ∞.

Then, we prove the existence of a global branch unbounded and connected in
R×L∞(RN ), bifurcating to the right from the bottom of the essential spectrum:

Theorem 1.5. Assume that (H1)–(H3) are satisfied. Then, there exists C,
a global branch of nontrivial solutions of (P), connected in R × L∞(RN ) and
bifurcating from the bottom of the essential spectrum (i.e. from (0, 0)) such that

(i) ΠRC = ]−∞, λ0] with 0 < λ0 ≤ λ1(Ω+).
(ii) If (λ, uλ) ∈ C with λ < 0 (resp. λ ≤ 0) then uλ ∈ H1(RN ) (resp.

uλ ∈ D1,2(RN )).
(iii) ‖uλ‖H1,L∞ →∞ when λ→ −∞.



22 I. Birindelli — J. Giacomoni

Remark. The previous results still hold true if we replace the non linear
term h(x)up of equations (P) and (PΩR

) with a more general nonlinearity such
as h(x)g(u) under the following hypothesis on g(u)

(G1) g is in C1(R,R+).
(G2) There exists 1 < p < (N + 2)/(N − 2) such that limu→∞ g(u)/up =

C > 0.
(G3) There exists a constant C1 such that lim infu→0 g(u)/up = C1 > 0.
(G4) 0 ≤ g′(s) ≤ pg(s) for any s ∈ R+.

The proofs need only be slightly modified, but for the sake of simplicity we
have decided to write them for up (which is the standard example of a function
satisfying (G1)–(G4)).

The outline of the paper is the following: In Section 2, we study the local
problem and prove Proposition 1.1 and Theorem 1.2. In Section 3, we deal
with Problem (P), passing to the limit the branches CRn

in R−×H1(RN ) (resp.
R− × L∞(RN )) we prove Theorem 1.4 (resp. Theorem 1.5).

2. Local problem

In this section, we are dealing with the following local problem:

(PΩR
)

{
−∆u = λu+ h(x)up in ΩR,

u ∈ H1
0 (ΩR) u ≥ 0,

where h satisfies (H1)–(H2).

Remark. The result of this section holds for any regular bounded domain
Ω, we have called it ΩR (with the hypothesis that it contains a ball of radius R)
to emphasize the fact that the result in the local problem will be used in the
next section to obtain result in the global problem (P).

Our goal is to prove the existence of a global branch of nontrivial solutions
of (PΩR

) connected in R×H1
0 ∩ L∞(ΩR) and bifurcating from the first eigen-

value λ1(ΩR) := infv∈H1
0 (ΩR)

∫
|∇v|2/

∫
|v|2 and give the global behaviour of the

branch. For this, we use the global bifurcation theory of Rabinowitz recalled
below, which ensures that the branch of positive solutions bifurcates from the
first eigenvalue λ1(ΩR) and is unbounded:

Theorem 2.1 (Rabinowitz, 1971). Let E be a real Banach space with norm
‖ · ‖ and consider G(λ, · ) = λL · +H(λ, · ) where L is a compact linear map
on E and H(λ, · ) is compact and it satisfies lim‖u‖→0 ‖H(λ, u)‖/‖u‖ = 0. If
r(L) = {µ ∈ R | 1/µ is an eigenvalue of L with odd multiplicity} and µ ∈ r(L),
then

S = {(λ, u) ∈ R× E | (λ, u) is a nontrivial solution of u = G(λ, u)}
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possesses a maximal continuum (i.e. connected branch) of solutions, Cµ, such
that (µ, 0) ∈ Cµ and either

(i) Cµ meets infinity in R× E, or
(ii) Cµ meets (µ̂, 0) where µ 6= µ̂ ∈ r(L).

To give information concerning the global behaviour of the branch, we need
some a priori estimates about solutions of (PΩR

). This is done in Proposition 1.1.
The following proof follows the main steps of [7]:

Proof of Proposition 1.1. First, we prove (i). We use a standard ar-
gument for superlinear elliptic problems. Consider φΩ+ a positive eigenfunction
associated to λ1(Ω+): Multiply (PΩR

) by φΩ+ and integrate by parts in Ω+, we
obtain:

(2.1) λ1(Ω+)
∫

Ω+
uφΩ+ +

∫
∂Ω+

∂φΩ+

∂n
u =

∫
Ω+

h(x)upφΩ+ + λ

∫
Ω+

uφΩ+ .

From (2.1) and Hopf lemma:

(λ1(Ω+)− λ)
∫

Ω+
uφΩ+ ≥

∫
Ω+

h(x)upφΩ+ > 0

which implies that λ < λ1(Ω+).
Now, let us prove the (ii). Since from standard regularity results the L∞

bound implies an H1 bound, it is enough to prove that the L∞ bound is inde-
pendent of u. As in [7], we divide the domain ΩR in three regions:

(1) Ω−δ,R := Ω−R ∩ {x, dist(x,Γ) ≥ δ > 0}.
(2) {x/dist(x,Γ) ≤ δ}.
(3) Ω+

δ := Ω+ ∩ {x,dist(x,Γ) ≥ δ > 0}.
To prove (ii), we will show that in each region the solution is uniformly bounded.

Step 1. A priori bound in Ω−δ,R.
As in [7], the argument is based upon an integral estimate. First consider

1 ≥ φ > 0 an eigenfunction associated to the first eigenvalue λ1(ΩR) which
satisfies: {

−∆φ = λ1(ΩR)φ in ΩR,

φ ≥ 0.
Then, multiplying the equation in (PΩR

) by φα|h(x)|α−1h(x), we obtain:

(2.2)
∫

ΩR

(−∆u)φα|h|α−1h =
∫

ΩR

∇u∇(φα|h|α−1h) = −
∫

ΩR

u∆(φα|h|α−1h)

≤ C(α, φ,∇2h)
∫

ΩR

|h|α−2φα−2u.

From (2.2) we have

(2.3)
∫

ΩR

(λu+ h(x)up)φα|h|α−1h ≤ C

∫
ΩR

|h|α−2φα−2u.
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From which it follows:∫
ΩR

|h|α+1φαup ≤ C(λ, h)
∫

ΩR

|h|α−2φα−2u

≤ C(λ, h)
( ∫

ΩR

|h|p(α−2)φαup)1/p

( ∫
ΩR

φα−2p/(1−p)

)p−1/p

.

Now, choosing α = 1 + 2p/(p− 1) > 2, i.e. p(α− 2) = α+ 1 we obtain∫
ΩR

|h|α+1φαup ≤ C(λ, h, φ).

For any y ∈ RN such that B2ε(y) ⊂ Ω−δ,R for a ε > 0, then we obtain

(2.4)
∫

B2ε(y)

up ≤ C := C(δ, h, φ, λ).

Observe that (2.4) can be obtained similarly for B2ε(y) ⊂ Ω+
δ .

At this point, we have two possibilities either −∆u(x) ≥ 0 or −∆u(x) ≤ 0.
In the first case, we have just to remark that we have

(2.5) −∆u = λu+ h(x)up ≥ 0 ⇒ u ≤
(

|λ|
inf |h|

)1/(p−1)

and since inf |h| > 0 in Ω−δ,R, we get the a priori bound.
Now, if the second case occurs, we use the following lemma (Lemma 9.20

in [15]).

Lemma 2.2. Let u ∈ W 2,n(Ω) with Lu ≥ f where L is a strictly elliptic
second order operator and f ∈ Ln(Ω). For all B = B2ε(y) ⊂ Ω and p > 0, we
have:

(2.6) sup
Bε(y)

u ≤ C(n, p)
((

1
|B|

∫
B

(u+)p

)
+

ε

λL
‖f‖Ln(B)

)
.

Now, combining (2.4) and (2.6) with f = 0 and L = ∆ we get the a priori
bound in the second case. Finally, by (2.4)–(2.6), we have:

supu ≤ m := m(δ, h, λ,ΩR) in Ω−δ,R.

Step 2. A priori bound in a neighbourhood of Γ.
First, fix x0 ∈ Γ. Since Γ is compact, it is sufficient to give an a priori bound

in a neighbourhood of x0. The sketch of the proof is the following:

(1) First, through some transformations letting the equation invariant, we
construct a convex neighbourhood of x0.

(2) Applying in this domain the moving plane method to an auxiliary func-
tion (similar to [7]), we show a “Harnack inequality” satisfied by u in
a cone with x0 as vertex. Combining this inequality with the same
integral estimate (2.4), we get the a priori bound.



Bifurcation Problems 25

A strict convex neighbourhood of x0. Up to some rotation or translation, we
can suppose that x0 = 0 and that Γ is tangent to the hyperplane x1 = 0. Doing
a Kelvin transform (take the center of the inversion on the x1-axis such that
the sphere is tangent to x1 = 0), we can suppose that Γ is strictly convex in a
neighbourhood of x0 and Ω+ is at the left of Γ. Let

x1 = Φ(y), y ∈ RN−1

be an equation of Γ in a neighbourhood of 0. Consider D the domain (containing
x0) enclosed by the surfaces ∂1D := {x | x1 = Φ(y) + ε} and ∂2D := {x | x1 =
−2ε}. We choose ε small enough to ensure

(a) ∂h
∂x1

(x) ≤ −β0 for all x ∈ D,
(b) −∆φ(y) ≤ −β0.

for some positive constant β0. But, contrary to the case of [6], the equation is
not preserved by Kelvin transform. Indeed, define u(x) = |x − y0|N−2u(y0 +
|y0|(x− y0)/|x− y0|2) where y0 is the center of the inversion. Then u satisfies
the following equation

(2.7) −∆u =
λu

|x− y0|4
+ h̃(x)up

where h̃(x) = |x−y0|N+2−p(N−2)h(y0 + |y0|(x− y0)/|x− y0|2). Since y0 > 0 and
the origin is invariant by this Kelvin transform, for notation convenience, we will
denote h̃ by h. Observe that in a neighbourhood of 0, the equation in (2.7) is
not singular.

Using the results in Step 1, and since ∂1D ⊂ Ω−ε,R let

(2.8) m = m(ε,ΩR, h, λ) := sup
∂1D

u

and let ũ be a continuation of u on all ∂D such that ũ ≤ Cm.
We are now ready to apply the moving plane method to some auxiliary

function.
Moving plane method and Harnack Inequality. We consider the function w

solution of

(2.9)

 −∆w =
λw

|x− y0|4
+ λC0m

(−x1 + ε+ Φ(y))
|x− y0|4

in D,

w = ũ for x ∈ ∂D,

where C0 is a constant to be fixed later and m is defined in (2.8). We introduce
the auxiliary function v:

(2.10) v = u− w + C0m(ε+ Φ(y)− x1) +m(ε+ Φ(y)− x1)2.
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From (2.10), one can see that v satisfies:

(2.11)

 ∆v +
λv

|x− y0|4
+ ψ(y) + f(x, v) = 0 in D,

v(x) = 0 on ∂1D,

where
ψ(y) = C0m∆Φ(y)−∆(m(ε+ Φ(y))2)− 2m

and

f(x, v) = m

(
λ(ε+ Φ(y)− x1)2

|x− y0|4
+ 2x1∆Φ(y)

)
+ h(x)(v + w − C0m(ε+ Φ(y)− x1)−m(ε+ Φ(y)− x1)2)p.

We claim that v ≥ 0. From (2.11), it is sufficient to prove that ∂v/∂x1 ≤ 0 in D.
Clearly, by the definition of v,

(2.12)
∂v

∂x1
=

∂u

∂x1
− ∂w

∂x1
− C0m− 2m(ε+ Φ(y)− x1).

We are going to estimate ∂w/∂x1 in D. For this, using Theorem I.3 in [4] which
extends the Alexandrov–Bakelman estimate (see also [5]) for narrow domains
and since 0 ≤ −x1 + Φ(y) + ε ≤ ε, we can prove that

(2.13) ‖w‖L∞ ≤ sup
∂D

w +K|D|C0m ≤ C(m+ C0mε
2)

In order to apply Theorem I.3 in [4] we will choose ε small enough that λ1(D) >
supx∈D λ/|x− y0|4. From (2.13) and Theorem 8.33 in [15] and eventually taking
ε smaller, we have:

(2.14)
∥∥∥∥ ∂w∂x1

∥∥∥∥
L∞(D)

≤ sup
∂D

∣∣∣∣ ∂ũ∂x1

∣∣∣∣ + C(m+ C0mε
2) ≤ Cm(C0ε

2 + 1).

Let us first suppose that x ∈ Dε := {x | −x1 + Φ(y) + ε ≤ ε/2} then x ∈ Ω−ε/2,R.
Therefore, by the estimates obtained in the previous step and by standard elliptic
estimates, we have:

(2.15) sup
x∈Dε

∣∣∣∣ ∂u∂x1

∣∣∣∣ ≤ Cm.

From (2.14) and (2.15), it follows that:

(2.16)
∂v

∂x1
≤ Cm+ Cm(C0ε

2 + 1)− C0m ≤ 0

for C0 large enough. Combining (2.16) with v = 0 for x in ∂1D, we obtain v ≥ 0.
On the other hand, if −x1 + Φ(y) + ε ≥ ε/2, then

v ≥ −w+C0mε/2 ≥ −(Cm+ ε2C0m) +C0mε/2 ≥ −Cm+C0m(ε/2− ε2) ≥ 0,

choosing ε < 1/2 and C0 large enough. This proves that v ≥ 0 in D.
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Since v ≥ 0 and v = 0 in ∂1D, we can apply the moving plane method. Let
us define

Σµ = {x ∈ D | x1 ≥ µ}, Tµ = {x ∈ D | x1 = µ},

and let xµ be the reflected point by Tµ of x and vµ(x) = v(xµ). We want to show
that v(xµ) ≥ v(x) for x ∈ Σµ and µ ≥ −ε1 with 0 < ε1 < ε. This is obviously
satisfied for µ = ε. Therefore, we decrease µ and we move the plane Tµ towards
the left.

A standard argument (see for instance [16]) can prove that this moving planes
procedure can be carried on provided

(2.17) f(x, v(x)) ≤ f(xµ, v(x)) for x = (x1, y) ∈ D, x1 > µ > −ε1.

It is easy to see that (2.17) holds if

∂f

∂x1
(x, v) ≤ 0 for all x ∈ {x | x1 ≥ −2ε1} ∩D.

A simple computation yields:

∂f

∂x1
= 2m∆Φ(y) + λm

∂

∂x1
(ε+ Φ(y)− x1)2 + |u|p−1

(
∂h

∂x1
u+ ph(x)

∂u

∂x1

)
.

Choosing ε small enough, we have that ∆Φ(y) + λ∂(ε+ Φ(y)− x1)2/∂x1 ≤
−β0/2. We consider now two cases.

First, h(x) ≤ 0. In this case, since ∂h/∂x1 ≤ 0 in D, it suffices to prove that
∂u/∂x1 ≥ 0. Choosing C0 large enough and taking into account (2.14), we have
that

∂u

∂x1
=

∂w

∂x1
+ C0m+ εm(ε+ Φ(y)− x1) ≥ 0.

Now, let us consider the case where h(x) > 0. Suppose, that u ≥ 1. To control
∂f/∂x1, we use the term ∂h/∂x1u ≤ −β0u and the fact:

(2.18) h(x) ≤ Cε1 for − ε1 < x < 0.

Indeed, from (2.18) and (2.14), one can prove

∂f

∂x1
≤

(
∂h

∂x1
u+ ph(x)

∂h

∂x1
u

)
up−1

≤ up−1

(
− β0 + pCε1

(
∂w

∂x1
+ C0m+ 2mεC

))
≤ up−1(−β0 + pCε1(Cm(C0ε

2 + 1) + C0m+ 2mεC)) ≤ 0

for ε1 small enough. Finally, if u ≤ 1, we use

λm

(
∂

∂x1
(ε+ Φ(y)− x1)2

)
+m∆Φ(y) ≤ −β0m

2
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from which, together with (2.18),

∂f

∂x1
≤ −β0m

2
+ ph(x)up−1 ∂u

∂x1
≤ −β0m

2
+ pC(ε, C0)ε1 ≤ 0

for ε1 small enough. Therefore,

(2.19) v(xµ) ≥ v(x) for − ε1 ≤ µ ≤ ε.

At this point, we conclude as in [7] (Section 3, Step 4: deriving the a priori
bound). Let us just sketch the proof.

Inequality (2.19) implies that the function v is monotone decreasing in the
x1 direction. Clearly this is still true if we rotate the x1-axis by a small angle.
Therefore, for any x0 ∈ Γ, there exists, ∆x0 , a cone of vertex x0 and staying to
the left of x0 such that

(2.20) v(x) ≥ v(x0) for x ∈ ∆x0 .

From (2.20) we obtain

(2.21) u(x) + C ≥ u(x0) for x ∈ ∆x0 .

By a similar argument, one can prove that (2.21) is true for any point x in
a small neighbourhood of Γ. Remarking that the intersection of ∆x0 with the
set {x | h(x) ≥ δ0 > 0} has a positive measure, and combining with the integral
estimate (2.4) we get the a priori bound in the neighbourhood of Γ.

Step 3. The a priori bound in the region where h(x) > δ > 0. In this region,
the a priori bound is obtained by a technique of blow up introduced in [14] and
used in [3], [7]. Since the linear term (i.e. λu) vanishes in the blow-up analysis
(See [3] for more details), the proof is as in [7] (see particularly p. 339–340). The
proof of Proposition 1.1 is now completed. �

Remark. The a priori bound for solutions of (PΩR
), obtained in Proposi-

tion 1.1, depends only on λ, ΩR, h.

We give now the proof of Theorem 1.2 which follows from Proposition 1.1
and Theorem 2.1.

Proof of Theorem 1.2. The existence of CΩR
follows immediately from

Theorem 2.1 and assertion (i) of Proposition 1.1. The fact that there is only one
bifurcation point for positive solutions excludes (ii) of Theorem 2.1.(ii) on the
other hand implies that CΩR

meets infinity only for λ going to minus infinity.
The fact that

∫
ΩR

h(x)φR
p < 0 implies that λ0 > λ1(ΩR) is proved in [17],

see also [1].
Let us prove (ii). Letting λn → −∞, we have

(2.22)
∫

ΩR

|∇un|2 + |λn|
∫

ΩR

|un|2 =
∫

ΩR

h(x)up+1
n .
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By Sobolev embedding and the boundedness of Ω+, it follows that

C‖un‖2Lp+1(ΩR) ≤
∫

ΩR

|∇un|2 ≤ ‖h‖L∞(Ω+)‖un‖p+1
Lp+1(ΩR),

which implies that

(2.23) ‖un‖Lp+1 ≥ C > 0.

Therefore, if ‖un‖L∞,H1 ≤ C which implies ‖un‖Lp+1 ≤ C, then, from (2.22)
and by Hölder inequality,

‖un‖L2 , ‖un‖Lp+1 → 0 when n→∞

which contradicts (2.23). The proof of Theorem 1.2 is now completed. �

3. Global bifurcation for problem (P)

3.1. A priori pound independent of ΩR. In this section, we prove The-
orems 1.4 and 1.5. For this, we need uniform a priori estimates which do not
depend on the domain ΩR. This is proved in the following result for λ ≤ 0:

Proposition 3.1. Assume the (H1)–(H3) are satisfied. Let

Ωn := ΩRn a sequence of domains such that Rn →∞ when n→∞.

Let {(λn, un)}n∈N solutions respectively of (PΩn) such that Λ ≤ λn ≤ 0 for some
Λ < 0. Then,

‖un‖L∞(RN ) ≤ C(Λ)

where C does not depend on Ωn.

Proof of Proposition 3.1. Let Mn such that ‖un‖L∞ = Mn. Then,
there exists xn such that un(xn) = Mn and −∆un(xn) ≥ 0. Since λn ≤ 0,

(3.24) xn ∈ Ω+ ∪ Γ.

Since the bound in Ω+
Rn,δ can be obtained exactly as in the proof of Propo-

sition 1.1 we just have to prove that un remains bounded in a neighbourhood of
Γ when n → ∞ this can be done using an approach similar to Proposition 1.1
since Γ is compact.

But observe that the uniform bound in a neighbourhood of Γ requires to have
an a priori bound on Ω−n,δ := Ω−n ∩ {x | dist(x,Γ) ≥ δ} since it will imply that
m and hence ε1 constructed in the second step are bounded. To estimate un in
Ω−n,δ, let us consider ε > 0 and φε non trivial solution of:{

−∆φ = λ1(ε)φ in B4ε,

φ ≡ 0 in ∂B4ε, φ ≥ 0,
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where B4ε is the ball centered in 0 with radius 4ε. Consider now x0 such that
B4ε(x0) ⊂ {x | h(x) ≤ −δ0} for a δ0 > 0. Let φx0,ε = τ−x0φε, we still denote φε.
Multiply the equation in (PΩn

) by |h|α−1hφα
ε for some α > 2 that will be fixed

later, we obtain (since α > 1):

−
∫

B4ε(x0)

∆u(|h|α−1hφα
ε ) = −

∫
B4ε(x0)

u∆(|h|α−1hφα
ε )(3.25)

≤ C

∫
B4ε(x0)

u|h|α−2φα−2
ε .

Fixing in (3.25) α = 1 + 2p/(p− 1) > 2 for which α/p < α − 2, we have from
(3.25) and the equation in (PΩn

):

(3.26)
∫

B4ε(x0)

φα
ε |h|α+1up+1 ≤ C

∫
B4ε(x0)

φα/p
ε |h|α−2u.

Therefore, from (3.25) and Hölder inequality, we have:

(3.27)
∫

B4ε(x0)

φα
ε |h|α+1up+1 ≤ Cp/(p−1)|B4ε|.

Then, since B4ε(x0) ⊂ {h(x) ≤ −δ0},

(3.28)
∫

B2ε(x0)

up ≤ C
|B4ε|
δ1+α
0

where C depends on φε, N, and Λ. From (3.28) and since −∆u ≤ 0 we can apply
Lemma 2.2 (i.e. Lemma 9.20 in [15]), we obtain:

(3.29) sup
Bε(x0)

un ≤ C

(
1
εN

∫
B2ε(x0)

up

)
≤ C

|B4ε|1/p

εN (δ0)1+α
.

i.e.

(3.30) sup
Ωn,δ

un ≤ C(δ,Λ).

Then, we can proceed as in Proposition 1.1 and the proof of Proposition 3.1 is
now complete. �

Remark. Proposition 3.1 only concerns the case where λ ≤ 0 (this ensures
that the point where the maximum is attained can be chosen in a bounded
domain: Ω+ ∪ Γ).

In the case where λ > 0, some a priori estimates independent on the domain
can be obtained if we impose some asymptotic behaviour to h. Precisely, we
prove:
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Proposition 3.2. Assume the same conditions of Proposition 3.1 and now
suppose that λn ≥ 0. Assume in addition that h satisfies:

(3.31) lim sup
|x|→∞

h(x) < 0.

Then, ‖un‖L∞ ≤ C(Λ).

Proof of Proposition 3.2. In the case where λn ≥ 0,

xn ∈ Ω+ ∪ Γ ∪ {x ∈ Ω−n | λnun + h(x)up
n ≥ 0}.

If lim supn→∞ |xn| < ∞, then the proof is similar as for Proposition 3.1. Now,
suppose that up to a subsequence,

|xn| → +∞ and λn → λ > 0 when n→∞.

Then, from (3.31),

λnun(xn) + h(xn)un(xn)p ≥ 0 ⇒ un(xn) ≤
∣∣∣∣ λn

h(xn)

∣∣∣∣1/(p−1)

<∞

and the proof is now complete. �

3.2. Connected branch of solutions of (P) in R−× H1(RN ). We give
now the proof of Theorem 1.4.

Proof of Theorem 1.4. Let Ωn := ΩRn
where Rn → ∞ when n → ∞

and Cn the corresponding branch see Theorem 1.2. For any large negative Λ, let
AΛ

n be a connected component of Cn in {Λ ≤ λ ≤ 1/Λ} ×H1(RN ) such that

ΠRA
Λ
n = [Λ, 1/Λ]

(the existence of AΛ
n follows from the connectedness of Cn and ΠRCn ⊃ ]−∞, 0]).

Using Theorem 1.3, we are going to prove that

(3.32) C := lim
Λ→−∞

lim sup
n→∞

AΛ
n

satisfies the assertions of Theorem 1.4. To do this, we have to prove that
⋃

n∈N A
Λ
n

is relatively compact. Therefore, take

(λn, un) ∈ AΛ
n which implies Λ ≤ λn ≤ 1/Λ < 0.

From Proposition 3.1 we have that

(3.33) ‖un‖L∞ ≤ C(Λ).

Therefore, by a bootstrap argument and up to subsequences, when n → ∞ the
following holds:

(3.34) λn → λ < 0 and un → u in L∞loc(RN )
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where (λ, u) is a solution of (P). From (3.33), u ∈ L∞(RN ). Let us show that

(3.35) (λn, un) → (λ, u) in R×H1(RN ) when n→∞.

First, since (λn, un) is a solution of (PΩn) and from (3.33), one can remark that

(3.36)
∫

Ωn

|∇un|2 + |λn|
∫

Ωn

|un|2 =
∫

Ωn

h(x)up+1
n ≤

∫
Ω+

h(x)up+1
n ≤ C.

Since λn → λ < 0, it follows that

(3.37) ‖un‖H1(RN ) ≤ C and un → u weakly in H1(RN )

which implies (by Sobolev embedding):

(3.38)
∫

Ω+
h(x)up+1

n →
∫

Ω+
h(x)up+1 when n→∞.

Therefore,∫
|∇u|2 + |λ|

∫
|u|2 ≤ lim inf

n→∞

∫
Ωn

|∇un|2 + |λn|
∫

Ωn

|un|2(3.39)

≤ lim sup
n→∞

∫
Ωn

|∇un|2 + |λn|
∫

Ωn

|un|2

= lim sup
n→∞

∫
Ωn

h(x)up+1
n

=
∫

Ω+
h(x)up+1 + lim sup

n→∞

∫
Ωn/Ω+

h(x)up+1
n

=
∫

Ω+
h(x)up+1 − lim inf

n→∞

∫
Ωn/Ω+

|h(x)|up+1
n

≤
∫

Ω+
h(x)up+1 −

∫
RN /Ω+

|h(x)|up+1

=
∫

RN

h(x)up+1 =
∫
|∇u|2 + |λ|

∫
|u|2.

From which, it follows

(3.40) lim
n→∞

∫
Ωn

|∇un|2 + |λn|
∫

Ωn

|un|2 =
∫

RN

|∇u|2 + |λ|
∫

RN

|u|2.

Therefore, (3.35) is proved and
⋃

n∈N A
Λ
n is relatively compact in R−×H1(RN ).

Furthermore, u is not trivial. Indeed, by Theorem 1.2, since xn (defined in
Propositions 3.1 and 3.2) is uniformly bounded and from (3.33), we obtain:

(3.41) 0 < K ≤ C(λn) =
(

|λn|
‖h‖L∞(Ω+∪Γ)

)1/(p−1)

≤ un(xn) → u(x) and u 6≡ 0.

Now, using Theorem 1.3, we see that

CΛ := lim sup
n→∞

AΛ
n



Bifurcation Problems 33

is connected. Furthermore, the connectedness of C := limΛ→−∞ CΛ is proved in
the same way (i.e. the proof of the compactness of

⋃
CΛ when Λ → −∞ can be

proved as above). This completes the proof of (i).
Observe that since the convergence for λn → 0− of the above sequence un is

not established, C is not necessarily closed in R− ×H1(RN ). But C is closed in
R− ×D1,2(RN ). To prove this, let

(λn, un) ∈ C such that λn → 0−.

Then, repeating the argument in (3.39) with λ = 0, we are done. Moreover u
cannot be trivial. Indeed, let 1/q = 1− (p+ 1)(N − 2)/(2N) and remark that

(3.42)
∫

RN

|∇un|2 + |λn|
∫

RN

|un|2 ≤
∫

Ω+
h(x)up+1

n

≤
( ∫

Ω+
h(x)q

)1/q( ∫
|un|2N/(N−2)

)(p+1)(N−2)/(2N)

.

From (3.42), it follows:

‖un‖2L2N/(N−2)(RN ) ≤ C‖un‖p+1
L2N/(N−2)(RN )

from which we obtain (since p > 1):

(3.43) ‖un‖L2N/(N−2)(RN ) ≥ C.

This completes the proof of (ii).
Let us prove (iii). To this purpose, we argue by contradiction. Suppose that

there exists a sequence (λn, un) ∈ C such that:

λn → −∞ and ‖un‖H1(RN ) ≤ C.

From (3.36) and by interpolation, we obtain that passing to the limit as n→∞,

(3.44) ‖un‖L2(RN ) → 0,
∫

Ω+
h(x)up+1

n → 0,

(3.42) and (3.44) imply that ‖un‖H1(RN ) → 0, which contradicts (3.43). Hence,
‖un‖H1(RN ) →∞. Now, ‖un‖L∞(RN ) →∞ follows from (3.43) and (3.44). This
completes the proof of (iii) and Theorem 1.4. �

(1) C is connected in R− ×H1(RN ) but not necessarily in R− × L∞(RN ).
Notice that we do not impose any asymptotic behaviour of h at infinity.

(2) From (ii), it follows that bifurcation from essential spectrum towards
the left cannot occur.
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3.3. Bifurcation from essential spectrum in R×L∞(RN ). In this sub-
section, assuming in addition (H4), we deal with the convergence of branches
CΩn

in R×L∞(RN ). To this purpose, we proceed as in the previous subsection.
But, here the a priori bounds independent of Ωn follow from Proposition 3.2.

Proof of Theorem 1.5. In view of Theorem 1.3, we define for some large
negative Λ, the connected component AΛ

n of

(3.45) {(λ, u) ∈ CΩn | λ ≥ Λ}

which contains (λ1(Ωn), 0) and where Ωn is as in the previous subsection. By
Theorem 1.2 and Proposition 3.2 we have:

(a) AΛ
n ⊂ [Λ, λ1(Ω+)]× L∞(RN ) and it is bounded,

(b) (λ1(Ωn), 0) ∈ AΛ
n and ΠRA

Λ
n ⊃ [Λ, λ1(Ωn)],

(c) limn→∞(λ1(Ωn), 0) = (0, 0) ∈ lim infn→∞AΛ
n .

Our next goal is to prove that
⋃

n∈N A
Λ
n is relatively compact in R × L∞(RN ).

For this, take a sequence (λn, un) ∈ AΛ
n . By Proposition 3.2 and a bootstrap

argument in the equation of (PΩn), one can prove that up to a subsequence there
exists (λ, u) solution of (P) such that u ∈ L∞(RN ) and (passing to the limit as
n→∞)

λn → λ ≤ λ1(Ω+) and un → u in L∞loc(RN ).

To prove that un → u in L∞(RN ), it is sufficient to show that

(3.46) un(x) → 0 uniformly when |x| → ∞.

Using similar arguments to those in Proposition 3.1 and choosing such that
B4ε(x0) ⊂ {x | |x| ≥ M} with M large, we see that (3.27) holds (for ? this just
take ε small enough such that λ1(B4ε) > λ1(Ω+)). From (3.27) we obtain:

(3.47)
∫

B2ε

up
n ≤ C

|B4ε|
infB4ε(x0) |h(x)|

.

From (3.47) and from (H4), for all δ > 0, there exists M large enough such that

(3.48)
∫

B2ε(x0)

up
n ≤ δ if B4ε(x0) ⊂ {x | |x| ≥M}.

Using Lemma 9.20 in [15] together with (3.48) we obtain

∀δ > 0, ∃M > 0 such that |x| ≥ 2M ⇒ un(x) ≤ δ ∀n

from which (3.46) follows. This proves that
⋃

n∈N A
Λ
n is relatively compact in

R× L∞(RN ). Now take

C := lim
Λ→−∞

lim sup
n→∞

AΛ
n .
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From Theorem 1.3 we see that C is connected in R× L∞(RN ) and it bifurcates
from the essential spectrum. So, to prove (i), we just have to prove that

λ0 := sup{λ | (λ, u) ∈ C} > 0.

Recalling that from Theorem 1.4, for λ ≤ 0, u ∈ D1,2(RN ) and that there’s no
bifurcation towards the left from the essential spectrum in R×D1,2(RN ), we are
done.

Now, (ii) follows from the same arguments proving (ii) and (iii) of Theo-
rem 1.4. This completes the proof of Theorem 1.5. �

Remarks.

1. It would be interesting to understand what happens when

p = (N + 2)/(N − 2) (critical case).

2. It is worth to notice that Theorem 1.5 proves that the bifurcation from
essential spectrum occurs towards the right (which implies the existence
of nontrivial solutions for λ > 0 in L∞(RN )).

3. It would be interesting to extend Theorem 1.5 in the case where

lim sup
|x|→∞

h(x) < 0.
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