Topological Methods in Nonlinear Analysis Journal of the Juliusz Schauder Center Volume 15, 2000, 187–190

AN EXAMPLE CONCERNING EQUIVARIANT DEFORMATIONS

Marek Izydorek — Antonio Vidal

Dedicated to the memory of Juliusz P. Schauder

ABSTRACT. We give an example of Z_2 -space X with a property that the identity map $\operatorname{id}_X : X \to X$ as well as its restriction to the fixed point set of the group action $\operatorname{id}^{Z_2} : X^{Z_2} \to X^{Z_2}$ are deformable to fixed point free maps whereas there is no fixed point free map in the equivariant homotopy class of the identity $[\operatorname{id}_X]_{Z_2}$.

1. Introduction

Let X and Y be spaces on which an action of a finite group G is defined. There are some equivariant properties of a G-map $f: X \to Y$ which are satisfied provided the same properties hold without any group action for all restrictions f^H of f to the fixed point sets

 $X^{H} = \{ x \in X \mid gx = x \text{ if } g \in H, H \text{ is a subgroup of } G \}.$

This is, for example, the case of f to be a G-homotopy equivalence or f to be a G-fibration if the spaces involved are sufficiently nice, say compact G-ENRs. In this note we wish to investigate the property of a G-selfmap $f : X \to X$ to be equivariantly deformable to a fixed point free map. Roughly speaking, it will be seen by our example that also for G-ENR's the equivariant information is not completely contained in the fixed point sets X^H . Classical deformability to fixed

187

²⁰⁰⁰ Mathematics Subject Classification. 55P91, 55M20.

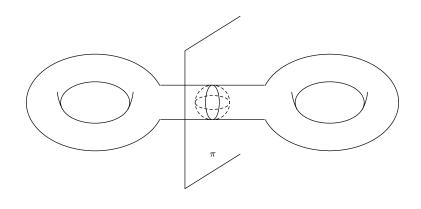
Key words and phrases. Z_2 -space, equivariant deformations, fixed point free maps.

^{©2000} Juliusz Schauder Center for Nonlinear Studies

point free maps on the fixed point sets does not imply equivariant deformability on X to a fixed point free map.

2. The Example

Let X be a double torus T_2 with a two sphere S^2 inside glued to it along the equator as showed in the picture below.



This space can be viewed as a Z_2 -space if we define the action of Z_2 as the reflection with respect to the plane in the figure. Observe, that the fixed point set X^{Z_2} is a circle. We have that the identity map id_X is deformable to a fixed point free map on each fixed point sets X^{Z_2} and X. The last, because X has no local separating points and the Euler characteristic $\chi(X) = 0$ (cf. [2]). Now, we show that the following proposition holds true

PROPOSITION 2.1. The identity map id_X is not Z_2 -homotopic to a fixed point free map.

PROOF. Contrary to our claim, suppose that $f: X \to X$ is a fixed point free map Z_2 -homotopic to id_X . Take an $\varepsilon > 0$ such that the distance $d(f(x), x) > 2\varepsilon$ for all $x \in X$. Since X^{Z_2} is an ENR we have an equivariant ε -homotopy $\{h_t\}$ such that $f \simeq h: X \to X$ with h fixed point free and taut over X^{Z_2} in some invariant neighbourhood U of X^{Z_2} . Now, the quotient of the free part $(X \setminus X^{Z_2})/Z_2$ has two components C_1 and C_2 . Following Wilczyński in [4] we find that the trace of the composition

$$q_k \circ h^* \circ i_k^* : H^*(X, X \setminus p^{-1}(C_k)) \to H^*(X, X \setminus p^{-1}(C_k)), \quad k = 1, 2$$

is invariant under equivariant homotopies, where h^* and i_k^* are homomorphisms induced on cohomology by h and the inclusion map

$$i_k: (X, X^{\mathbb{Z}_2}) \to (X, X \setminus p^{-1}(C_k))$$

respectively, p is the natural projection onto the orbit space and q_k is the homomorphism defined by projection on the corresponding factor in the direct sum

$$H^*(X, X^{Z_2}) \cong H^*(X, X \setminus p^{-1}(C_1)) \oplus H^*(X, X \setminus p^{-1}(C_2))$$

Moreover, he has proved that for taut maps that trace is equal to a fixed point index $\operatorname{ind}(h_{|V_k}: V_k \to X)$, where V_k is any open subset such that

$$\overline{V_k} \subset Y_k \setminus X^{Z_2} \subset U \cup V_k, \quad Y_k = S^2 \text{ or } T_2, \quad k = 1, 2,$$

and these two indices are zero, because h is fixed point free. On the other hand, by the equivariant homotopy invariance we derive

$$\operatorname{tr}(q_k \circ h^* \circ i_k^*) = \operatorname{tr}(q_k \circ i_k^*) = \chi(X, Y_k) = \pm 2$$

which contradicts the fact the indices above are zero.

3. Remarks and Questions

Our example gives a negative answer for the question posed by the authors in [1] (see Problem 3.6). Compare also our example with the work of P. Wong [5], where for a finite G-Wecken complex the fixed point free equivariant class of the identity is characterized.

If we are dealing with closed smooth manifolds with a smooth action of a finite group G, B. Jiang has proved in [3] that in this category such an example for the identity map is impossible. For arbitrary f and a free action on a closed manifold equivariant deformability of f to a fixed point free map is equivalent to a classical deformability of f to a fixed point free map. This can be easily proved via the Nielsen fixed point theory when $\dim(X) \ge 3$. For free actions on surfaces we expect that this is also true. One only needs to consider each type of a closed surface separately. We do not know the answer for general f and an arbitrary action case.

References

- M. IZYDOREK AND A. VIDAL, A note on the converse of the Lefschetz fixed point theorem for G-maps, Ann. Polon. Math. 83 (1993), 177–183.
- [2] B. JIANG, Lectures on Nielsen Fixed Point Theory, Contemp. Math. vol. 14, 1983.
- [3] _____, A note on equivariant vector fields, Acta Math. Sci. 11 (1991), 274–282.
- [4] D. WILCZYŃSKI, Fixed point free equivariant homotopy classes, Fund. Math. 123 (1984), 47–60.

M. Izydorek — A. Vidal

[5] P. WONG, Equivariant path fields for G-complexes, Rocky Mountain J. Math. 22 (1992), 1139–1145.

Manuscript received November 8, 1999

MAREK IZYDOREK Department of Physics and Appl. Mathematics Technical University of Gdańsk G. Narutowicza 11/12 80-952 Gdańsk, POLAND

 $E\text{-}mail\ address:\ izydorek@mail.mifgate.pg.gda.pl$

ANTONIO VIDAL Facultad de Matemáticas Universidad de La Laguna 38271 La Laguna, Tenerife, SPAIN *E-mail address*: avidal@mail.ull.es

 TMNA : Volume 15 – 2000 – Nº 1

190