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MINIMAL DISPLACEMENT OF RANDOM VARIABLES
UNDER LIPSCHITZ RANDOM MAPS

Ismat Beg

Abstract. Let (Ω, Σ) be a measurable space and X be a separable metric
space. It is shown that for measurable maps ζ, η: Ω → X, if a random map

T : Ω×X → X satisfies d(T (ω, ζ(ω)), T (ω, η(ω))) ≤ αd(ζ(ω), η(ω))+γ then

inf{d(ξ(ω), T (ω, ξ(ω)))} ≤ γ/(1 − α), where γ > 0, α ∈ (0, 1) and inf is
taken over all measurable maps ξ: Ω → X. Several consequences of this

result are also obtained.

1. Introduction

Random fixed point theorems for random contraction mappings on Polish
spaces were first proved by Spacek ([22]) and Hans ([11], [12]). Subsequently
Bharucha–Reid ([5]) has given sufficient conditions for a stochastic analogue
of Schauder’s fixed point theorem for a random operator. Itoh ([13]) introduced
random condensing operators and considerably improved the known results. Re-
cently Sehgal and Water ([20], [21]), Papageorgiou ([17]), Xu ([24]), Beg et al
([1]–[3]), Tan and Yuan ([23]), Lishan ([16]) and many other authors have stud-
ied the fixed points of random maps. Klee ([15]) initiated to study the problem
of determining, how near certain mappings come to having a fixed point. This
problem is called “minimal displacement” and is meaningful in situations where
the existence of fixed point of the mapping is not known. Further results in this
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direction have been obtained by Reich ([18], [19]), Goebel et al ([8]–[10]), Furi
and Martelli ([7]), Bula ([6]) and Kirk ([14]). The aim of this paper is to study
the minimal displacement of a random variable under an α-lipschitz random
map. Suppose (Ω,Σ) is a measurable space and X is a separable metric space.
For measurable maps ζ, η: Ω → X, if a random map T : Ω×X → X satisfies the
condition d(T (ω, ζ(ω)), T (ω, η(ω))) ≤ αd(ζ(ω), η(ω)) + γ then it is proved that
inf{d(ξ(ω), T (ω, ξ(ω))} ≤ γ/(1 − α), where γ > 0, α ∈ (0, 1) and inf is taken
over all measurable maps ξ: Ω → X. Several consequences of above result are
also given.

2. Preliminaries

Let (Ω,Σ) be a measurable space (Σ – sigma algebra) and K a nonempty
subset of a metric space X. A mapping ξ: Ω → X is measurable (or random
variable) if and only if ξ−1(U) ∈ Σ for each open subset U of X. The mapping
T : Ω×K → X is a random map if and only if for each fixed x ∈ K, the mapping
T ( · , x): Ω → X is measurable. A measurable mapping ξ: Ω → X is a random
fixed point of the random map T : Ω ×K → X if and only if T (ω, ξ(ω)) = ξ(ω)
for each ω ∈ Ω. The random map T : Ω×K → X is called α-lipschitz if for each
ω ∈ Ω, it satisfies d(T (ω, x), T (ω, y)) ≤ αd(x, y), for all x, y ∈ K. We denote by
M(Ω, X) the set of all measurable functions from Ω into a metric space X. For
a subset K of X, let diam (K) denote the diameter of K, B(x0; r) the spherical
ball centred at x0 with radius r i.e. B(x0; r) = {x ∈ X : d(x0, x) ≤ r}, r(K) the
Chebyshev radius of K i.e. r(K) = infx∈K supy∈K d(x, y) and Tn(ω, x) the nth
iterate T (ω, T (w, T (w, . . . , T (ω, x) . . . ))) of T .

For more details and other related results we refer to [1], [4], [5], [10].

3. Minimal displacement

Theorem 3.1. Let K be a nonempty bounded closed convex subset of a sep-
arable Banach space X and α ≥ 1. If T : Ω ×K → K is an α-lipschitz random
map then

(1) inf{‖ξ(w)− T (w, ξ(w))‖ : ξ ∈ M(Ω,K)} ≤ r(K)
(

1− 1
α

)
for each ω ∈ Ω.

Proof. Let ε > 0 and select η ∈ M(Ω,K) such that K ⊂ B(η(w); r(K)+ε).
Defining Tε: Ω×K → K by

Tε(w, x) =
[
1− 1

α + ε

]
η(w) +

1
α + ε

T (w, x).

Since T is α-lipschitzian. Therefore Tε is α/(α + ε)-lipschitzian.
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Here Tε is a random contraction mapping which has a unique random fixed
point ξε ∈ M(Ω, k). Thus

‖ξε(w) − T (w, ξε(w))‖
= ‖Tε(w, ξε(w))− T (w, ξε(w))‖

=
∥∥∥∥[

1− 1
α + ε

]
η(w) +

1
α + ε

T (w, ξε(w))− T (w, ξε(w))
∥∥∥∥

=
(

1− 1
α + ε

)
‖η(w)− T (w, ξε(w))‖ ≤

(
1− 1

α + ε

)
(r(K) + ε).

Since X is a separable Banch space, therefore by letting ε → 0, we obtain

inf {‖ξ(w)− T (w, ξ(w))‖ : ξ ∈ M(Ω,K)} ≤ r(K)
(

1− 1
α

)
. �

Corollary 3.2. Let B(0; 1) be the unit ball in a separable Banach space X.
If T : Ω×B(0; 1) → B(0; 1), is an α-lipschitz random map then

Inf {‖ξ(w)− T (w, ξ(w))‖ : ξ ∈ M(Ω, k)} ≤ α− 1
α

.

Definition 3.3. Let (X, d) be a metric space. A random map T : Ω×X → X

is said to be γ-random contraction with contractive constant α, γ > 0 if there
exists α ∈ (0, 1) such that, for each ξ, η ∈ M(Ω, X),

(2) d(T (w, ξ(w)), T (w, η(w))) ≤ αd(ξ(w), η(w)) + γ,

for all ω ∈ Ω.

If α ∈ (0, 1) and ` ∈ (α, 1), then for each ξ, η ∈ M(Ω, X) and ω ∈ Ω,

αd(ξ(w), η(w)) + γ ≤ `d(ξ(w), η(w))

if and only if
d(ξ(w), η(w)) ≥ γ

`− α
.

Example 3.4. Consider R with usual metric and (Ω,Σ) = R with Lebesgue
measure. The random Dirichlet map T : Ω×R → R defined for all x ∈ R, ω ∈ Ω,
by

T (ω, x) =

{
1 x ∈ Q,

0 otherwise,
is 1-random contraction.

Definition 3.5. Let (X, d) be a metric space. A random map T : Ω×X → X

is said to be a h`-random contractive if for h > 0, ` ∈ (0, 1) and ω ∈ Ω,

(3) d(T (w, ξ(w)), T (w, η(w)) ≤ `max{d(ξ(w), η(w)), h},

where ξ, η ∈ M(Ω, X).
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Theorem 3.6. Let (X, d) be a separable metric space. If T : Ω×X → X is
a γ-random contraction with contractive constant α ∈ (0, 1), then T is h` random
contractive for h = γ/(`− α) and ` ∈ (α, 1).

Proof. If for each ω ∈ Ω, d(ξ(w), η(w)) ≥ h then

d(T (w, ξ(w)), T (w, η(w))) ≤ αd(ξ(w), η(w)) + γ ≤ `d(ξ(w), η(w)).

Otherwise,

d(T (w, ξ(w)), T (w, η(w))) ≤ αd(ξ(w), η(w)) + γ < αh + γ = `h. �

Theorem 3.7. Let (X, d) be a separable metric space. If T : Ω×X → X is
a γ-random contraction with contractive constant α, then

(4) inf{d(ξ(w), T (w, ξ(w))) : ξ ∈ M(Ω, X)} ≤ γ

1− α
,

for each ω ∈ Ω.

Proof. Let ` ∈ (α, 1), h(`) = γ/(`− α) and let ξ ∈ M(Ω, X). Suppose

d(Tn(w, ξ(w)), Tn+1(w, ξ(w))) ≥ h(`), for n = 1, 2, . . .

Inequality (4), implies that {Tn(w, ξ(w))} is a Cauchy sequence and clearly
this leads to a contradiction therefore for some n,

d(Tn(w, ξ(w)), Tn+1(w, ξ(w))) ≤ h(`).

Since ` ∈ (α, 1), and X is a separable metric space, hence for each ω ∈ Ω,

inf{d(ξ(w), T (w, ξ(w))) : ξ ∈ M(Ω, X)} ≤ γ

1− α
. �

Definition 3.8. Let (X, d) be a metric space. A random mapping T : Ω ×
X → X is said to be h-nonexponsive if for ξ, η ∈ M(Ω, X),

(5) d(T (w, ξ(w)), T (w, η(w))) ≤ max{d(ξ(w), η(w)), h},

for each ω ∈ Ω.

Theorem 3.9. If K is a nonempty bounded closed convex subset of a sepa-
rable Banach space X and if T : Ω×K → K is h-nonexpansive random mapping,
then

Inf {‖ξ(w)− T (w, ξ(w))‖ : ξ ∈ M(Ω, X)} ≤ h,

for each ω ∈ Ω.

Proof. Let δ ∈ M(Ω, X). For t ∈ (0, 1), define

Tt(w, ξ(w)) = (1− t)δ(w) + tT (w, ξ(w))

for w ∈ Ω and ξ ∈ M(Ω, X).
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Then Tt is ht-random contractive for each t ∈ (0, 1). It further implies that
for each such t there exists ξt ∈ M(Ω, X) such that

(6) ‖ξt(w)− Tt(w, ξt(w))‖ ≤ th.

But

‖ξt(w)−T (w, ξt(w))‖
= ‖ξt(w)− tT (w, ξt(w)− (1− t)T (w, ξt(w))‖
= ‖ξt(w)− Tt(w, ξt(w)) + (1− t)δ(w)− (1− t)T (w, ξt(w))‖
≤ ‖ξt(w)− Tt(w, ξt(w))‖+ (1− t)‖δ(w)− T (w, ξt(w))‖.

Since K is a bounded subset of a separable Banach space X, therefore letting
t → 1−, we obtain by using inequality (6), for each w ∈ Ω,

Inf {‖ξ(w)− T (w, ξ(w))‖ : ξ ∈ M(Ω, X)} ≤ h. �

Theorem 3.10. Suppose K is a nonempty bounded closed convex subset of
a separable Banach space X. For ξ, η ∈ M(Ω,K), suppose T : Ω × K → K

satisfies

(7) ‖T (w, ξ(w))− T (w, η(w))‖ ≤ h‖ξ(w)− η(w)‖p,

for some h, p ∈ (0, 1). Then, for each ω ∈ Ω,

Inf {‖ξ(w)− T (w, ξ(w))‖ : ξ ∈ M(Ω,K)} ≤ h1/(1−p).

Proof. Since h ∈ (0, 1), Theorem 3.9 implies that there exists ξ ∈ M(Ω,K)
such that

‖ξ(w)− T (w, ξ(w))‖ < 1,

for each ω ∈ Ω. Thus,

‖T (w, ξ(w))− T 2(w, ξ(w))‖ ≤ h‖ξ(w)− T (w, ξ(w)‖p < h,

for each ω ∈ Ω. From inequality (7), we have

‖T 2(w, ξ(w))− T 3(w, ξ(w))‖ ≤ h‖T (w, ξ(w)− T 2(w, ξ(w))‖p < h1+p,

for each ω ∈ Ω. By induction, we obtain

‖Tn+1(w, ξ(w))− Tn+2(w, ξ(w))‖ < h(1+p+...+pn),

for each ω ∈ Ω. Therefore,

lim
n→∞

‖Tn+1(w, ξ(w))− Tn+2(w, ξ(w))‖ ≤ lim
n→∞

h(1+p+...+pn) = h1/(1−p).

Hence, for each ω ∈ Ω,

Inf {‖ξ(w)− T (w, ξ(w))‖ : ξ ∈ M(Ω, k)} ≤ h1/(1−p). �
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Remark 3.11. (i) It will be of great interest to find for which sets or spaces
is the estimate (1) sharp.

(ii) The condition (7) is random analogue of the famous Holder condition.
If p = 1 and h < 1 then these are random contraction mappings which are well
known to have a unique random fixed points (see e.g. [22], [11], [12], [1]). For
p = 1 and h = 1 these are called nonexpansive random maps and they also have
an extensive random fixed point theory (see e.g. [24], [2], [16]).

(iii) The condition of h-nonexpansive (5) is much more general than Holder
condition (7) for 0 < h, p ≤ 1.
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