TWIN POSITIVE PERIODIC SOLUTIONS OF SECOND ORDER SINGULAR DIFFERENTIAL SYSTEMS

Xiaoning Lin - Daqing Jiang - Donal O’Regan - Ravi P. Agarwal

Abstract

In this paper, we study positive periodic solutions to singular second order differential systems. It is proved that such a problem has at least two positive periodic solutions. The proof relies on a nonlinear alternative of Leray-Schauder type and on Krasnosel'skiĭ fixed point theorem on compression and expansion of cones.

1. Introduction

In this paper, we consider the second order system

$$
\left\{\begin{align*}
x^{\prime \prime}+a_{1}(t) x & =f_{1}(x, y) \tag{1.1}\\
y^{\prime \prime}+a_{2}(t) y & =f_{2}(x, y)
\end{align*}\right.
$$

The type of nonlinearity $f_{i}(x, y), i=1,2$ we are mainly interested in is when $f_{i}(x, y)$ has a singularity near $(x, y)=(0,0)$, although the main results of this paper apply also to a more general type of nonlinearity. We discuss the existence and multiplicity of positive periodic solutions of (1.1), i.e. positive solutions of (1.1) satisfying the periodic boundary condition

$$
\begin{equation*}
x(0)=x(1), \quad x^{\prime}(0)=x^{\prime}(1), \quad y(0)=y(1), \quad y^{\prime}(0)=y^{\prime}(1) . \tag{1.2}
\end{equation*}
$$

[^0]Recently, the singular periodic problems have been studied extensively; see [1]-[5], [7]-[9], [11]-13] and the references therein. Motivated by [13], [14] we study (1.1) and establish the existence of two different positive periodic solutions to (1.1); see Theorems 3.1 and 3.3. The existence of the first solution is obtained using a nonlinear alternative of Leray-Schauder, and the second one is found using a fixed point theorem in cones.

2. Preliminaries and notation

Let us consider the linear periodic problem

$$
\left\{\begin{array}{l}
x^{\prime \prime}+a(t) x=0 \tag{2.1}\\
x(0)=x(1), x^{\prime}(0)=x^{\prime}(1)
\end{array}\right.
$$

In this section, we assume conditions under which the only solution of problem (2.1) is the trivial one. As a consequence of Fredholm's alternative, the nonhomogeneous problem

$$
\left\{\begin{array}{l}
x^{\prime \prime}+a(t) x=h(t) \\
x(0)=x(1), x^{\prime}(0)=x^{\prime}(1)
\end{array}\right.
$$

admits a unique solution that can be written as

$$
x(t)=\int_{0}^{T} G(t, s) h(s) d s
$$

where $G(t, s)$ is the Green's function of problem (2.1). The following two results follow from [13] directly (We write $a \succ 0$ if $a \geq 0$ almost everywhere on [0, 1] and is positive on a set of positive measure).

Lemma 2.1. If $a(t) \prec 0$, then $G(t, s)<0$ for all $(t, s) \in[0,1] \times[0,1]$.
If on the contrary $a(t) \succ 0$, the following best Sobolev constants will be used

$$
K(q)= \begin{cases}\frac{2 \pi}{q}\left(\frac{2}{2+q}\right)^{1-2 / q}\left(\frac{\Gamma(1 / q)}{\Gamma(1 / 2+1 / q)}\right)^{2} & \text { if } 1 \leq q<\infty \\ 4 & \text { if } q=\infty\end{cases}
$$

where Γ is the Gamma function. For a given p, let us define

$$
p^{*}= \begin{cases}\frac{p}{p-1} & \text { if } 1 \leq q<\infty \\ 1 & \text { if } q=\infty\end{cases}
$$

Lemma 2.2. Assume that $a(t) \succ 0$ and $a \in L^{p}(0,1)$ for some $1 \leq p \leq \infty$. If

$$
\begin{equation*}
\|a\|_{p}<K\left(2 p^{*}\right) \tag{2.2}
\end{equation*}
$$

then $G(t, s)>0$ for all $(t, s) \in[0,1] \times[0,1]$.
REmARK 2.3. If $p=\infty$ then hypothesis (2.2) is equivalent to $\|a\|_{\infty}<(\pi)^{2}$, which is a well-known criterion for the maximum principle used in the literature.

Let us define the sets of functions

$$
\begin{aligned}
& \Lambda^{-}=\left\{a \in L^{1}(0,1): a \prec 0\right\} \\
& \Lambda^{+}=\left\{a \in L^{1}(0,1): a \succ 0,\|a\|_{p}<K\left(2 p^{*}\right) \text { for some } 1 \leq p \leq \infty\right\}
\end{aligned}
$$

From the above, it is known that if $a \in \Lambda^{+} \cup \Lambda^{-}$, then problem (2.1) has a Green's function $G(t, s)$ with a definite sign.

REMARK 2.4. As in [9], we can compute the maximum (M) and the minimum (m) of the Green's function when $a(t)=k^{2}<(\pi)^{2}$, and we obtain

$$
M=\frac{1}{2 k \sin \left(\frac{k}{2}\right)}, \quad m=\frac{1}{2 k} \cot \left(\frac{k}{2}\right) .
$$

Throughout this paper, we assume that $G_{i}(t, s), i=1,2$, are the Green functions for the problems

$$
\begin{align*}
& x^{\prime \prime}+a_{1}(t) x=h_{1}(t), x(0)=x(1), \\
& y^{\prime \prime}+a_{2}(t) y=h_{2}(t), y(0)=y(1), \tag{2.3}\\
& y^{\prime}(0)=y^{\prime}(1) \\
& \prime
\end{align*}
$$

i.e.

$$
\begin{aligned}
& x(t)=\left(L h_{1}\right)(t)=\int_{0}^{1} G_{1}(t, s) h_{1}(s) d s \\
& y(t)=\left(L h_{2}\right)(t)=\int_{0}^{1} G_{2}(t, s) h_{2}(s) d s
\end{aligned}
$$

We also assume that
(A) $a_{i} \in \Lambda^{+} \cup \Lambda^{-}$.

Under hypothesis (A), we always denote
(2.4) $\quad A_{i}=\min _{0 \leq s, t \leq 1}\left|G_{i}(t, s)\right|, \quad B_{i}=\max _{0 \leq s, t \leq 1}\left|G_{i}(t, s)\right|, \quad \sigma_{i}=A_{i} / B_{i}, \quad i=1,2$.

Thus $B_{i}>A_{i}>0$ and $0<\sigma_{i}<1$. We also use $w_{i}(t)$ to denote the unique periodic solution of (2.3) with $h_{i}(t)=1$. In particular, $A_{i} \leq\left\|w_{i}\right\|_{\infty} \leq B_{i}$.

Here and henceforth, we denote the norm of $(x, y) \in R^{2}$ by $\|(x, y)\|=$ $\max \{\|x\|,\|y\|\}$, and write $\left(x_{1}, y_{1}\right)>\left(x_{2}, y_{2}\right)\left(\left(x_{1}, y_{1}\right) \geq\left(x_{2}, y_{2}\right)\right)$, if $\left(x_{1}-x_{2}, y_{1}-\right.$ $\left.y_{2}\right) \in \bar{R}_{+}^{2}\left(\left(x_{1}-x_{2}, y_{1}-y_{2}\right) \in R_{+}^{2}\right), \bar{R}_{+}=(0, \infty)$.

Further, we say that a vector (x, y) is positive (nonnegative) if $(x, y)>(0,0)$ $((x, y) \geq(0,0))$.

In order to get the first periodic solution, we need the following nonlinear alternative of Laray-Schauder (see [11]).

Theorem 2.5. Assume Ω is a relatively open subset of a convex set K in a normed space X. Let $A: \bar{\Omega} \rightarrow K$ be a continuous and compact map with $0 \in \Omega$. Then either
$\left(\mathrm{A}_{1}\right)$ A has a fixed point in $\bar{\Omega}$, or
$\left(\mathrm{A}_{2}\right)$ there is a $x \in \partial \Omega$ and $a \lambda<1$ such that $x=\lambda A(x)$.

To obtain a second periodic solution of (1.1), we need the following well known fixed point theorem of compression and expansion of cones [10].

Theorem 2.6 ([10]). Let X be a Banach space and $K(\subset X)$ be a cone. Assume that Ω_{1}, Ω_{2} are open subsets of X with $0 \in \Omega_{1}, \bar{\Omega}_{1} \subset \Omega_{2}$, and let

$$
T: K \cap\left(\bar{\Omega}_{2} \backslash \Omega_{1}\right) \rightarrow K
$$

be a continuous and compact operator such that either
(a) $\|T u\| \geq\|u\|, u \in K \cap \partial \Omega_{1}$ and $\|T u\| \leq\|u\|$, $u \in K \cap \partial \Omega_{2}$, or
(b) $\|T u\| \leq\|u\|, u \in K \cap \partial \Omega_{1}$ and $\|T u\| \geq\|u\|, u \in K \cap \partial \Omega_{2}$.

Then T has a fixed point in $K \cap\left(\bar{\Omega}_{2} \backslash \Omega_{1}\right)$.
In the applications below, we take $X_{1}=C[0,1]$ with the supremum norm $\|\cdot\|$ and define
$K_{i}=\left\{x \in X: x(t) \geq 0\right.$ for all $t \in[0,1]$ and $\left.\min _{0 \leq t \leq 1} x(t) \geq \sigma_{i}\|x\|\right\}, \quad i=1,2$
where σ_{i} is as in (2.4). Let $X=X_{1} \times X_{1}, K=K_{1} \times K_{2}$, then $(X,\|\cdot\|)$ is a Banach space, and K is a cone in X.

Suppose now that $F_{i}: R \times R \rightarrow R$ is a continuous function and

$$
G_{i}(t, s) F_{i}(x, y) \geq 0 \quad \text { for all }(t, s) \in[0,1] \times[0,1],(x, y) \in R^{2}
$$

Define an operator $T: X \rightarrow X$ by

$$
\begin{equation*}
T(x, y)=\left(\int_{0}^{1} G_{1}(t, s) F_{1}(x(s), y(s)) d s, \int_{0}^{1} G_{2}(t, s) F_{2}(x(s), y(s)) d s\right) \tag{2.5}
\end{equation*}
$$

for $(x, y) \in X$.
Lemma 2.7. T is well defined and maps X into K. Moreover, T is continuous and completely continuous.

Proof. From [11], it is easy to see that T is continuous and completely continuous. Next, we show $T: X \rightarrow K$. Since

$$
\begin{aligned}
\int_{0}^{1} G_{1}(t, s) F_{1}(x(s), y(s)) d s & =\int_{0}^{1}\left|G_{1}(t, s) F_{1}(x(s), y(s))\right| d s \\
& \geq A_{1} \int_{0}^{1}\left|F_{1}(x(s), y(s))\right| d s
\end{aligned}
$$

and

$$
\int_{0}^{1}\left|G_{1}(t, s) F_{1}(x(s), y(s))\right| d s \leq B_{1} \int_{0}^{1}\left|F_{1}(x(s), y(s))\right| d s
$$

we have

$$
\left\|\int_{0}^{1}\left|G_{1}(t, s) F_{1}(x(s), y(s))\right| d s\right\| \leq B_{1} \int_{0}^{1}\left|F_{1}(x(s), y(s))\right| d s
$$

and also

$$
\begin{aligned}
\int_{0}^{1}\left|G_{1}(t, s) F_{1}(x(s), y(s))\right| d s & \geq A_{1} \int_{0}^{1}\left|F_{1}(x(s), y(s))\right| d s \\
& \geq \sigma_{1}\left\|\int_{0}^{1}\left|G_{1}(t, s) F_{1}(x(s), y(s))\right| d s\right\|
\end{aligned}
$$

i.e.

$$
\int_{0}^{1} G_{1}(t, s) F_{1}(x(s), y(s)) d s \geq \sigma_{1}\left\|\int_{0}^{1} G_{1}(t, s) F_{1}(x(s), y(s)) d s\right\|
$$

Similarly

$$
\int_{0}^{1} G_{2}(t, s) F_{2}(x(s), y(s)) d s \geq \sigma_{2}\left\|\int_{0}^{1} G_{2}(t, s) F_{2}(x(s), y(s)) d s\right\|
$$

so, $T(x, y) \in K_{1} \times K_{2}$.
Throughout this paper, we make the following hypotheses:
$\left(\mathrm{H}_{1}\right) G_{i}(t, s) f_{i}(x, y)>0$ for all $(t, s) \in[0,1] \times[0,1],(x, y) \in[0, \infty)^{2} \backslash(0,0)$.
$\left(\mathrm{H}_{2}\right)\left|f_{i}(x, y)\right| \in C\left([0, \infty)^{2} \backslash(0,0),(-\infty, \infty)\right)$ and there exist continuous, positive functions $g_{i}(x, y)$ and $h_{i}(x, y)$ on $[0, \infty)^{2} \backslash(0,0)$ such that

$$
\left|f_{i}(x, y)\right|=g_{i}(x, y)+h_{i}(x, y) \quad \text { for all }(x, y) \in[0, \infty)^{2} \backslash(0,0), i=1,2
$$

with $g_{i}>0$ continuous and nonincreasing on $[0, \infty)^{2} \backslash(0,0), h_{i} \geq 0$ continuous on $[0, \infty)^{2}$ and h_{i} / g_{i} nondecreasing on $[0, \infty)^{2} \backslash(0,0)$, for $i=1,2$.
$\left(\mathrm{H}_{3}\right)$ There exists a positive r such that

$$
\begin{aligned}
& \frac{r}{g_{1}\left(\sigma_{1} r, 0\right)\left(1+h_{1}(r, r) / g_{1}(r, r)\right)} \geq\left\|\omega_{1}\right\| \\
& \frac{r}{g_{2}\left(0, \sigma_{2} r\right)\left(1+h_{2}(r, r) / g_{2}(r, r)\right)} \geq\left\|\omega_{2}\right\|
\end{aligned}
$$

$\left(\mathrm{H}_{4}\right)$ There exists a positive $R>r$ such that

$$
\begin{aligned}
& \frac{R}{\sigma_{1} g_{1}(R, R)\left(1+h_{1}\left(\sigma_{1} R, 0\right) / g_{1}\left(\sigma_{1} R, 0\right)\right)} \leq\left\|\omega_{1}\right\|, \\
& \frac{R}{\sigma_{2} g_{2}(R, R)\left(1+h_{2}\left(0, \sigma_{2} R\right) / g_{2}\left(0, \sigma_{2} R\right)\right)} \leq\left\|\omega_{2}\right\| .
\end{aligned}
$$

3. Main result and proof

Theorem 3.1. Suppose that a_{i} satisfies (A) and let $\left(\mathrm{H}_{1}\right)-\left(\mathrm{H}_{3}\right)$ hold. Then the problem (1.1) has at least one positive periodic solution.

Proof. The existence is proved by using the Leray-Schauder alternative principle, together with a truncation technique.

Let $N_{0}=\left\{n_{0}, n_{0}+1, \ldots\right\}$, where $n_{0} \in\{1,2, \ldots\}$ is chosen such that

$$
\begin{aligned}
& \left\|\omega_{1}\right\| g_{1}\left(\sigma_{1} r, 0\right)\left(1+\frac{h_{1}(r, r)}{g_{1}(r, r)}\right)+\frac{1}{n_{0}}<r \\
& \left\|\omega_{2}\right\| g_{2}\left(0, \sigma_{2} r\right)\left(1+\frac{h_{2}(r, r)}{g_{2}(r, r)}\right)+\frac{1}{n_{0}}<r
\end{aligned}
$$

see $\left(\mathrm{H}_{3}\right)$. Fix $n \in N_{0}$. Consider the systems

$$
\left\{\begin{align*}
x^{\prime \prime}+a_{1}(t) x & =\lambda f_{1}^{n}(x, y)+a_{1}(t) / n \tag{3.1}\\
y^{\prime \prime}+a_{2}(t) y & =\lambda f_{2}^{n}(x, y)+a_{2}(t) / n
\end{align*}\right.
$$

where $\lambda \in[0,1]$ and $\left|f_{i}^{n}(x, y)\right|=g_{i}^{*}(x, y)+h_{i}(x, y)$. Here

$$
g_{1}^{*}(x, y)= \begin{cases}g_{1}(x, y) & \text { for } x>1 / n \\ g_{1}(1 / n, y) & \text { for } x \leq 1 / n\end{cases}
$$

and

$$
g_{2}^{*}(x, y)= \begin{cases}g_{2}(x, y) & \text { for } y>1 / n \\ g_{2}(x, 1 / n) & \text { for } y \leq 1 / n\end{cases}
$$

Problem (3.1)-(1.2) is equivalent to the following fixed point problem in $C[0,1] \times C[0,1]$

$$
\begin{equation*}
(x, y)=\lambda T_{n}(x, y)+\left(\frac{1}{n}, \frac{1}{n}\right) \tag{3.2}
\end{equation*}
$$

where T_{n} denotes the operator defined by (2.5), with $F_{i}(x, y)$ replaced by $f_{i}^{n}(x, y)$.
We claim that any fixed point x of (3.2) for any $\lambda \in[0,1]$ must satisfy $\|(x, y)\| \neq r$. If not, assume that (x, y) is a solution of (3.2) for some $\lambda \in[0,1]$ such that $\|(x, y)\|=r$. Since

$$
\|(x, y)\|=\max (\|x\|,\|y\|)
$$

without loss of generality, we assume that $\|x\|=r$. Note that $f_{i}^{n}(x, y) \geq 0$. By Lemma 2.7, for all t,

$$
x(t) \geq \frac{1}{n} \quad \text { and } \quad r \geq x(t) \geq \frac{1}{n}+\sigma_{1}\left\|x-\frac{1}{n}\right\|
$$

By the choice of $n_{0}, 1 / n \leq 1 / n_{0}<r$.
Hence, for all $t, x(t) \geq 1 / n, y(t) \geq 1 / n$ and

$$
\begin{equation*}
r \geq x(t) \geq \frac{1}{n}+\sigma_{1}\left\|x-\frac{1}{n}\right\| \geq \frac{1}{n}+\sigma_{1}\left(r-\frac{1}{n}\right)>\sigma_{1} r . \tag{3.3}
\end{equation*}
$$

Note that

$$
\int_{0}^{1}\left|G_{1}(t, s)\right| d s=\left|\int_{0}^{1} G_{1}(t, s) d s\right|=\left|\omega_{1}(t)\right|
$$

Using (3.3), we have from condition $\left(\mathrm{H}_{2}\right)$, for all t,

$$
\begin{align*}
x(t) & =\lambda \int_{0}^{1} G_{1}(t, s) f_{1}^{n}(x(s), y(s)) d s+\frac{1}{n} \tag{3.4}\\
& \leq \int_{0}^{1}\left|G_{1}(t, s) \| f_{1}(x(s), y(s))\right| d s+\frac{1}{n} \\
& =\int_{0}^{1}\left|G_{1}(t, s)\right| g_{1}(x(s), y(s))\left(1+\frac{h_{1}(x(s), y(s))}{g_{1}(x(s), y(s))}\right) d s+\frac{1}{n} \\
& \leq g_{1}\left(\sigma_{1} r, 0\right)\left(1+\frac{h_{1}(r, r)}{g_{1}(r, r)}\right) \int_{0}^{1}\left|G_{1}(t, s)\right| d s+\frac{1}{n_{0}} \\
& \leq\left\|\omega_{1}\right\| g_{1}\left(\sigma_{1} r, 0\right)\left(1+\frac{h_{1}(r, r)}{g_{1}(r, r)}\right)+\frac{1}{n_{0}} .
\end{align*}
$$

Therefore,

$$
r=\|x\| \leq\left\|\omega_{1}\right\| g_{1}\left(\sigma_{1} r, 0\right)\left(1+\frac{h_{1}(r, r)}{g_{1}(r, r)}\right)+\frac{1}{n_{0}}
$$

This is a contradiction to the choice of n_{0} and the claim is proved.
From this claim, the nonlinear alternative of Leray-Schauder guarantees that (3.2) (with $\lambda=1$) has a fixed point, denoted by $\left(x_{n}, y_{n}\right)$, in $B_{r}=\{(x, y)$: $\|(x, y)\|<r\}$, i.e. (3.1) (with $\lambda=1$) has a periodic solution $\left(x_{n}, y_{n}\right)$ with $\left\|\left(x_{n}, y_{n}\right)\right\|<r$. Since $\left(x_{n}, y_{n}\right)$ satisfies $(3.2),\left(x_{n}, y_{n}\right) \geq(1 / n, 1 / n)$ for all t. Thus $\left(x_{n}, y_{n}\right)$ is a positive periodic solution of (3.1) (with $\lambda=1$).

Next we claim that these solutions $\left(x_{n}, y_{n}\right)$ have a uniform positive lower bound, i.e. there exists a constant vector $\delta=\left(\delta_{1}, \delta_{2}\right), \delta>(0,0)$, independent of $n \in N_{0}$, such that

$$
\begin{equation*}
\min _{t}\left(x_{n}(t), y_{n}(t)\right) \geq \delta \tag{3.5}
\end{equation*}
$$

for all $n \in N_{0}$. To see this,we know from $\left(\mathrm{H}_{1}\right)$ that

$$
\begin{aligned}
x_{n}(t) & =\int_{0}^{1} G_{1}(t, s) f_{1}^{n}\left(x_{n}(s), y_{n}(s)\right) d s+\frac{1}{n} \\
& =\int_{0}^{1}\left|G_{1}(t, s) f_{1}\left(x_{n}(s), y_{n}(s)\right)\right| d s+\frac{1}{n} \\
& \geq \int_{0}^{1}\left|G_{1}(t, s)\right| g_{1}\left(x_{n}(s), y_{n}(s)\right) d s+\frac{1}{n}>A g_{1}(r, r)=: \delta_{1} .
\end{aligned}
$$

Similarly $y_{n}(t)>A_{2} g_{2}(r, r)=\delta_{2}$, so we have $\min _{t}\left(x_{n}(t), y_{n}(t)\right) \geq \delta$.
To establish the existence to the original system(1.1), we need the following fact

$$
\begin{equation*}
\left\|\left(x_{n}^{\prime}, y_{n}^{\prime}\right)\right\| \leq H \tag{3.6}
\end{equation*}
$$

for some constant $H>0$ and for all $n \geq n_{0}$. First, we claim there is H_{1}, such that $\left\|x_{n}^{\prime}\right\| \leq H_{1}$. First from the boundary condition, $x_{n}^{\prime}\left(t_{0}\right)=0$ for some $t_{0} \in[0,1]$.

Integrating the first equation of (3.1) (with $\lambda=1$) from 0 to 1 , we obtain

$$
\int_{0}^{1} a_{1}(t)\left(x_{n}(t)-\frac{1}{n}\right) d t=\int_{0}^{1} f_{1}^{n}\left(x_{n}(s), y_{n}(s)\right) d s
$$

Since $x_{n}(t) \geq 1 / n$ and $a_{1}(t) f_{1}\left(x_{n}(s), y_{n}(s)\right)>0$, then

$$
\begin{aligned}
\left\|x_{n}^{\prime}\right\| & =\max _{0 \leq t \leq 1}\left|x_{n}^{\prime}(t)\right|=\max _{0 \leq t \leq 1}\left|\int_{t_{0}}^{t} x_{n}^{\prime \prime}(s) d s\right| \\
& =\max _{0 \leq t \leq 1}\left|\int_{t_{0}}^{t}\left[f_{1}^{n}\left(x_{n}(s), y_{n}(s)\right)+a_{1}(s)\left(\frac{1}{n}-x_{n}(s)\right)\right] d s\right| \\
& \leq \int_{0}^{1}\left|f_{1}^{n}\left(x_{n}(s), y_{n}(s)\right)\right|+\left|a_{1}(s)\left(x_{n}(s)-\frac{1}{n}\right)\right| d s \\
& =2 \int_{0}^{1}\left|a_{1}(s) x_{n}(s)\right| d s<2 r\left\|a_{1}\right\|_{1}=: H_{1} .
\end{aligned}
$$

Similarly, we have $\left\|y_{n}^{\prime}\right\| \leq H_{2}$.
Let $H=\max \left\{H_{1}, H_{2}\right\}$, so $\left\|\left(x_{n}^{\prime}, y_{n}^{\prime}\right)\right\| \leq H$.
Now $\left\|\left(x_{n}, y_{n}\right)\right\|<r$ and (3.6) show that $\left\{\left(x_{n}, y_{n}\right)\right\}_{n \in N_{0}}$ is a bounded and equi-continuous family on $[0,1]$. The Arzela-Ascoli Theorem guarantees that $\left\{\left(x_{n}, y_{n}\right)\right\}_{n \in N_{0}}$ has a subsequence, $\left\{\left(x_{n_{k}}, y_{n_{k}}\right)\right\}_{k \in N}$, converging uniformly on $[0,1]$ to a $(x, y) \in C[0,1] \times C[0,1]$. From $\left\|\left(x_{n}, y_{n}\right)\right\|<r$ and $(3.5),(x, y)$ satisfies $\delta \leq(x(t), y(t)) \leq(r, r)$ for all t. Moreover, $\left(x_{n_{k}}, y_{n_{k}}\right)$ satisfies the integral equation

$$
\left\{\begin{array}{l}
x_{n_{k}}(t)=\int_{0}^{1} G_{1}(t, s) f_{1}\left(x_{n_{k}}(s), y_{n_{k}}(s)\right) d s+\frac{1}{n_{k}} \\
y_{n_{k}}(t)=\int_{0}^{1} G_{2}(t, s) f_{2}\left(x_{n_{k}}(s), y_{n_{k}}(s)\right) d s+\frac{1}{n_{k}}
\end{array}\right.
$$

Letting $k \rightarrow \infty$, we arrive at

$$
(x(t), y(t))=\left(\int_{0}^{1} G_{1}(t, s) f_{1}(x(s), y(s)) d s, \int_{0}^{1} G_{2}(t, s) f_{2}(x(s), y(s)) d s\right)
$$

where the uniform continuity of $f_{i}(x, y)$ on $\left[\delta_{1}, r\right] \times\left[\delta_{2}, r\right]$ is used. Therefore, (x, y) is a positive periodic solution of (1.1).

Finally it is easy to see that $\|(x, y)\|<r$, by noting that if $\|(x, y)\|=r$ an argument similar to the proof of the first claim will yield a contradiction.

Example 3.2. Consider the singular problem
$(3.7) \begin{cases}x^{\prime \prime}(t)+a_{1}(t) x(t)=\sqrt{\left(x^{2}+y^{2}\right)^{-\alpha}}+\mu \sqrt{\left(x^{2}+y^{2}\right)^{\beta}}, \\ y^{\prime \prime}(t)+a_{2}(t) y(t)=-\sqrt{\left(x^{2}+y^{2}\right)^{-\alpha}}-\mu \sqrt{\left(x^{2}+y^{2}\right)^{\beta}}, & 0<t<1, \\ x(0)=x(1), x^{\prime}(0)=x^{\prime}(1), y(0)=y(1), y^{\prime}(0)=y^{\prime}(1), \quad \alpha>0, \beta \geq 0,\end{cases}$
where $a_{1} \in \Lambda^{+}, a_{2} \in \lambda^{-}$. Then (3.7) has at least one positive periodic solution for each $0<\mu<\mu_{*}$, where μ_{*} is some positive constant.

We will apply Theorem 3.1 with $g_{i}=\sqrt{\left(x^{2}+y^{2}\right)^{-\alpha}}, h_{i}=\mu \sqrt{\left(x^{2}+y^{2}\right)^{\beta}}$ $(i=1,2)$. Clearly, $\left(\mathrm{H}_{1}\right)$ and $\left(\mathrm{H}_{2}\right)$ hold. Now the condition $\left(\mathrm{H}_{3}\right)$ becomes

$$
\mu<\frac{\sigma_{1}^{\alpha} \sqrt{2}^{-\alpha-\beta} r^{\alpha+1} /\left\|\omega_{1}\right\|-\sqrt{2}^{-\alpha-\beta}}{r^{\alpha+\beta}}
$$

and

$$
\mu<\frac{\sigma_{2}^{\alpha} \sqrt{2}^{-\alpha-\beta} r^{\alpha+1} /\left\|\omega_{2}\right\|-\sqrt{2}^{-\alpha-\beta}}{r^{\alpha+\beta}}
$$

for some $r>0$, so (3.7) has at least one positive period solution $\left(x_{1}, y_{1}\right)$ for $0<\mu<\mu^{*}$, if

$$
\begin{aligned}
& \mu^{*}=\max \left\{\sup _{r>0} \frac{\sigma_{1}^{\alpha} \sqrt{2}^{-\beta} r^{\alpha+1} /\left\|\omega_{1}\right\|-\sqrt{2}^{-\alpha-\beta}}{r^{\alpha+\beta}},\right. \\
&\left.\sup _{r>0} \frac{\sigma_{2}^{\alpha} \sqrt{2}^{-\beta} r^{\alpha+1} \mid \omega_{2} \|-\sqrt{2}^{-\alpha-\beta}}{r^{\alpha+\beta}}\right\} .
\end{aligned}
$$

We remark here that $\mu^{*}=\infty$ if $0 \leq \beta<1$, and $\mu^{*}<\infty$ if $\beta>1$.
Theorem 3.3. Suppose that a_{i} satisfies (A) and let $\left(\mathrm{H}_{1}\right)-\left(\mathrm{H}_{4}\right)$ hold. Then, besides the periodic solution x constructed in Theorem 3.1, the problem (1.1) has another positive periodic solution.

Proof. First we have $\|T(x, y)\|<\|(x, y)\|$ for $(x, y) \in K \cap \partial \Omega_{1}, \Omega_{1}=B_{r}$. In fact, if $x \in K \cap \partial \Omega_{1}$, then $\|(x, y)\|=r$. Now the estimate $\|T(x, y)\|<r$ can be obtained following the ideas used to prove (3.4).

Next we show that $\|T(x, y)\| \geq\|(x, y)\|$ for $(x, y) \in K \cap \partial \Omega_{2}$, where $\Omega_{2}=$ $B_{R}=\{(x, y)\|(x, y)\|<R\}$, and R is as in $\left(\mathrm{H}_{4}\right)$. To see this, let $(x, y) \in K \cap \partial \Omega_{2}$. Then $\|(x, y)\|=R$ and without loss of generality we assume $\|x\|=R$, so $x(t) \geq$ $\sigma_{1} R$. As a result, it follows from $\left(\mathrm{H}_{2}\right)$ and $\left(\mathrm{H}_{4}\right)$ that, for $0 \leq t \leq 1$,

$$
\begin{aligned}
\int_{0}^{1} G_{1}(t, s) f_{1}(x(s), y(s)) d s & =\int_{0}^{1}\left|G_{1}(t, s)\right| g_{1}(x(s), y(s)) \frac{1+h_{1}(x(s), y(s))}{g_{1}(x(s), y(s))} d s \\
& \geq \int_{0}^{1}\left|G_{1}(t, s)\right| g_{1}(R, R) \frac{1+h_{1}\left(\sigma_{1} R, 0\right)}{g_{1}\left(\sigma_{1} R, 0\right)} d s \\
& =g_{1}(R, R) \frac{1+h_{1}\left(\sigma_{1} R, 0\right)}{g_{1}\left(\sigma_{1} R, 0\right)} \omega_{1}(t) \\
& \geq \sigma_{1}\left\|\omega_{1}\right\| g_{1}(R, R) \frac{1+h_{1}\left(\sigma_{1} R, 0\right)}{g_{1}\left(\sigma_{1} R, 0\right)} \geq R
\end{aligned}
$$

This implies $\|T(x, y)\| \geq\|(x, y)\|$.
Now Theorem 2.6 guarantees that T has a fixed point $\widetilde{(x, y)} \in K \cap\left(\bar{\Omega}_{2} \backslash \Omega_{1}\right)$. Thus $r \leq\|\widetilde{(x, y)}\| \leq R$.

By the same argument as in Theorem 3.1 we see that there exist $\left(\delta_{3}, \delta_{4}\right)>$ $(0,0)$ such that $\widetilde{(x, y)}>\left(\delta_{3}, \delta_{4}\right)$.

Let we consider (3.7) again with $\alpha>0, \beta>1$. Now the condition $\left(\mathrm{H}_{4}\right)$ becomes

$$
\begin{equation*}
\mu \geq \frac{\sigma_{1}^{-\alpha-\beta-1} \sqrt{2}^{\alpha} R^{\alpha+1} /\left\|\omega_{1}\right\|-\sigma_{1}^{-\alpha-\beta} \sqrt{2}^{-\beta}}{R^{\alpha+\beta}} \tag{3.8}
\end{equation*}
$$

and

$$
\begin{equation*}
\mu \geq \frac{\sigma_{2}^{-\alpha-\beta-1} \sqrt{2}^{\alpha} R^{\alpha+1} /\left\|\omega_{2}\right\|-\sigma_{2}^{-\alpha-\beta} \sqrt{2}^{-\beta}}{R^{\alpha+\beta}} \tag{3.9}
\end{equation*}
$$

Since $\beta>1$, the right-hand side goes to 0 as $R \rightarrow \infty$. Thus, for any given $0<\mu<\mu^{*}$, it is always possible to find a $R>r$ such that (3.8) and (3.9) are satisfied. Thus, (3.7) has an additional periodic solution $\left(x_{2}, y_{2}\right)$ such that $r<\left\|\left(x_{2}, y_{2}\right)\right\| \leq R$.

References

[1] D. Bonheure and C. De Coster, Forced singular oscillators and the method of lower and upper solutions, Topol. Methods Nonlinear Anal. (to appear).
[2] C. De Coster and P. Habets, Upper and lower solutions in the theory of ODE boundary value problems: Classical and recent results, Nonlinear Analysis and Boundary Value Problems for Ordinary Differential Equations, (F. Zanolin, ed.), CISM-ICMS, vol. 371, Springer-Verlag, New York, 1996, pp. 1-78.
[3] M. A. del Pino, R. F. Manásevich and A. Montero, T-periodic solutions for some second order differential equations with singularities, Proc. Roy. Soc. Edinburgh 120A (1992), 231-243.
[4] Y. Dong, Invariance of homotopy and an extension of a theorem by Habets-Metzen on periodic solutions of Duffing equations, Nonlinear Anal. 46 (2001), 1123-1132.
[5] L. H. Erbe and R. M. Mathsen, Positive solutions for singular nonlinear boundary value problems, Nonlinear Anal. 46 (2001), 979-986.
[6] L. H. Erbe and H. Wang, On the existence of positive solutions of ordinary differential equations,, Proc. Amer. Math. Soc. 120 (1994), 743-748.
[7] A. Fonda, Periodic solutions of scalar second order differential equations with a singularity, Mém. Classe Sci. Acad. Roy. Belgique 8-IV (1993), 68-98.
[8] P. Habets and L. Sanchez, Periodic solution of some Liénard equations with singularities, Proc. Amer. Math. Soc. 109 (1990), 1135-1144.
[9] D. Q. Jiang, On the existence of positive solutions to second order periodic BVPs, Acta Math. Sinica New Ser. 18 (1998), 31-35.
[10] M. A. Krasnosel'skiĬ, Positive Solutions of Operator Equations, Noordhoff, Groningen, 1964.
[11] D. O'Regan, Existence Theory for Nonlinear Ordinary Differential Equations, Kluwer Academic, Dordrecht, 1997.
[12] I. Rachunková, M. Tvrdý, and I. Vrkoc̆, Existence of nonnegative and nonpositive solutions for second order periodic boundary value problems, J. Differential Equations 176 (2001), 445-469.
[13] P. J. Torres, Existence of one-signed periodic solutions of some second-order differential equations via a Krasnosel'skǐ fixed point theorem, J. Differential Equations 190 (2003), 643-662.
[14] P. J. Torres and M. Zhang, A monotone iterative scheme for a nonlinear second order equation based on a generalized anti-maximum principle, Math. Nachr. 251 (2003), 101-107.

Xiaoning Lin

Department of Mathematics
Northeast Normal University
Business School of Northeast Normal University
Changchun 130024, Jilin, CHINA

Daqing Jiang
Department of Mathematics
Northeast Normal Universit
Changchun 130024, Jilin, CHINA
E-mail address: daqingjiang@vip.163.com
Donal O'Regan
Department of Mathematics
National University of Ireland
Galway, IRELAND
E-mail address: donal.oregan@nuigalway.ie
Ravi P. Agarwal
Department of Mathematical Sciences
Florida Institute of Technology
Melbourne, Florida 32901, USA
E-mail address: agarwal@fit.edu

[^0]: 2000 Mathematics Subject Classification. 34B16, 34B15.
 Key words and phrases. Singular problem, positive periodic solution, fixed point theorem in cones, Leray-Schauder alternative.

 The work was Supported by the NNSF of China.

