ADDENDA AND CORRIGENDA TO "A DIRECT TOPOLOGICAL DEFINITION OF THE FULLER INDEX FOR LOCAL SEMIFLOWS" (TOPOL. METHODS NONLINEAR ANAL. 21 (2003), 195-209)

Christian C. Fenske

Abstract

We remedy an error and simplify an argument in the article mentioned in the title.

We retain the notation of [1]. Firstly, I want to correct a well-hidden mistake in that article. Secondly, I want to show that the manifold Z_{k} is orientable if M is orientable.

In the section "Construction of nonbounding cycles" I had started from an n-dimensional orientable manifold, and, with k a large odd number, I defined a set $Z^{(k)}$ and I claimed that $Z^{(k)}$ was a manifold. But if we take open sets U and V in Ω^{\prime} such that $\left\{\left(g_{k}(x, t), t\right) \mid(x, t) \in U\right\} \cap\left\{\left(\zeta g_{k}(x, t), t\right) \mid(x, t) \in V\right\} \neq \emptyset$, then the intersection can consist only of periodic points. But the set of periodic points need not have interior points in $M \times[0, \infty)$. So in order to remedy this defect we have to choose a "fatter" set.

We start by choosing a metric d on M. Then we choose an $\varepsilon>0$ such that, for $(x, t) \in P$ and $0 \leq s \leq 2 t$, the sets $\bar{B}\left(\phi_{s} \phi_{i t / k} x ; \varepsilon\right)$ are disjoint for $i=0, \ldots, k-1$. Since P is compact there is a $\rho>0$ such that $d\left(\phi_{s} x, \phi_{s} y\right)<\varepsilon$ whenever $(x, t) \in P, 0 \leq s \leq 2 t$, and $d(x, y)<\rho$. For $\beta \in(0, \varepsilon)$ and $(x, t) \in P$

2000 Mathematics Subject Classification. Primary: 37C25; Secondary: 54H20, 55M25.
Key words and phrases. Fuller index, periodic orbit, local semiflow.
we define the k-pseudo-orbit $\mathcal{O}((x, t) ; \beta)$ to be the set of all $\left(x_{0}, \ldots, x_{k-1}\right)$ such that $x_{i} \in B\left(\phi_{i t / k} x ; \beta\right)$ for $i=0, \ldots, k-1$. We then observe that

- $\mathcal{O}((x, t) ; \beta) \subset M^{(k)}$,
- $\zeta \cdot \mathcal{O}((x, t) ; \beta)=\mathcal{O}\left(\left(\phi_{t / k} x, t\right) ; \beta\right)$ and
- $\left(\phi_{s} x_{0}, \ldots, \phi_{s} x_{k-1}\right) \in \mathcal{O}\left(\left(\phi_{s} x, t\right) ; \varepsilon\right)$ if $\left(x_{0}, \ldots, x_{k-1}\right) \in \mathcal{O}((x, t) ; \rho)$ and $0 \leq s \leq 2 t$.
We now define

$$
\mathcal{O}^{(k)}:=\left\{\left.\left(x_{0}, \ldots, x_{k-1}, s\right) \in \mathcal{O}((x, t) ; \varepsilon) \times\left(\frac{t}{k}-\delta, \frac{t}{k}+\delta\right) \right\rvert\,(x, t) \in P\right\}
$$

where δ is taken from the Lemma. We then let $Z^{(k)}:=\left\{\left(x_{0}, \ldots, x_{k-1}\right) \in\right.$ $\mathcal{O}((x, t) ; \varepsilon) \mid(x, t) \in P\}$. Obviously, $Z^{(k)}$ is an open subset of $M^{(k)}$, hence a manifold (of dimension $k n$). Since M was assumed to be orientable, so will be $Z^{(k)}$. On the base space we let $\mathcal{O}_{k}:=\left\{\left(q_{k} \xi, s\right) \mid(\xi, s) \in \mathcal{O}^{(k)}\right\}$ and $Z_{k}:=q_{k}\left(Z^{(k)}\right)$. Obviously $q_{k}: Z^{(k)} \rightarrow Z_{k}$ is a covering map, so Z_{k} is a manifold. There are obvious local semiflows $\Psi^{(k)}$ on $Z^{(k)}$ defined by $\psi_{s}^{(k)}\left(x_{0}, \ldots, x_{k-1}\right)=\left(\phi_{s} x_{0}, \ldots, \phi_{s} x_{k-1}\right)$ where $\left(x_{0}, \ldots, x_{k-1}, s\right) \in \mathcal{O}^{(k)}$ and Ψ^{k} on Z_{k} defined by $\psi_{s}^{k}\left(q_{k}\left(x_{0}, \ldots, x_{k-1}\right)\right)=$ $\left(q_{k}\left(\phi_{s} x_{0}, \ldots, \phi_{s} x_{k-1}\right)\right)$ if $\left(q_{k}\left(x_{0}, \ldots, x_{k-1}\right), s\right) \in \mathcal{O}_{k}$. We will now show that Z_{k} is always orientable if M is. This will somewhat simplify the presentation in [1].

Claim. Z_{k} is orientable.
Proof. We start by choosing a covering \mathcal{W} of Z_{k} by sets which are evenly covered by q_{k}. Since $Z^{(k)}$ is orientable we may choose an orientation $\tau \in$ $H^{k n}\left(Z^{(k)} \times Z^{(k)}, Z^{(k)} \times Z^{(k)} \backslash \Delta\right.$) (we denote all diagonals indiscriminately by Δ). Let then $W \in \mathcal{W}$ with $q_{k}^{-1}(W)=\bigcup_{j=0}^{k-1} \zeta_{1}^{j}(V)$. Let $V_{j}=\zeta_{1}^{j}(V)$, denote by $i_{j}: V_{j} \rightarrow q_{k}^{-1}(W)$ the inclusion and call $\tau_{j}:=i_{j}^{*} \tau$. We claim that $\zeta_{1}^{*} \tau_{j+1}=\tau_{j}$ for $j=0, \ldots, k-1$ where we let $\tau_{k}:=\tau_{0}$. In fact, since ζ_{1} (being a covering transformation) is a homeomorphism mapping V_{j} onto V_{j+1} there is an $\alpha \in\{-1,1\}$ such that $\zeta_{1}^{*} \tau_{j+1}=\alpha \tau_{j}$. But $\zeta_{1}^{k}=\mathrm{id}$, so $\tau_{0}=\zeta_{1}^{* k} \tau_{0}=\alpha^{k} \tau_{0}$ which implies $\alpha=1$ since k was odd.

We now choose $\tau_{W} \in H^{k n}(W \times W, W \times W \backslash \Delta) \cong H^{k n}\left(Z_{k} \times W, Z_{k} \times\right.$ $W \backslash \Delta)$ such that $i_{0}^{*} q_{k}^{*} \tau_{W}=\tau_{0}$, and we claim that $\left(\tau_{W}\right)_{W \in \mathcal{W}}$ is a compatible family. This will then establish the orientability of Z_{k} (cf. [2, p. 294]). For $j=0, \ldots, k-1$ we have that $\zeta_{1}^{j} i_{0} \zeta_{1}^{-j}=i_{j}$. The definition of τ_{W} then implies that $\zeta_{1}^{-j^{*}} i_{0}^{*} \zeta_{1}^{j^{*}} q_{k}^{*} \tau_{W}=\zeta_{1}^{-j^{*}} i_{0}^{*} q_{k}^{*} \tau_{W}=\zeta_{1}^{-j^{*}} \tau_{0}=\tau_{j}$ which means that $i_{j}^{*} q_{k}^{*} \tau_{W}=\tau_{j}$. So the definition of τ_{W} does not depend on the choice of the covering set V_{j}. Let then $W, W^{\prime} \in \mathcal{W}$ and assume that $W \cap W^{\prime} \neq \emptyset$. We have to show that τ_{W} and $\tau_{W^{\prime}}$ restrict to the same class on $W^{\prime \prime}=W \cap W^{\prime}$. So denote the inclusions by $\iota: W^{\prime \prime} \hookrightarrow W$ and $\iota^{\prime}: W^{\prime \prime} \hookrightarrow W^{\prime}$. Suppose, we choose V and V^{\prime} with $q_{k}(V)=W$, $q_{k}\left(V^{\prime}\right)=W^{\prime}$. Then there is a $j \in\{0, \ldots, k-1\}$ such that $\left(q_{k} \mid V^{\prime}\right)^{-1}\left(W^{\prime \prime}\right)=$ $\zeta_{1}^{j}\left(\left(q_{k} \mid V\right)^{-1}\left(W^{\prime \prime}\right)\right)$. Again we have inclusions $I_{0}: U_{0}:=\left(q_{k} \mid V\right)^{-1}\left(W^{\prime \prime}\right) \hookrightarrow V$ and
$I_{j}: U_{j}:=\left(q_{k} \mid V^{\prime}\right)^{-1}\left(W^{\prime \prime}\right) \hookrightarrow V^{\prime}$. We then have that $I_{0}^{*} i_{0}^{*} q_{k}^{*} \iota^{*} \tau_{W}=I_{0}^{*} \tau_{0}$ and $I_{j}^{*} i_{j}^{*} q_{k}^{*} \iota^{*} \tau_{W^{\prime}}=I_{j}^{*} \tau_{j}$. Now we observe that $I_{0}^{*} \tau_{0}=I_{0}^{*} \zeta_{1}^{j *} \tau_{j}=\zeta_{1}^{j^{*}} I_{j}^{*} \tau_{j}$ and that $i_{j} I_{j}=\zeta_{1}^{j} i_{0} I_{0} \zeta_{1}^{-j}$ on U_{j}. But then

$$
\begin{aligned}
I_{j}^{*} i_{j}^{*} q_{k}^{*} \iota^{*} \tau_{W^{\prime}} & =I_{j}^{*} \tau_{j}, \\
\left(\zeta^{-j}\right)^{*} I_{0}^{*} i_{0}^{*} \zeta_{1}^{j *} q_{k}^{*} \iota^{\prime *} \tau_{W^{\prime}} & =I_{j}^{*} \tau_{j},
\end{aligned}
$$

and so

$$
I_{0}^{*} i_{0}^{*} q_{k}^{*} \iota^{\prime *} \tau_{W^{\prime}}=I_{0}^{*} \zeta_{1}^{j^{*}} \tau_{j}=I_{0}^{*} \tau_{0}=I_{0}^{*} i_{0}^{*} q_{k}^{*} \iota^{*} \tau_{W}
$$

which proves our claim since $q_{k} i_{0} I_{0}$ is a homeomorphism.
Thus, what we called the "orientable case" in [1] is just the case where M is orientable.

In the following text in the first instance we have to correct the dimensions (since the dimension of Z_{k} is now $k n$ rather than $n+1$). In the proof of the normalization property we need two modifications: when we prove that ι_{k}^{\prime} equals the fixed point index of the Poincaré mapping corresponding to γ we should first choose an $\varepsilon^{\prime}>0$ such that the ε^{\prime}-neighbourhood of $|\gamma|$ is contained in V. Then we choose $\varepsilon>0$ so small that

- $V \times\left(t_{0}-\varepsilon, t_{0}+\varepsilon\right) \subset \Omega^{\prime \prime}$,
- The sets $\bar{B}\left(\phi_{s} \phi_{i t_{0} / k} x ; \varepsilon\right)$ are disjoint for $i=0, \ldots, k-1$ whenever $x \in|\gamma|$ and $\left|s-t_{0} / k\right|<\delta$.
We then choose a $\rho^{\prime}>0$ such that $d\left(\phi_{s} x, \phi_{s} y\right)<\varepsilon$ whenever $x \in|\gamma|,\left|s-t_{0} / k\right|<$ δ, and $d(x, y)<2 \rho^{\prime}$. Finally, we choose a $\rho>0$ such that for any space Y any two maps $f, g: Y \rightarrow X$ which are 2ρ-near are ρ^{\prime}-homotopic. The set W in [1] is then replaced with the set of all $\left(q_{k}\left(y_{0}, \ldots, y_{k-1}\right), s\right)$ where $\left(y_{0}, \ldots, y_{k-1}\right) \in$ $\mathcal{O}\left(\left(x, t_{0}\right) ; \rho\right)$ with $x \in|\gamma|$ and $\left|s-t_{0} / k\right|<\delta$. We then let $V_{k}:=\left\{q_{k}\left(y_{0}, \ldots, y_{k-1}\right) \mid\right.$ $\left.\left(y_{0}, \ldots, y_{k-1}\right) \in \mathcal{O}\left(\left(x, t_{0}\right)\right) ; \rho\right)$ for some $\left.x \in|\gamma|\right\}$. The homotopy Θ freezing the parameter t at t_{0} is not needed anymore and $\Psi^{\prime \prime}$ is just the Ψ^{k} defined above. We then choose B, N, N_{1}, \mathcal{O}, and Σ as in [1] where we choose \mathcal{O} so small that $\mathcal{O} \subset B\left(x_{0} ; \rho\right)$ and we call $\ell:=\left(q_{k} \mid N_{1}\right)^{-1} \mid V: N \cap V_{k} \rightarrow N_{1}$. If the multiplicity $m=1$ we let $\sigma(y):=\eta(y)$ if $0<\eta(y)<t_{0} / 8, \sigma(y):=0$ if $y \in \Sigma$, and $\sigma(y):=\max \left\{\left(t_{0}-\eta(y)\right) / 2,0\right\}$ if $\eta(y)>7 t_{0} / 8$. Then $y \mapsto \phi_{t_{0}} \circ \phi_{\sigma(y)} y$ may serve as a Poincaré-mapping, so we let $\pi^{\prime}(y)=\phi_{\sigma(y)} y$. If $m>1$ we let again π^{\prime} denote the Poincaré mapping for the period $(m-1) p\left(x_{0}\right)$ and we see that $\iota=\operatorname{ind}\left(X, \operatorname{pr}_{1} \ell q_{k} i_{k} \phi_{t_{0} / k} \pi^{\prime}, \mathcal{O}\right)$.

Another modification is needed at the end of the proof. The commutativity property of the fixed point index gives

$$
\operatorname{ind}\left(X, \operatorname{pr}_{1} \ell q_{k} i_{k} \phi_{t_{0} / k} \pi^{\prime}, \mathcal{O}\right)=\operatorname{ind}\left(V_{k}, q_{k} i_{k} \phi_{t_{0} / k} \pi^{\prime} \operatorname{pr}_{1} \ell, q_{k} \operatorname{pr}_{1}^{-1}(\mathcal{O})\right)
$$

and it is to be shown that the right hand side equals the fixed point index ι_{k}^{\prime}. We then denote by Σ^{\prime} the set of $\left(y_{0}, \ldots, y_{k-1}\right)$ (where $\left(y_{0}, \ldots, y_{k-1} \in \mathcal{O}\left(\left(x, t_{0}\right)\right) ; \varepsilon^{\prime}\right)$ for some $x \in|\gamma|$) such that $y_{i} \in \Sigma$ for some $i \in\{0, \ldots, k-1\}$ (if such an i exists it is necessarily unique). Then we let $\Sigma_{k}:=q_{k}\left(\Sigma^{\prime}\right)$. Let then $q_{k}\left(y_{0}, \ldots, y_{k-1}\right) \in \Sigma_{k}$, choose i such that $y_{i} \in \Sigma$ and let $j=i-1$ if $i>0$ and $j=k-1$ else. We then let $\tau^{\prime}\left(q_{k}\left(y_{0}, \ldots, y_{k-1}\right)\right):=\eta\left(y_{j}\right)$. Then τ^{\prime} will be continuous and Σ_{k} will be a section for Ψ^{k} at $q_{k} i_{k} x_{0}$. The corresponding Poincaré-mapping is easily computed: Let $\left(y_{0}, \ldots, y_{k-1}\right) \in \operatorname{pr}_{1}^{-1}(\mathcal{O})$ and $\xi:=q_{k}\left(y_{0}, \ldots, y_{k-1}\right)$. Then $\tau_{1}^{\prime}(\xi):=\eta\left(y_{k-1}\right), \tau_{j+1}^{\prime}(\xi):=\tau_{j}^{\prime}(\xi)+\eta\left(\phi_{\tau_{j}(\xi)} y_{k-j-1}\right)$ and the Poincaré-mapping for the multiplicity m is $\pi^{\prime \prime}:=\tau_{m}^{\prime}$, so $\pi^{\prime \prime}(\xi)=$ $q_{k}\left(\phi_{\tau_{m}^{\prime}(\xi)} y_{k-m}, \ldots, \phi_{\tau_{m}^{\prime}(\xi)} y_{k-1}, \phi_{\tau_{m}^{\prime}(\xi)} y_{0}, \ldots, \phi_{\tau_{m}^{\prime}(\xi)} y_{k-m-1}\right)$. On the other hand we have that $q_{k} i_{k} \phi_{t_{0} / k} \operatorname{pr}_{1} \ell(\xi)=q_{k}\left(\phi_{t_{0}} \pi^{\prime} y_{0}, \phi_{t_{0} / k} \pi^{\prime} y_{0}, \ldots, \phi_{(k-1) t_{0} / k} \pi^{\prime} y_{0}\right)$ and the arguments of both expressions are 2ρ-near, so we find ρ^{\prime}-homotopies h_{0}, \ldots, h_{k-1} such that $h_{0}(\xi, 0)=\phi_{t_{0}} \pi^{\prime} y_{0}, h_{j}(\xi, 0)=\phi_{j t_{0} / k} \pi^{\prime} y_{0}$ for $j=1, \ldots, k-1$, $h_{j}(\xi, 1)=\phi_{\tau_{m}(\xi)} y_{k-m+j}$ if $j=0, \ldots, m-1$, and $h_{j}(\xi, 1)=\phi_{\tau_{m}(\xi)} y_{j-m}$ if $j=m, \ldots, k-1$. So we let $h(\xi, \lambda)=q_{k}\left(h_{0}(\xi, \lambda), \ldots, h_{k-1}(\xi, \lambda)\right)$. Obviously, we cannot have $h(\xi, \lambda)=\xi$ for $\xi \in \partial V_{k}$ since this would give rise to a periodic point of Ψ^{k} on ∂V_{k} contradicting the fact that γ is isolated. So we finally have that $\iota_{k}^{\prime}=\operatorname{ind}\left(V_{k}, q_{k} i_{k} \phi_{t_{0} / k} \pi^{\prime} \operatorname{pr}_{1} \ell, q_{k} \operatorname{pr}_{1}^{-1}(\mathcal{O})\right)$ which finishes the proof of the normalization property.

The case of a non-orientable manifold M is then handled by just embedding M as a neighbourhood retract in some \mathbb{R}^{n}. Then one argues as in the case of a simplicial complex.

References

[1] C. C. Fenske, A direct topological definition of the Fuller index for local semiflows, Topol. Methods Nonlinear Anal. 21 (2003), 195-209.
[2] E. Spanier, Algebraic Topology, McGraw-Hill, New York et al., 1966.

Christian C. Fenske
Mathematisches Institut
der Justus-Liebig-Universität Gießen
Arndtstraße 2
D-35392 Gießen, GERMANY
E-mail address: christian.fenske@math.uni-giessen.de

