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ON SINGULAR NONPOSITONE
SEMILINEAR ELLIPTIC PROBLEMS

Dinh Dang Hai

Abstract. We prove the existence of a large positive solution for the
boundary value problems

−∆u = λ(−h(u) + g(x, u)) in Ω,

u = 0 on ∂Ω,

where Ω is a bounded domain in RN , λ is a positive parameter, g(x, · ) is
sublinear at ∞, and h is allowed to become ∞ at u = 0. Uniqueness is also

considered.

1. Introduction

Consider the boundary value problems

(1.1)
−∆u = λ(−h(u) + g(x, u)) in Ω,

u = 0 on ∂Ω,

where Ω is a bounded domain in RN with a smooth boundary ∂Ω, h: (0,∞) →
[0,∞), g: Ω× [0,∞) → R, and λ is a positive parameter.

The existence and uniqueness of positive (1.1) when f(x, u) ≡ −h(u)+g(x, u)
is nonnegative and sublinear at ∞ have been studied extensively (see [2], [3],
[5]–[9] and the references therein). We are interested here in studying positive
solutions of (1.1) in the challenging case when f(x, u) becomes −∞ at u = 0,
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which does not appear to have been considered in the literature. Our main result,
in particular, gives the existence of a large positive solution for the problem

−∆u = λ

(
−1

uα lnβ(1 + u)
+ uγ + k(x)

)
in Ω,

u = 0 on ∂Ω,

for λ large, where α, β ≥ 0, α + β < min(1, 2/N), 0 < γ < 1 and k ∈ C(Ω).
Uniqueness in a class of large positive solutions is also obtained. Our approach
is based on the Schauder Fixed Point Theorem.

2. Main results

We make the following assumptions:

(A.1) h: (0,∞) → [0,∞) is of class C1, nonincreasing, h(u) → 0 as u → ∞,

and there exists p > max(1, N/2) such that h ∈ Lp(0, T ) for all T > 0.
(A.2) g: Ω× [0,∞) → R is continuous and nondecreasing in u.
(A.3) There exist positive numbers L, L1 such that g(x, u) > 2L for x ∈ Ω,

u > L1, and

lim
u→∞

g(x, u)
u

= 0

uniformly for x ∈ Ω.
(A.4) There exists q ∈ (0, 1) such that g(x, u)/uq is nonincreasing for each

x ∈ Ω.
(A.5) There exists a positive number m such that

sup
x∈Ω

g(x, u) ≤ m inf
x∈Ω

g(x, u) for all u > 0.

Let φ be the solution of

−∆φ = 1 in Ω, φ = 0 on ∂Ω.

By a solution of (1.1), we mean a function u ∈ C1(Ω) which satisfies (1.1) in the
weak sense. Our main result is

Theorem 2.1. Let (A.1)–(A.3) hold. Then there exists a positive number
λ0 such that for λ > λ0, problem (1.1) has a solution u with u ≥ λLφ in Ω. If,
in addition, (A.4) and (A.5) hold, then the solution is unique in this class.

Lemma 2.2. Let (A.1) hold. Then h(cφ) ∈ Lp(Ω) for all c > 0.

Proof. By the maximum principle, there exists a constant k1 > 0 such
that φ ≥ k1d in Ω, where d(x) = d(x, ∂Ω). Hence it suffices to prove the result
with φ replaced by d. This is now obvious because near a point of ∂Ω, we can
choose local coordinates for Ω where a(x) is one of the co-ordinates (and the
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other co-ordinates are co-ordinates of ∂Ω). Note that there will be a Jacobian
in the change of variables but this will be bounded. �

Lemma 2.3. Let (A.1)–(A.5) hold. Then there exist positive numbers λ∗, c1,
c2 such that, if u is a solution of (1.1) with λ > λ∗ and

u ≥ λLφ in Ω

then
c1G

−1(λ)φ ≤ u ≤ c2G
−1(λ)φ in Ω,

where
G(z) =

z

g̃(z)
, g̃(z) = inf

x∈Ω
g(x, z), z > L1.

Proof. Note that G is increasing on (0,∞) and G(z) → ∞ as z → ∞, by
(A.4). Let u be a solution of (1.1) satisfying u ≥ λLφ in Ω with λ > λ∗, where
λ∗ > 0 is to be chosen later. Define δ = sup{c > 0 : u ≥ cφ in Ω}. Then δ ≥ λL

and u ≥ δφ in Ω. Let vλ satisfy

−∆vλ = h(δφ) in Ω, vλ = 0 on ∂Ω.

Since h(λLφ) → 0 pointwise in Ω as λ→∞ and

h(λLφ) ≤ h(λ∗Lφ) ∈ Lp(Ω),

by Lemma 2.2, it follows from the Lebesgue dominated convergence theorem that
||h(λLφ)||Lp → 0 as λ → ∞. Since p > max(1, N/2), we have that vλ ∈ C1(Ω)
and

(2.1) |vλ|C1 ≤M ||vλ||W 2,p ≤M1||h(δφ)||Lp ≤M1||h(λLφ)||Lp

(see [1], [4]), and hence |vλ|C1 → 0 as λ→∞.
Let K > 0 be such that

(2.2) g(x, u) ≥ −K

for all x ∈ Ω, u > 0. Then we have, for λ∗ > L1/L|φ|∞,

−∆(u+ λvλ) =λ(−h(u) + g(x, u)) + λh(δφ) ≥ λg̃(δφ)

=λ(g̃(δφ)χ{x:φ(x)>L1/λL} −Kχ{x:φ(x)≤L1/λL})

=λ

(
δφ

G(δφ)
χ{x:φ(x)>L1/λL} −Kχ{x:φ(x)≤L1/λL}

)
≥λ

[
δφ

G(δ|φ|∞)
−

(
δ|φ|∞

G(δ|φ|∞)
+K

)
χ{x:φ(x)≤L1/λL}

]
,

where χB denotes the characteristic function of B, i.e. χB (x) = 1 if x ∈ B, 0 if
x /∈ B. This implies

u+ λvλ ≥ λ

(
δ

G(δ|φ|∞)
ψ −

(
δ|φ|∞

G(δ|φ|∞)
+K

)
wλ

)
,
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in Ω, where ψ and wλ satisfy

−∆ψ = φ in Ω, ψ = 0 on ∂Ω,

and
−∆wλ = χ{x:φ(x)≤L1/λL} in Ω, wλ = 0 on ∂Ω,

respectively. Note that |wλ|C1 → 0 as λ→∞. Consequently, for λ∗ large,

u ≥λ
(

δ

G(δ|φ|∞)
ψ −

(
δ|φ|∞

G(δ|φ|∞)
+K

)
wλ − vλ

)
≥λ

(
δ

G(δ|φ|∞)
ψ −

(
δ|φ|∞

G(δ|φ|∞)
+K

)
|wλ|C1d− |vλ|C1d

)
≥λ

(
δk0

G(δ|φ|∞)
−

(
δ|φ|∞

G(δ|φ|∞)
+K

)
k|wλ|C1 − |vλ|C1k

)
φ ≥ λδk0

2G(δ|φ|∞)
φ,

where k and k0 are positive numbers such that ψ ≥ k0φ, d ≤ kφ in Ω. Here we
have used the fact that

δk0

G(δ|φ|∞)
=

k0

|φ|∞
g̃(δ|φ|∞) ≥ k0

|φ|∞
g̃(L1) > 0.

By the maximality of δ, we obtain λδk0/(2G(δ|φ|∞)) ≤ δ or

δ ≥ 1
|φ|∞

G−1

(
λk0

2

)
.

Using (A.4), it can be verified that for C > 0 and λ > G(L1) max(1, C),

1
max(1, C−1/(1−q))

G−1(λ) ≤ G−1(λC) ≤ max(1, C1/(1−q))G−1(λ),

and hence δ ≥ c1G
−1(λ)φ in Ω, where c1 is a positive constant depending only

on k0, |φ|∞.
Next, using (A.5), we obtain

(2.3) −∆u ≤ λg(x, u) ≤ λmg̃(|u|∞),

which implies
u ≤ λmg̃(|u|∞)φ

in Ω. Hence
G(|u|∞) ≤ λm|φ|∞,

or, equivalently,
|u|∞ ≤ G−1(λm|φ|∞).

Using this in (2.3), we infer that

−∆u ≤ λmg̃(G−1(λm|φ|∞)),

and so

u ≤ λmg̃(G−1(λm|φ|∞))φ =
G−1(λm|φ|∞)

|φ|∞
φ ≤ c2G

−1(λ)φ,
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where c2 is a positive constant depending only on m and |φ|∞. This completes
the proof of Lemma 2.3. �

Proof of Theorem 2.1. Let λ > λ0 > 0 and define K = {u ∈ C(Ω) :
λLφ ≤ u ≤ cλ in Ω}, where cλ and λ0 are large numbers to be chosen later.
For u ∈ K, we have h(u) ≤ h(λLφ) since h is nonincreasing. By Lemma 2.2,
h(u) ∈ Lp(Ω) and so the problem

−∆v = λ(−h(u) + g(x, u)) in Ω,

v = 0 on ∂Ω

has a unique solution v = Au ∈W 2,p
0 (Ω)∩C1(Ω). We shall verify that A:K → K

if λ0 is large enough. Let v = Au for some u ∈ K. Let zλ satisfy

(2.4) −∆zλ = h(λLφ) in Ω, zλ = 0 on ∂Ω,

and note that |zλ|C1 → 0 as λ→∞. Then we have

(2.5) −∆(v + λzλ) = −λh(u) + λg(x, u) + λh(λLφ) ≥ λg(x, u)

in Ω. By (A.2),

(2.6) g(x, u) ≥ 2Lχ{x:u(x)>L1} −Kχ{x:u(x)≤L1} = 2L− (K + 2L)χ{x:u(x)≤L1},

where K is defined in (2.2). Let ψλ satisfy

−∆ψλ = χ{x:u(x)<L1} in Ω, ψλ = 0 on ∂Ω,

and note that

{x ∈ Ω : u(x) ≤ L1} ⊆ {x ∈ Ω : φ(x) < L1/(λL)}

and the Lebesgue measure of the latter set goes to 0 as λ goes to ∞. Hence

||χ{x:u(x)<L1}||Lp ≤ ||χ{x:φ(x)≤L1/λL}||Lp → 0 as λ→∞,

and therefore |ψλ|C1 → 0 as λ → ∞. From (2.5), (2.6) and the comparison
principle, we obtain

v + λzλ ≥ 2λLφ− λ(K + 2L)ψλ,

in Ω, which implies

v ≥ 2λLφ− λzλ − λ(K + 2L)ψλ

≥ 2λLφ− λ|zλ|C1d− λ(K + 2L)|ψλ|C1d

≥λ[2L− |zλ|C1k − (K + 2L)k|ψλ|C1 ]φ ≥ λLφ

for λ large enough so that |zλ|C1k + (K + 2L)k|ψλ|C1 < L, which is achieved if
λ0 is chosen so that

kM1||h(λ0Lφ)||Lp + k(K + 2L)M1||χ{x:φ(x)<L1/λ0L}||Lp < L,
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where M1 is defined in (2.1).
Next, we have

−∆v ≤ λg(x, u) ≤ λmg̃(|u|∞) ≤ λmg̃(cλ),

where g̃ is defined in Lemma 2.2. By the comparison principle and the fact that
lim

z→∞
g̃(z)/z = 0, we infer that

v ≤ λmg̃(cλ)φ ≤ λmg̃(cλ)|φ|∞ ≤ cλ

in Ω if cλ is large enough. Thus, for λ > λ0, A maps K into itself and the
Schauder fixed point theorem gives the existence of a solution u of (1.1) in K.

Next, suppose that (A.4), (A.5) hold and let u, u1 be solutions of (1.1)
satisfying u ≥ λLφ in Ω. By increasing λ0 if necessary, we assume that λ0 > λ∗,
where λ∗ is given by Lemma 2.2. By Lemma 2.2, u ≥ (c1/c2)u1in Ω. Let τ be
the maximum number such that u ≥ τu1 in Ω . Then τ ≥ c1/c2 ≡ c0. Suppose
that τ < 1. We shall show that this leads to a contradiction. By (A.2) and
(A.4),

−∆u =λ(−h(u) + g(x, u))

≥λ(−h(τu1) + g(x, τu1) ≥ −λh(τu1) + λτ qg(x, u1),

which implies

(2.7) −∆(u− τ qu1) ≥ λ(τ qh(u1)− h(τu1)).

By the mean value theorem,

|(τ qh(u1)− h(τu1))| = (1− τ)|(u1h
′(cu1)− qcq−1h(u1))|,

where c is between τ and 1. Since th′(t) ≤ h(t) for t > 0,

|u1h
′(cu1)− qcq−1h(u1)| ≤ (c−1 + qcq−1

0 )h(c0u1) ≤ (c−1
0 + qcq−1

0 )h(λLc0φ),

it follows from (2.7) that

(2.8) u− τ qu1 ≥ −λ(1− τ)c3z̃λ

in Ω, where c3 = c−1
0 + qcq−1

0 and z̃λ satisfies

−∆z̃λ = h(λLc0φ) in Ω, z̃λ = 0 on ∂Ω.

Since τ q − τ ≥ τ q(1− q)(1− τ) and |z̃λ|C1 → 0 as λ→∞, it follows from (2.8)
that

u− τu1 =u− τ qu1 + (τ q − τ)u1 ≥ (τ q − τ)u1 − λ(1− τ)c3z̃λ

≥λ(1− τ)[cq0L(1− q)− c3|z̃λ|C1k]φ ≥ λ(1− τ)cq0L(1− q)
2

φ
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for λ large enough, a contradiction with the maximality of τ . Thus τ ≥ 1, which
completes the proof of Theorem 2.1. �
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