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ATTRACTORS FOR SEMILINEAR DAMPED WAVE
EQUATIONS ON ARBITRARY UNBOUNDED DOMAINS

Martino Prizzi — Krzysztof P. Rybakowski

Abstract. We prove existence of global attractors for semilinear damped

wave equations of the form

εutt + α(x)ut + β(x)u−
X

ij

(aij(x)uxj )xi = f(x, u), x ∈ Ω, t ∈ [0,∞[ ,

u(x, t) = 0, x ∈ ∂Ω, t ∈ [0,∞[ .

on an unbounded domain Ω, without smoothness assumptions on β( · ),
aij( · ), f( · , u) and ∂Ω, and f(x, · ) having critical or subcritical growth.

1. Introduction

In this paper we study the existence problem for global attractors of semi-
linear damped wave equations of the form

(1.1)
εutt + α(x)ut + β(x)u−

∑
ij

(aij(x)uxj )xi = f(x, u), x ∈ Ω, t ∈ [0,∞[ ,

u(x, t) = 0, x ∈ ∂Ω, t ∈ [0,∞[ .

Here, N ∈ N and Ω is an arbitrary open set in RN , bounded or not, ε > 0 is
a constant parameter, α, β: Ω → R and f : Ω × R → R are given functions and
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Lu :=
∑

ij(aij(x)uxj
)xi

is a linear second-order differential operator in diver-
gence form.

For bounded domains Ω there are many results concerning the existence of
attractors of (1.1) under various assumptions on ε, α, β, L and f , including the
pioneering works by Babin and Vishik [4], Ghidaglia and Temam [11] and Hale
and Raugel [14]. The unbounded domain case Ω = R3 was considered in the
papers [8], [9] by Feiresel.

In this paper we assume that α ∈ L∞(Ω), α is bounded below by a positive
constant and L is uniformly elliptic with coefficients functions lying in L∞(Ω).
Moreover, β ∈ Lp

u(RN ) with p > max(1, N/2). Here we denote by Lp
u(RN ) the

set of measurable functions ω: RN → R such that

|ω|Lp
u

:= sup
y∈RN

( ∫
B(y)

|v(x)|p dx

)1/p

< ∞,

where, for y ∈ RN , B(y) is the open unit cube in RN centered at y, cf. [3]. We
also assume that

(1.2) λ1 = inf{E(u) | u ∈ H1
0 (Ω), |u|2L2(Ω) = 1} > 0

where

E(u) =
∫

Ω

( N∑
i,j=1

aij(x)uxi
(x)uxj

(x) + β(x)|u(x)|2
)

dx.

We assume that the nonlinearity f : Ω × R → R, (x, u) 7→ f(x, u) is measur-
able in x, continuously differentiable in u and satisfies the growth assumptions
f(·, 0) ∈ L2(Ω) and

|∂uf(x, u)| ≤ C(a(x) + |u|ρ) for a.e. x ∈ Ω and every u ∈ R.

Here C ≥ 0 and ρ ≥ 0 are constants with 2(ρ + 1) ≤ 2∗ := (2N)/(N − 2) for
N ≥ 3. If N ≤ 2 or else if N ≥ 3 and 2(ρ + 1) < 2∗, then ρ is called subcritical .
If N ≥ 3 and 2(ρ + 1) = 2∗, then ρ is called critical .

In the subcritical case we also assume that a ∈ Lr
u(RN ) for some r >

max(N, 2), while in the critical case we assume that a ∈ Lr(Ω) + L∞(Ω) for
some r ≥ N and α ∈ C1(Ω) with bounded derivatives. (Actually, our assump-
tions concerning the functions α, β and a are somewhat more general than those
listed above.)

Letting F (x, u) :=
∫ u

0
f(x, s) ds, (x, u) ∈ Ω× R, we assume the dissipativity

conditions

(1.3) f(x, u)u− µF (x, u) ≤ c(x) and F (x, u) ≤ c(x)

for almost every x ∈ Ω and every u ∈ R, where µ > 0 is a constant and c ∈ L1(Ω).
The goal of this paper is to prove that under the above hypotheses, equa-

tion (1.1) regarded as a system in (u, v) where v = ut, generates a nonlinear
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continuous semigroup i.e. a semiflow πf on Z = H1
0 (Ω) × L2(Ω) which has

a global attractor.
Although our results hold for arbitrary open sets Ω, the emphasis here is on

unbounded domains.
Condition (1.2) roughly means that the ground state of the stationary Schrö-

dinger equation

−Lu + β(x)u = 0

on Ω with potential β and with Dirichlet boundary condition has positive energy.
In the special case of β ∈ L1(Ω)+L∞(Ω) with β ≥ 0, condition (1.2) is equivalent
to the condition that

∫
G

β(x) dx = ∞ for every domain G ⊂ Ω that contains
arbitrary large balls. This was proved in [1], [2].

The dissipativity condition (1.3) was introduced by Ghidaglia and Temam
in [11] for the bounded domain case. It is satisfied e.g. if there are constants γ,
ν ∈ ]1,∞[ and a strictly positive function D ∈ L1(Ω) such that F (x, u) ≤ D(x)
for all x ∈ Ω, u ∈ R and the function u 7→ (γD(x) − F (x, u))ν is convex for
almost every x ∈ Ω.

The proofs of our main results are based on Theorem 4.4 below, which
provides the so-called tail estimates for the solutions (u(t, x), ut(t, x)) of Equa-
tion (1.1). For ρ subcritical, Theorem 4.4 implies that the semiflow πf is asymp-
totically compact on the phase space Z (Lemma 4.9) and this proves the existence
of a global attractor in the subcritical case (Theorems 4.10). For ρ critical we
first use Theorem 4.4 to show that πf is asymptotically compact with respect
to the topology of the space Y = L2(Ω) ×H−1(Ω) (Lemma 4.9). Then we ap-
ply a method originally due to J. Ball [5] and elaborated by I. Moise, R. Rosa,
X. Wang [18] and G. Raugel [21] to prove that πf is asymptotically compact on
Z (Theorem 4.12). This establishes the existence of a global attractor in the
critical case, see Theorem 4.13.

The method of tail estimates was introduced by Wang [23] for parabolic equa-
tions on unbounded domains and it was used by Fall and You [10] to establish
the existence of an attractor of (1.1) in the special case Ω = RN , ε = 1, β(x) ≡ 1,
L = ∆, α(x) ≡ λ with 1 ≤ λ < 2, and f dissipative, of sublinear growth and
having the special form f(x, u) = g(x) + φ(u) with g ∈ L2(RN ).

For N = 3 the exponent ρ is critical if ρ = 2 and subcritical if ρ < 2. In
particular, Theorem 4.13 extends earlier results by Feireisl [8].

In [9] Feireisl proves existence of attractors even in the supercritical case
2 < ρ < 4. On the other hand, the arguments in [8], [9] require additional
smoothness assumptions on f(x, u) with respect to all variables (x, u) and some
growth assumptions on |∂uf(x, 0)| and |∂xf(x, 0)|, while we do not need any
such condition here. Moreover, only the case Ω = R3 and L = ∆ is considered
in [8], [9] and though the proofs do extend to more general domains Ω and to
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more general differential operators L, restrictions that have to imposed are more
stringent than the ones considered here. In fact, the finite propagation speed
property used in [8], [9] requires some smoothness assumptions to be imposed
on the coefficient functions aij(x) and on the boundary of Ω, cf. [15], while the
Strichartz estimates used in [9] put some additional restrictions both on the
shape of Ω and on the coefficient functions aij(x), cf. [22] and [17].

We should note that our tail estimates for the solution component u(t, x) do
not depend in any way on the finite propagation speed property and are uniform
in the parameter ε > 0. This allows us to prove singular semicontinuity results
for the family of attractors of equation (1.1) as ε → 0. More specifically, let
N = 3, α ≡ 1 and set, formally, ε = 0 in (1.1). Then we obtain the reaction-
diffusion equation

(1.4)
ut + β(x)u−

∑
ij

(aij(x)uxi)xj = f(x, u), x ∈ Ω, t ∈ [0,∞[ ,

u(x, t) = 0, x ∈ ∂Ω, t ∈ [0,∞[ .

Let A be the sectorial operator on L2(Ω) defined by the differential operator
u 7→ βu −

∑
ij(aijuxj

)xi
. The domain of definition D(A) of A is the set of all

u ∈ H1
0 (Ω) such that the distribution βu−

∑
ij(aijuxj

)xi
lies in L2(Ω).

It is proved in [19] that (1.4) generates a global semiflow on H1
0 (Ω) which has

a global attractor Ã. Ã is a compact subset of D(A) (endowed with the graph
norm). Let A0 be the image of Ã under the imbedding Γ: D(A) → H1

0 (Ω) ×
L2(Ω), u 7→ (u,Au+f̂(u)). Then it is proved in [20] that in the critical case ρ = 2
(and under slightly more restrictive assumptions on f) the family (Ãε)ε∈[0,∞[ is
upper-semicontinuous at ε = 0 with respect to the topology of H1

0 (Ω)×H−1(Ω).
This generalizes a classical result by Hale and Raugel [14] to the critical case and
arbitrary, bounded or unbounded domains, without any smoothness assumption
on ∂Ω, β( · ), aij( · ) and f( · , u).

This paper is organized as follows: in Section 2 we collect some prelimi-
nary concepts and results concerning semiflows, attractors and (C0)-semigroups
of linear operators. We also establish an abstract differentiability result, The-
orem 2.7, which can frequently be used to rigorously justify formal derivative
calculations of functionals along solutions of evolution equations. In Section 3
we establish some general estimates for linear damped wave equations and prove
some continuity and differentiability properties of Nemitski operators. Finally,
in Section 4, we prove our tail estimates and, as a consequence, establish the
existence of a global attractor of Equation (1.1).

Notation. For a and b ∈ Z we write [a. . b] to denote the set of all m ∈ Z
with a ≤ m ≤ b.
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Let N ∈ N be arbitrary. Given a subset S of RN and a function v:S → R
we denote by ṽ: RN → R the trivial extension of v defined by ṽ(x) = 0 for
x ∈ RN \ S.

Now let Ω be an arbitrary open set in RN . Given any measurable function
v: Ω → R and any p ∈ [1,∞[ we set, as usual,

|v|Lp = |v|Lp(Ω) :=
( ∫

Ω

|v(x)|p dx

)1/p

≤ ∞.

Moreover, for v ∈ H1
0 (Ω) we set |v|H1 = |v|H1(Ω) := (|∇u|2L2 + |u|2L2)1/2.

If k ∈ N and f , g: Ω → Rk are such that
∑k

i=1 figi ∈ L1(Ω) then we set

〈f, g〉 :=
∫

Ω

k∑
i=1

fi(x)gi(x) dx.

We also use the common notation D(Ω), resp. D′(Ω) to denote the space of all
test functions on Ω, resp. all distributions on Ω. If w ∈ D′(Ω) and ϕ ∈ D(Ω),
then we use the usual functional notation w(ϕ) to denote the value of w at ϕ.

Given a function g: Ω × R → R, we denote by ĝ the (Nemitski) operator
which associates with every function u: Ω → R the function ĝ(u): Ω → R defined
by

ĝ(u)(x) = g(x, u(x)), x ∈ Ω.

All linear spaces considered in this paper are over the real numbers.

2. Preliminaries and an abstract differentiability result

We assume the reader’s familiarity with attractor theory on metric spaces
as expounded in e.g. [13], [16] or, more recently, in [7] and we just collect here
a few relevant concepts from that theory.

Definition 2.1. Let X be a metric space. Recall that a local semiflow π

on X is, by definition, a continuous map from an open subset D of [0,∞[×X to
X such that, for every x ∈ X there is an ωx = ωπ,x ∈ ]0,∞] with the property
that (t, x) ∈ D if and only if t ∈ [0, ωx[, and such that (writing xπt := π(t, x)
for (t, x) ∈ D) xπ0 = x for x ∈ X and whenever (t, x) ∈ D and (s, xπt) ∈ D

then (t + s, x) ∈ D and xπ(t + s) = (xπt)πs. Given an interval I in R, a map
σ: I → X is called a solution (of π) if whenever t ∈ I and s ∈ [0,∞[ are such
that t + s ∈ I, then σ(t)πs is defined and σ(t)πs = σ(t + s). If I = R, then σ is
called a full solution (of π). A subset S of X is called (π-)invariant if for every
x ∈ S there is a full solution σ with σ(R) ⊂ S and σ(0) = x.

Given a local semiflow π on X and a subset N of X, we say that π does not
explode in N if whenever x ∈ X and xπ [0, ωx[ ⊂ N , then ωx = ∞. A global
semiflow is a local semiflow with ωx = ∞ for all x ∈ X.
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Now let π be a global semiflow on X. A subset A of X is called a global
attractor (rel. to π) if A is compact, invariant and if for every bounded set B

in X and every open neighborhood U of A there is a tB,U ∈ [0,∞[ such that
xπt ∈ U for all x ∈ B and all t ∈ [tB,U ,∞[. It easily follows that a global
attractor, if it exists, is uniquely determined.

A subset B of X is called (π-)ultimately bounded if there is a tB ∈ [0,∞[
such the set {xπt | x ∈ B, t ∈ [tB ,∞[} is bounded.

π is called asymptotically compact if whenever B ⊂ X is ultimately bounded,
(xn)n is a sequence in B and (tn)n is a sequence in [0,∞[ with tn →∞ as n →∞,
then the sequence (xnπtn)n has a convergent subsequence.

The following result is well-known:

Proposition 2.2. A global semiflow π on a metric space X has a global
attractor if and only if the following conditions are satisfied:

(a) π is asymptotically compact;
(b) every bounded subset of X is ultimately bounded;
(c) there is a bounded set B0 in X with the property that for every x ∈ X

there is a tx ∈ [0,∞[ such that xπtx ∈ B0.

Proof. This is just [7, Corollary 1.1.4 and Proposition 1.1.3]. �

We require a few results from the general theory of (C0)-semigroups of linear
operators.

Proposition 2.3. Let Z be a Banach space and T (t), t ∈ [0,∞[ be a (C0)-se-
migroup of linear operators on Z with generator B:D(B) → Z. Then, for every
z ∈ D(B) there is a unique function u: [0,∞[ → D(B) which is continuously
differentiable into Z, u(0) = z and

u′(t) = Bu(t), t ∈ [0,∞[ .

u is given by u(t) = T (t)z for all t ∈ [0,∞[.

Proof. This follows from [12, proof of Theorem II.1.2] �

Proposition 2.4. Let Z and Y be Banach spaces and SZ(t), t ∈ [0,∞[
(resp. SY (t), t ∈ [0,∞[) be a (C0)-semigroup of linear operators on Z (resp.
on Y ) with generator CZ :D(CZ) → Z (resp. CY :D(CY ) → Y ). Let ν:Z → Y

be a bounded linear map with ν(D(CZ)) ⊂ D(CY ). If νCZz = CY (νz) for all
z ∈ D(CZ), then νSZ(t)z = SY (t)(νz) for all z ∈ Z and all t ∈ [0,∞[.

Proof. An application of Proposition 2.3 shows that νSZ(t)z = SY (t)(νz)
for all z ∈ D(CZ) and all t ∈ [0,∞[. The general case follows by density. �
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Proposition 2.5. Let Z be a Banach space, SZ(t), t ∈ [0,∞[ be a (C0)-se-
migroup of linear operators on Z with generator CZ :D(CZ) → Z and Q:Z → Z

be linear and bounded. Then the operator CZ +Q:D(CZ) → Z generates a (C0)-
semigroup TZ(t), t ∈ [0,∞[ of linear operators on Z. Moreover,

(2.1) TZ(t)z = SZ(t)z +
∫ t

0

SZ(t− s)QTZ(s)z ds

for all z ∈ Z and t ∈ [0,∞[.

Proof. The first assertion follows from [12, Theorem I.6.4].
For z ∈ D(CZ) = D(CZ + Q) and t ∈ [0,∞[ formula (2.1) is proved using

Proposition 2.3 and [12, proof of Theorem II.1.3 (ii)]. The general case follows
by density. �

Proposition 2.6. Let Z be a Banach space and T (t), t ∈ [0,∞[ be a (C0)-se-
migroup of linear operators on Z with infinitesimal generator B:D(B) ⊂ Z → Z.
Suppose that Φ: Z → Z is a map which is Lipschitzian on bounded subsets of Z.
Then, for each ζ ∈ Z there is a maximal ωζ = ωB,Φ,ζ ∈ ]0,∞] and a uniquely
determined continuous map z = zζ : [0, ωζ [ → Z such that

(2.2) z(t) = T (t)ζ +
∫ t

0

T (t− s)Φ(z(s)) ds, t ∈ [0, ωζ [ .

Writing ζΠt := zζ(t) for t ∈ [0, ω(ζ)[ we obtain a local semiflow Π = ΠB,Φ on Z

which does not explode in bounded subsets of Z.

Proof. This is a consequence of [6, proofs of Theorem 4.3.4 and Proposi-
tion 4.3.7]. �

In the remaining part of this section we will establish a result which can
be used to rigorously justify formal differentiation of various functionals along
(mild) solutions of semilinear evolution equations.

Theorem 2.7. Let Z be a Banach space and T (t), t ∈ [0,∞[ be a (C0)-semi-
group of linear operators on Z with infinitesimal generator B:D(B) ⊂ Z → Z.
Let U be open in Z, Y be a normed space and V :U → Y be a function which, as
a map from Z to Y , is continuous at each point of U and Fréchet differentiable
at each point of U ∩D(B). Moreover, let W :U ×Z → Y be a function which, as
a map from Z×Z to Y , is continuous and such that DV (z)(Bz +w) = W (z, w)
for z ∈ U ∩D(B) and w ∈ Z. Let τ ∈ ]0,∞[ and I := [0, τ ]. Let z ∈ U , g: I → Z

be continuous and z be a map from I to U such that

z(t) = T (t)z +
∫ t

0

T (t− s)g(s) ds, t ∈ I.

Then the map V ◦ z: I → Y is differentiable and

(V ◦ z)′(t) = W (z(t), g(t)), t ∈ I.
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Proof. For z ∈ D(B) set |z|D(B) := |z|Z + |Bz|Z . Since B is closed,
this defines a complete norm on D(B). For h ∈ ]0,∞[ and t ∈ I set Mh :=
supt∈[0,h] |T (t)|L(Z,Z) and

gh(t) :=
1
h

∫ h

0

T (s)g(t) ds.

It is well-known that gh(t) ∈ D(B) and Bgh(t) = (1/h)(T (h)g(t) − g(t)). Thus
gh: I → D(B) and the estimate

|gh(t)− gh(t′)|D(B) =
∣∣∣∣ 1h

∫ h

0

T (s)(g(t)− g(t′)) ds

∣∣∣∣
Z

+
∣∣∣∣ 1h (T (h)(g(t)− g(t′))− (g(t)− g(t′)))

∣∣∣∣
Z

≤Mh|g(t)− g(t′)|Z +
1
h

(Mh + 1)|g(t)− g(t′)|Z

shows that gh is continuous into D(B). Moreover, we claim that gh(t) → g(t)
in Z as h → 0+, uniformly on I. In fact, otherwise there is an ε ∈ ]0,∞[ and
sequences (hm)m∈N in ]0,∞[ and (tm)m∈N in I such that hm → 0, tm → t ∈ I

and |ghm(tm)− g(tm)|Z ≥ ε for all m ∈ N. But

|ghm(tm)− g(tm)|Z ≤ |ghm(tm)− g(t)|Z + |g(tm)− g(t)|Z .

Moreover,

|ghm
(tm)− g(t)|Z =

∣∣∣∣ 1
hm

∫ hm

0

(T (s)g(tm)− g(t)) ds

∣∣∣∣
Z

≤
∣∣∣∣ 1
hm

∫ hm

0

T (s)(g(tm)− g(t)) ds

∣∣∣∣
Z

+
∣∣∣∣ 1
hm

∫ hm

0

(T (s)g(t)− g(t)) ds

∣∣∣∣
Z

.

Without loss of generality hm ≤ 1 for all m ∈ N so∣∣∣∣ 1
hm

∫ hm

0

T (s)(g(tm)− g(t)) ds

∣∣∣∣
Z

≤ M1|g(tm)− g(t)|Z → 0.

Since T (s)g(t)− g(t) → 0 in Z as s → 0+, it follows that∣∣∣∣ 1
hm

∫ hm

0

(T (s)g(t)− g(t)) ds

∣∣∣∣
Z

→ 0.

Putting things together we see that |ghm
(tm) − g(tm)|Z → 0, a contradiction,

proving our claim. Since D(B) is dense in Z there is a sequence (zm)m∈N in
D(B) which converges to z in Z. Since U is open in Z we may assume that
zm ∈ U ∩D(B) for all m ∈ N. Choose a sequence (hm)m∈N in ]0,∞[ converging
to zero. For m ∈ N and t ∈ I set

zm(t) = T (t)zm +
∫ t

0

T (t− s)ghm
(s) ds.
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It is well-known that zm(t) ∈ D(B). Moreover, the map zm: I → D(B) is
continuous into D(B) and differentiable into Z with z′m(t) = Bzm(t) + ghm

(t)
for t ∈ I. Furthermore, by what we have proved so far, zm(t) → z(t) in Z as
m → ∞, uniformly on I. It follows that zm(t) ∈ U ∩ D(B) for some m0 ∈ N
and all m ≥ m0 and t ∈ I. Moreover, by our hypotheses and by what we have
proved so far, (V ◦ zm)(t) → (V ◦ z)(t) and (V ◦ zm)′(t) = DV (zm(t))(Bzm(t) +
ghm

(t)) = W (zm(t), ghm
(t)) → W (z(t), g(t)) in Y uniformly on I. Thus V ◦ z is

differentiable into Y and (V ◦ z)′(t) = W (z(t), g(t)) for t ∈ I. �

3. Damped hyperbolic equations

For the rest of this paper, N ∈ N and Ω is an arbitrary open subset of RN ,
bounded or not.

Consider the following

Hypothesis 3.1.

(a) a0, a1 ∈ ]0,∞[ are constants and aij : Ω → R, i, j ∈ [1. . N ] are functions
in L∞(Ω) such that aij = aji, i, j ∈ [1. . N ], and for every ξ ∈ RN and
almost every x ∈ Ω, a0|ξ|2 ≤

∑N
i,j=1 aij(x)ξiξj ≤ a1|ξ|2. A(x) :=

(aij(x))N
i,j=1, x ∈ Ω.

(b) β: Ω → R is a measurable function with the property that
(i) for every ε ∈ ]0,∞[ there is a Cε ∈ [0,∞[ with ||β|1/2u|2L2 ≤

ε|u|2H1 + Cε|u|2L2 for all u ∈ H1
0 (Ω);

(ii) λ1 := inf{〈A∇u,∇u〉+ 〈βu, u〉 | u ∈ H1
0 (Ω), |u|L2 = 1} > 0.

Remark 3.2. Note that, under Hypothesis 3.1(a), 〈A∇u,∇u〉 is defined and
under Hypothesis 3.1(i), 〈βu, u〉 is defined.

The following lemma contains a condition ensuring that β satisfies Hypoth-
esis 3.1(i).

Lemma 3.3. Let p ∈ ]1,∞[ and β: Ω → R be such that β̃ ∈ Lp
u(RN ).

(a) If p ≥ N/2, then there is a C ∈ [0,∞[ such that

||β|1/2u|L2 ≤ C|u|H1 for all u ∈ H1
0 (Ω).

(b) If p > N/2, then for every ε ∈ ]0,∞[ there is a Cε ∈ [0,∞[ with

||β|1/2u|2L2 ≤ ε|u|2H1 + Cε|u|2L2 for all u ∈ H1
0 (Ω).

Proof. There is a family (yj)j∈N of points in RN with the property that
RN =

⋃
j∈N B(yj) and the sets B(yj), j ∈ N, are pairwise non-overlapping.

Write Bj = B(yj), j ∈ N. Let p′ = p/(p − 1). Since p ≥ N/2 we have 2p′ ≤ 2∗

for N ≥ 3. Let M ∈ ]0,∞[ be a bound of the imbedding H1(B) → L2p′(B)
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where B = B(0). Then, by translation, M is also a bound of the imbedding
H1(B(y)) → L2p′(B(y)) for any y ∈ RN . Let u ∈ H1

0 (Ω) be arbitrary. Then∫
Ω

|β(x)u2(x)| dx =
∫

RN

|β̃(x)ũ2(x)| dx =
∑
j∈N

∫
Bj

|β̃(x)ũ2(x)| dx

≤
∑
j∈N

( ∫
Bj

|β̃(x)|p dx

)1/p( ∫
Bj

|ũ(x)|2p′ dx

)1/p′

≤ |β̃|Lp
u

∑
j∈N

( ∫
Bj

|ũ(x)|2p′ dx

)1/p′

≤ |β̃|Lp
u
M2

∑
j∈N

|ũ|Bj |2H1(Bj)

= |β̃|Lp
u
M2

∑
j∈N

∫
Bj

(|∇ũ(x)|2 + |ũ(x)|2) dx

= M2|β̃|Lp
u
|ũ|2H1(RN ) = M2|β̃|Lp

u
|u|2H1(Ω).

This proves the first part of lemma.
If p > N/2 we may choose q such that 2p′ < q, and q < 2∗ for N ≥ 3.

We may then interpolate between 2 and q and so, for every ε ∈ ]0,∞[ there is
a Cε ∈ [0,∞[, independent of u such that for all j ∈ N( ∫

Bj

|ũ(x)|2p′ dx

)1/2p′

≤ ε

( ∫
Bj

|ũ(x)|q dx

)1/q

+ Cε

( ∫
Bj

|ũ(x)|2 dx

)1/2

≤ εM ′|ũ|Bj
|H1(Bj) + Cε|ũ|Bj

|L2(Bj).

Here M ′ ∈ ]0,∞[ is a bound of the imbedding H1
0 (B(yj)) → Lq(B(yj)) for every

j ∈ N. Hence( ∫
Bj

|ũ(x)|2p′ dx

)1/p′

≤2(εM ′)2
∫

Bj

(|∇ũ(x)|2 + |ũ(x)|2) dx+2C2
ε

∫
Bj

|ũ(x)|2 dx.

Thus, by the above computation,∫
Ω

|β(x)u2(x)| dx ≤ |β̃|Lp
u

∑
j∈N

( ∫
Bj

|ũ(x)|2p′ dx

)1/p′

≤ |β̃|Lp
u

∑
j∈N

(
2(εM ′)2

∫
Bj

(|∇ũ(x)|2 + |ũ(x)|2) dx + 2C2
ε

∫
Bj

|ũ(x)|2 dx

)
= |β|Lp

u
2(εM ′)2|u|2H1 + |β|Lp

u
2C2

ε |u|2L2 .

Now an obvious change of notation completes the proof of the second part of the
lemma. �

Remark 3.4. Under Hypothesis 3.1(a) let the operator L: H1
0 (Ω) → D′(Ω)

be defined by

Lu =
N∑

i,j=1

(aijuxi)xj , u ∈ H1
0 (Ω).
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The definition of distributional derivatives implies that

(3.1) (Lu− βu)(v) = −〈A∇u,∇v〉 − 〈βu, v〉, u ∈ H1
0 (Ω), v ∈ D(Ω).

It follows by density that

(3.2) 〈(Lu− βu), v〉 = −〈A∇u,∇v〉 − 〈βu, v〉

for u, v ∈ H1
0 (Ω) with Lu− βu ∈ L2(Ω).

Lemma 3.5. Assume Hypothesis 3.1. If κ ∈ [0, λ1[ is arbitrary and if ε and
ρ are chosen such that ε ∈ ]0, a0[, ρ ∈ ]0, 1[ and c := min(ρ(a0−ε), (1−ρ)(λ1−κ)
−ρ(ε + Cε + κ)) > 0 then, for all u ∈ H1

0 (Ω),

c(|∇u|2L2 + |u|2L2) ≤ 〈A∇u,∇u〉+ 〈βu, u〉 − κ〈u, u〉 ≤ C(|∇u|2L2 + |u|2L2),

where C := max(a1 + ε, ε + Cε).

Proof. This is just a simple computation. �

Lemma 3.6. Assume Hypothesis 3.1 and let ε ∈ ]0,∞[ be arbitrary. For u,
v ∈ H1

0 (Ω) define

(3.3) 〈u, v〉1 = (1/ε)〈A∇u,∇v〉+ (1/ε)〈βu, v〉.

〈 · , · 〉1 is a scalar product on H1
0 (Ω) and the norm defined by this scalar product

is equivalent to the usual norm on H1
0 (Ω). For every u ∈ H1

0 (Ω) the distribution
−(1/ε)Lu + (1/ε)βu ∈ D′(Ω) can be uniquely extended to a continuous linear
function fu from H1

0 (Ω) to R. The operator

Λ: H1
0 (Ω) → H−1(Ω) := (H1

0 (Ω))′, u 7→ fu

is an isomorphism of normed spaces. The assignment

(f, g) ∈ H−1(Ω)×H−1(Ω) 7→ 〈f, g〉−1 := 〈Λ−1(f),Λ−1(g)〉1

defines a scalar product on H−1(Ω). The norm defined by this scalar product is
equivalent to the usual (operator) norm on H−1(Ω).

Proof. This follows from Lemma 3.5 and the Lax–Milgram theorem. �

Proposition 3.7. Assume Hypothesis 3.1 and let α0, α1 ∈ [0,∞[ and ε ∈
]0,∞[ be arbitrary. Let α: Ω → R be a measurable function with α0 ≤ α(x) ≤ α1

for almost every x ∈ Ω. Set Z = H1
0 (Ω) × L2(Ω) and endow Z with the usual

norm |z|Z defined by

|z|2Z = |∇z1|2L2 + |z1|2L2 + |z2|2L2 , z = (z1, z2).
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Define D(B) = D(Bα,β,ε) to be the set of all (z1, z2) ∈ Z such that z2 ∈ H1
0 (Ω)

and Lz1−βz1 (in the distributional sense) lies in L2(Ω). Let B = Bα,β,ε:D(B) →
Z be defined by

B(z1, z2) = (z2,−(1/ε)αz2 − (1/ε)βz1 + (1/ε)Lz1), z = (z1, z2) ∈ D(B).

Under these hypotheses, B is the generator of a (C0)-semigroup T (t) = Tα,β,ε(t),
t ∈ [0,∞[ on Z. If, in addition, α0 > 0, then there are real constants M =
M(α0, α1, ε, λ1) > 0, µ = µ(α0, α1, ε, λ1) > 0 such that

(3.4) |T (t)z|Z ≤ Me−µt|z|Z , z ∈ Z, t ∈ [0,∞[ .

Proof. On Z define the scalar product

(3.5) 〈〈(u1, u2), (w1, w2)〉〉 = 〈u1, w1〉1 + 〈u2, w2〉L2 .

It follows from Lemma 3.6 that the norm ‖(u1, u2)‖ = 〈〈(u1, u2), (u1, u2)〉〉1/2 is
equivalent to the norm |(u1, u2)|Z .

Now, for (z1, z2) ∈ D(B), we obtain using (3.2)

〈〈B(z1, z2), (z1, z2)〉〉
= 〈z2, z1〉1 + 〈−(1/ε)αz2 − (1/ε)βz1 + (1/ε)Lz1, z2〉 = −(1/ε)〈αz2, z2〉.

Thus B is dissipative by [6, Proposition 2.4.2]. Let us now show that B is m-
dissipative. We use [6, Proposition 2.2.6] and so we only need to show that for
every λ ∈ ]0,∞[ and for every (f, g) ∈ Z there is a (z1, z2) ∈ D(B) with

(3.6) (z1, z2)− λB(z1, z2) = (f, g).

Now (3.6) is equivalent to the validity of the two equations

(3.7) z2 = (1/λ)(z1 − f)

and

(3.8) ((1/λ) + (1/ε)α + (1/ε)λβ)z1 − (1/ε)λLz1 = g + ((1/λ) + (1/ε)α)f.

Lemma 3.5 and the Lax–Milgram theorem (cf. [6, proof of Proposition 2.6.1])
imply that equation (3.8) can be solved for z1 ∈ H1

0 (Ω) with Lz1−βz1 ∈ L2(Ω).
Now equation (3.7) can be solved for z2 ∈ H1

0 (Ω). It follows that, indeed, B is
m-dissipative and so, by the Hille–Yosida–Phillips theorem, B generates a (C0)-
semigroup T (t), t ∈ [0,∞[, of linear operators on Z.

Now suppose α0 > 0. Choose µ such that

(3.9) 0 < 2µ ≤ min(1, α0/(2ε), λ1/(ε + α1)).

We now prove that for every (u1, u2) ∈ Z

(3.10) ‖T (t)(u1, u2)‖ ≤ 2e−µt‖(u1, u2)‖, t ∈ [0,∞[ .
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This proves (3.4) in view of the equivalences of the two above norms on Z.
By density, it is sufficient to prove (3.10) for (u1, u2) ∈ D(B). Therefore, let
(u1, u2) ∈ D(B) be arbitrary and define (z1(t), z2(t)) = T (t)(u1, u2), t ∈ [0,∞[.
Then the map t 7→ z(t) = (z1(t), z2(t)) is differentiable into Z, z(t) ∈ D(B) and
ż(t) = Bz(t) for t ∈ [0,∞[. For t ∈ [0,∞[ let

(3.11) w(t) = 4µ〈z1(t), z2(t)〉+ 〈z2(t), z2(t)〉+ 2(1/ε)µ〈αz1(t), z1(t)〉
+ (1/ε)〈βz1(t), z1(t)〉+ (1/ε)〈A∇z1(t),∇z1(t)〉.

It follows that w is differentiable and a simple calculation shows

(3.12) (1/2)ẇ(t) = 〈(2µ− (1/ε)α)z2(t), z2(t)〉
− 2µ(1/ε)〈βz1(t), z1(t)〉 − 2(1/ε)µ〈A∇z1(t),∇z1(t)〉

≤ 〈(2µ− (1/ε)α0)z2(t), z2(t)〉
− 2µ(1/ε)〈βz1(t), z1(t)〉 − 2(1/ε)µ〈A∇z1(t),∇z1(t)〉.

By (3.11)

w(t) ≤ 4µ((1/2)〈z1(t), z1(t)〉+ (1/2)〈z2(t), z2(t)〉) + 〈z2(t), z2(t)〉
+ 2(1/ε)µ〈αz1(t), z1(t)〉
+ (1/ε)〈βz1(t), z1(t)〉+ (1/ε)〈A∇z1(t),∇z1(t)〉

≤ (2µ + 1)〈z2(t), z2(t)〉+ 2µ(1 + (1/ε)α1)〈z1(t), z1(t)〉
+ (1/ε)〈βz1(t), z1(t)〉+ (1/ε)〈A∇z1(t),∇z1(t)〉.

Now

2‖z(t)‖2 = 2〈z2(t), z2(t)〉+ (1/ε)〈βz1(t), z1(t)〉+ (1/ε)〈A∇z1(t),∇z1(t)〉
+ (1/ε)〈βz1(t), z1(t)〉+ (1/ε)〈A∇z1(t),∇z1(t)〉.

By (3.9)
2〈z2(t), z2(t)〉 ≥ (2µ + 1)〈z2(t), z2(t)〉

and

(1/ε)〈βz1(t), z1(t)〉+ (1/ε)〈A∇z1(t),∇z1(t)〉
≥ (1/ε)λ1〈z1(t), z1(t)〉 ≥ 2µ(1 + (1/ε)α1)〈z1(t), z1(t)〉.

Putting things together we see that

(3.13) w(t) ≤ 2‖z(t)‖2, t ∈ [0,∞[ .

Moreover, by (3.9)

w(t) ≥ − 4µ((1/2)4µ〈z1(t), z1(t)〉+ (1/2)(1/4µ)〈z2(t), z2(t)〉) + 〈z2(t), z2(t)〉
+ 2(1/ε)µ〈αz1(t), z1(t)〉+ (1/ε)〈βz1(t), z1(t)〉+ (1/ε)〈A∇z1(t),∇z1(t)〉
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≥ (1/2)〈z2(t), z2(t)〉+ 2µ((1/ε)α0 − 4µ)〈z1(t), z1(t)〉
+ (1/ε)〈βz1(t), z1(t)〉+ (1/ε)〈A∇z1(t),∇z1(t)〉 ≥ (1/2)‖z(t)‖2.

Thus

(3.14) w(t) ≥ (1/2)‖z(t)‖2, t ∈ [0,∞[ .

By (3.13), (3.12) and (3.9)

µw(t) ≤ 2µ‖z(t)‖2

=2µ〈z2(t), z2(t)〉+ 2µ(1/ε)〈βz1(t), z1(t)〉+ 2(1/ε)µ〈A∇z1(t),∇z1(t)〉
≤ ((1/ε)α0 − 2µ)〈z2(t), z2(t)〉+ 2µ(1/ε)〈βz1(t), z1(t)〉

+ 2(1/ε)µ〈A∇z1(t),∇z1(t)〉 ≤ −(1/2)ẇ(t)

so

(3.15) ẇ(t) ≤ −2µw(t), t ∈ [0,∞[ .

(3.13), (3.14) and (3.15) imply that

‖z(t)‖2 ≤ 4e−2µt‖z(0)‖2, t ∈ [0,∞[

and this in turn implies (3.10). �

Proposition 3.8. Assume Hypothesis 3.1 and let ε ∈ ]0,∞[ be arbitrary.
Define CZ := Bα,β,ε and SZ(t) := Tα,β,ε(t), t ∈ [0,∞[ with α ≡ 0. Moreover,
let Y = L2(Ω)×H−1(Ω) and define the operator CY :D(CY ) → Y by D(CY ) =
H1

0 (Ω)× L2(Ω) and
CY (z1, z2) = (z2,−Λ(z1))

where Λ is defined in Lemma 3.6. CY is the generator of a (C0)-semigroup SY (t),
t ∈ [0,∞[ of linear operators on Y . Finally,

νSZ(t)z = SY (t)(νz), z ∈ Z, t ∈ [0,∞[

where ν:Z → Y is the inclusion map.

Proof. On Y define the scalar product

〈〈(u1, u2), (w1, w2)〉〉Y = 〈u1, w1〉L2 + 〈u2, w2〉−1.

It follows from Lemma 3.6 that the norm defined by this scalar product is equiv-
alent to the usual norm on Y . Now, for (y1, y2) ∈ D(CY ), we easily obtain

〈〈CY (y1, y2), (y1, y2)〉〉Y = 0.

Thus BY is dissipative. Using the same arguments as in the proof of Propo-
sition 3.7 (with α ≡ 0) we can show that for every λ ∈ ]0,∞[ and for every
(f, g) ∈ Y there is a (y1, y2) ∈ D(CY ) with (y1, y2)− λCY (y1, y2) = (f, g). Thus
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CY is m-dissipative and this proves the first assertion. Since, by the defini-
tions of CZ and CY , νD(CZ) ⊂ D(CY ) and νCZ(z1, z2) = CY ν(z1, z2) for all
(z1, z2) ∈ D(CZ), the second assertion follows from Proposition 2.4. �

Proposition 3.9. Let α, Z and T (t) be as in Proposition 3.7 and Y be as
in Proposition 3.8. Suppose that

(3.16) (∃C1 ∈ [0,∞[) (∀ z ∈ L2(Ω)) |αz|H−1 ≤ C1|z|H−1 .

Then there are constants C2 and C3 ∈ [0,∞[ such that

|T (t)z|Y ≤ C2e
C3t|z|Y , t ∈ [0,∞[ , z ∈ Z.

Proof. Define the bounded linear map Q:Z → Z by (z1, z2) 7→ (0,−αz2).
By Propositions 2.5 and 2.4 we have, for z ∈ Z and t ∈ [0,∞[

T (t)z = SZ(t)z +
∫ t

0

SZ(t− s)QT (s)z ds = SY (t)z +
∫ t

0

SY (t− s)QT (s)z ds.

There are constants C4 and C5 ∈ [0,∞[ such that

|SY (t)y|Y ≤ C4e
C5t|y|Y , t ∈ [0,∞[ , y ∈ Y.

Using (3.16) we now obtain, for z ∈ Z and t ∈ [0,∞[

|T (t)z|Y ≤ |SY (t)z|Y +
∫ t

0

|SY (t− s)QT (s)z|Y ds

≤ C4e
C5t|z|Y +

∫ t

0

C4e
C5(t−s)C1|T (s)z|Y ds.

Now Gronwall’s lemma completes the proof. �

The next result provides a sufficient condition for the validity of (3.16).

Lemma 3.10. If a ∈ C1(Ω)∩W 1,∞(Ω) and u ∈ H1
0 (Ω), then au ∈ H1

0 (Ω) and
∂i(au) = (∂ia)u+a∂iu, i ∈ [1. . N ]. Moreover, |au|H1

0
≤ (2N+1)1/2|a|W 1,∞ |u|H1

0
.

Furthermore,

|az|H−1 ≤ (2N + 1)1/2|a|W 1,∞ |z|H−1 , z ∈ L2(Ω).

Finally, if U is an open subset of Ω and a|U ∈ C1
0 (U) then (au)|U ∈ H1

0 (U).

Proof. Set u(i) = (∂ia)u + a∂iu, i ∈ [1. . N ]. There is a sequence (vn)n∈N

in C1
0 (Ω) converging to u in H1(Ω). It follows that avn ∈ C1

0 (Ω) and ∂i(avn) =
(∂ia)vn + a∂ivn for n ∈ N and i ∈ [1. . N ]. Hölder’s inequality implies that,
for ϕ ∈ C1

0 (Ω) and i ∈ [1. . N ], avn → au and ∂i(avn) → u(i) in L2(Ω) while
ϕ∂i(avn) → ϕu(i) and (∂iϕ)a vn → (∂iϕ)a u in L1(Ω). Since 〈ϕ, ∂i(avn)〉L2 =
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−〈∂iϕ, avn〉L2 for n ∈ N and i ∈ [1. . N ], it follows that au ∈ H1(Ω), ∂i(au) = u(i)

for all i ∈ [1. . N ] and

(3.17) lim
n→∞

|(avn)− (au)|H1 = 0.

Thus au ∈ H1
0 (Ω). This proves the first part of the lemma. It follows that

|au|2H1
0

= |au|2L2 +
N∑

i=1

|∂i(au)|2L2 = |au|2L2 +
N∑

i=1

|(∂ia)u + a∂iu|2L2

≤ |a|2W 1,∞ |u|2L2 +
N∑

i=1

|a|2W 1,∞(|u|L2 + |∂iu|L2)2

≤ |a|2W 1,∞(|u|2L2 +
N∑

i=1

(2|u|2L2 + 2|∂iu|2L2))

= |a|2W 1,∞((2N − 1)|u|2L2 + 2|u|2H1
0
) ≤ |a|2W 1,∞(2N + 1)|u|2H1

0
.

If z ∈ L2(Ω) then az ∈ L2(Ω) and for v ∈ H1
0 (Ω) with |v|H1 ≤ 1 we have

av ∈ H1
0 (Ω) and

|〈az, v〉| = |〈z, av〉| ≤ |z|H−1 |av|H1 ≤ (2N + 1)1/2|a|W 1,∞ |z|H−1 .

This proves the second and third part of the lemma. Finally, if a|U ∈ C1
0 (U)

then (avn)|U ∈ C1
0 (U) for all n ∈ N and since, by (3.17), (avn)|U → (au)|U in

H1(U), it follows that (au)|U ∈ H1
0 (U). �

Proposition 3.11. Let a ∈ C1
0 (RN ) and r ∈ [2,∞[ be arbitrary. If N ≥ 3,

then assume also that r < 2∗. Under these assumptions the map h:H1
0 (Ω) →

Lr(Ω), u 7→ a|Ω · u, is defined and is linear and compact.

Proof. There is an open ball U in RN such that supp a ⊂ U . Define the
following maps:

h1:H1
0 (Ω) → H1

0 (RN ), u 7→ ũ, h2:H1
0 (RN ) → H1

0 (U), v 7→ (av)|U ,

h3:H1
0 (U) → Lr(U), v 7→ v, h4:Lr(U) → Lr(RN ), v 7→ ṽ,

h5:Lr(RN ) → Lr(Ω), v 7→ v|Ω.

Clearly, the maps h1, h4 and h5 are defined, linear and bounded, the map h2

is defined, linear and bounded in view of Lemma 3.10 with Ω := RN , while
h3 is defined, linear and compact by Rellich embedding theorem. Since, for all
u ∈ H1

0 (Ω), (h5 ◦ h4 ◦ h3 ◦ h2 ◦ h1)(u) = a|Ω · u, it follows that h is defined and
h = h5 ◦ h4 ◦ h3 ◦ h2 ◦ h1 so h is linear and compact. �
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Definition 3.11. A function f : Ω × R → R, (x, u) 7→ f(x, u) is said to
satisfy a C0- (resp. C1-)Carathéodory condition, if for every u ∈ R the partial
map x 7→ f(x, u) is Lebesgue-measurable and for almost every x ∈ Ω the partial
map u 7→ f(x, u) is continuous (resp. continuously differentiable).

If f : Ω × R → R, (x, u) 7→ f(x, u) satisfies a C0-Carathéodory condition,
define the function F : Ω× R → R by

F (x, u) =
∫ u

0

f(x, s) ds,

whenever s 7→ f(x, s) is continuous and F (x, u) = 0 otherwise. F is called the
canonical primitive of f .

Given C, ρ ∈ [0,∞[, a measurable function a: Ω → R and a null set M ⊂ Ω,
a function g: (Ω\M)×R → R, (x, u) 7→ g(x, u) is said to satisfy a (C, ρ, a)-growth
condition, if |g(x, u)| ≤ C(|a(x)| + |u|ρ) for every x ∈ Ω \ M and every u ∈ R.
The number ρ is called subcritical if N ≤ 2 or (N ≥ 3 and ρ < (2∗/2)− 1). ρ is
called critical if N ≥ 3 and ρ = (2∗/2)− 1.

Proposition 3.13. Let f satisfy a C1-Carathéodory condition and ∂uf sat-
isfy a (C, ρ, a)-growth condition. Let F be the canonical primitive of f . Then,
for almost every x ∈ Ω and all u, h ∈ R

(3.18) |f(x, u)− f(x, 0)| ≤ C|a(x)||u|+ C|u|ρ+1,

(3.19) |f(x, u + h)− f(x, u)| ≤ C|a(x)||h|+ C max(1, 2ρ−1)(|u|ρ + |h|ρ)|h|,

(3.20) |F (x, u)| ≤ C(|a(x)||u|2/2 + |u|ρ+2/(ρ + 2)) + |u||f(x, 0)|,

(3.21) |F (x, u + h)− F (x, u)|
≤ (|f(x, 0)|+ C|a(x)|(|u|+ |h|) + C max(1, 2ρ)(|u|ρ+1 + |h|ρ+1))|h|,

and

(3.22) |F (x, u + h)− F (x, u)− f(x, u)h|
≤ (C|a(x)|+ C max(1, 2ρ−1)(|u|ρ + |h|ρ))|h|2.

Moreover, for every measurable function v: Ω → R both f̂(v) and F̂ (v) are mea-
surable and for all measurable functions u, h: Ω → R

(3.23) |f̂(u)|L2 ≤ |f̂(0)|L2 + C(|au|L2 + |u|ρ+1

L2(ρ+1)),

(3.24) |f̂(u + h)− f̂(u)|L2

≤ C|ah|L2 + C max(1, 2ρ−1)(|u|ρ
L2(ρ+1) + |h|ρ

L2(ρ+1))|h|L2(ρ+1) ,

(3.25) |F̂ (u)|L1 ≤ C(|a|u|2|L1/2 + |u|ρ+2

Lρ+2/(ρ + 2)) + |u|L2 |f̂(0)|L2 ,
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(3.26) |F̂ (u + h)− F̂ (u)|L1 ≤ (|f̂(0)|L2 + C(|au|L2 + |ah|L2)

+ C max(1, 2ρ)(|u|ρ+1

L2(ρ+1) + |h|ρ+1

L2(ρ+1)))|h|L2 ,

and

(3.27) |F̂ (u + h)− F̂ (u)− f̂(u)h|L1

≤ (C|ah|L2 + C max(1, 2ρ−1)(|u|ρ
L2(ρ+1) + |h|ρ

L2(ρ+1))|h|L2(ρ+1))|h|L2 .

Finally, if ρ is critical, then for every r ∈ [N,∞[ there is a constant C(r) ∈ [0,∞[
such that whenever a = a1 + a2 with a1 ∈ Lr(Ω) and a2 ∈ L∞(Ω), then for all
u, h ∈ H1

0 (Ω)

(3.28) |f̂(u + h)− f̂(u)|H−1 ≤ C(r)(|a1|Lr + |a2|L∞)|h|L2

+ C(r)(|u|ρ
L2∗ + |h|ρ

L2∗ )|h|L2 .

Proof. For almost every x ∈ Ω and all u, h ∈ R we have

f(x, u + h)− f(x, u) =
∫ 1

0

∂uf(x, u + θh)h dθ,

F (x, u + h)− F (x, u)− f(x, u)h =
∫ 1

0

[f(x, u + θh)− f(x, u)]h dθ

=
∫ 1

0

[ ∫ 1

0

∂uf(x, u + rθh)θh dr

]
h dθ.

These equalities and the definition of F imply estimates (3.18)–(3.22). Now
well known arguments and Hölder inequality yields the remaining assertions of
the proposition except (3.28). To prove (3.28), let r ∈ [N,∞[ and u, h and
v ∈ H1

0 (Ω) be arbitrary. Then

|〈f̂(u + h)− f̂(u), v〉| ≤
∫

Ω

|f(x, (u + h)(x))− f(x, u(x))| |v(x)| dx

≤C

∫
Ω

|(ah)(x)| |v(x)| dx

+ C max(1, 2ρ−1)
∫

Ω

(|u(x)|ρ + |h(x)|ρ)|h(x)||v(x)| dx.

Now ∫
Ω

|(a1h)(x)| |v(x)| dx ≤ |a1|Lr |h|L2 |v|L2r/(r−2)

and ∫
Ω

|(a2h)(x)| |v(x)| dx ≤ |a2|L∞ |h|L2 |v|L2 .

Moreover, since (1/2∗) + (1/2) + (1/N) = 1 and Nρ = 2∗ we also have∫
Ω

(|u(x)|ρ + |h(x)|ρ)|h(x)||v(x)| dx ≤ (|u|ρ
L2∗ + |h|ρ

L2∗ )|h|L2 |v|L2∗



Damped Wave Equations 67

Noting that 2r/(r − 2) ≤ 2∗ let C be a common bound of the imbeddings
H1

0 (Ω) → Ls(Ω) for s ∈ {2, 2∗, 2r/(r − 2)}. Then we conclude

|〈f̂(u + h)− f̂(u), v〉| ≤CC(|a1|Lr + |a2|L∞)|h|L2 |v|H1

+ C max(1, 2ρ−1)C(|u|ρ
L2∗ + |h|ρ

L2∗ )|h|L2 |v|H1 .

Since

|f̂(u + h) + f̂(u)|H−1 = sup
v∈H1

0 (Ω)

|〈f̂(u + h)− f̂(u), v〉|

estimate (3.28) follows. �

Standing Assumption. For the rest of this paper, we assume Hypothe-
sis 3.1 and fix an ε ∈ ]0,∞[. Let Z = H1

0 (Ω)×L2(Ω) and B = Bα,β,ε be defined
as in Proposition 3.7. Moreover, let Y = L2(Ω)×H−1(Ω).

Proposition 3.14. Let C, ρ ∈ [0,∞[ and a: Ω → R be a measurable func-
tion such that the assignments u 7→ |a|u and u 7→ |a|1/2u induce bounded lin-
ear operators from H1

0 (Ω) to L2(Ω). Suppose the function f satisfies a C1-
Carathéodory condition and ∂uf satisfies a (C, ρ, a)-growth condition. Moreover,
suppose f( · , 0) ∈ L2(Ω). If N ≥ 3, then assume also that ρ ≤ (2∗/2) − 1. Un-
der these hypotheses, f induces a map f̂ :H1

0 (Ω) → L2(Ω) which is Lipschitzian
on bounded subsets of H1

0 (Ω). The canonical primitive F of f induces a map
F̂ :H1

0 (Ω) → L1(Ω). This map is Fréchet differentiable and DF̂ (u)[h] = f̂(u) · h
for u and h ∈ H1

0 (Ω). The map Φf :Z → Z,

(3.29) Φf (z) = (0, (1/ε)f̂(z1)), z = (z1, z2) ∈ Z,

is bounded and Lipschitzian on bounded subsets of H1
0 (Ω). By πf we denote the

local semiflow ΠB,Φ on Z, where Φ = Φf . This local semiflow does not explode
in bounded subsets of H1

0 (Ω).

Proof. This follows from Proposition 3.13, the Sobolew imbedding theo-
rem, Proposition 3.7 and Proposition 2.6. �

Remark 3.15. By Lemma 3.3 the hypotheses on the function a imposed in
Proposition 3.14 are satisfied e.g. if ã ∈ Lp

u(RN ) with p ≥ N .

Remark 3.16. The local semiflow πf defined in Proposition 3.14 is, by
definition, the local semiflow generated by solutions of the damped wave equa-
tion (1.1).

4. Tail estimates and the existence of attractors

Proposition 4.1. Let γ: RN → [0, 1] be a C1-function with the property
that supx∈RN (|γ(x)|2 + |∇γ(x)|2) < ∞. Set γ = γ2. Assume the hypotheses
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and notations of Proposition 3.14. Fix δ ∈ ]0,∞[, and define the functions
V = Vγ :Z → R and V ∗ = V ∗

γ :Z → R by

V (z) =
1
2

∫
Ω

γ(x)Ψz(x) dx and V ∗(z) =
∫

Ω

γ(x)F (x, z1(x)) dx

for z = (z1, z2) ∈ Z. Here, for z ∈ Z and x ∈ Ω,

Ψz(x) = ε|δz1(x) + z2(x)|2 + (A∇z1)(x) · ∇z1(x) + (β(x)− δα(x) + δ2ε)|z1(x)|2.

Let τ0 ∈ ]0,∞[, I = [0, τ0] and z: I → Z be a solution of πf . Then the functions
V ◦ z and V ∗ ◦ z are differentiable and, for t ∈ I,

(V ◦ z)′(t) =
∫

Ω

γ(x)(ε(δz1 + z2)(δz2 + (−(1/ε)α(x)z2 + (1/ε)f(x, z1(t)(x)))

+ (−δα(x) + δ2ε)z1z2 − δβ(x)z1z1) dx

− δ

∫
Ω

γ(x)(A∇(z1)) · ∇z1 dx−
∫

Ω

(δz1 + z2)(A∇γ) · ∇z1 dx,

(V ∗ ◦ z)′(t) =
∫

Ω

γ(x)f(x, z1(t)(x))z2(t)(x) dx,

(4.1) (V ◦ z)′(t) + 2δ(V ◦ z)(t) =
∫

Ω

γ(x)(2δε− α(x))(δz1 + z2)2 dx

+
∫

Ω

γ(x)(δz1 + z2)f(x, z1(t)(x)) dx−
∫

Ω

(δz1 + z2)(A∇γ) · ∇z1 dx

Proof. By Proposition 3.13 we have that V and V ∗ are defined and Fréchet
differentiable on Z and for all z = (z1, z2) and ξ = (ξ1, ξ2) in Z

DV (z)[ξ] =
∫

Ω

γ(x)
(

ε(δz1(x) + z2(x))(δξ1(x) + ξ2(x))

+ (A(x)∇z1(x)) · ∇ξ1(x) + (β(x)− δα(x) + δ2ε)z1(x)ξ1(x)
)

dx

and
DV ∗(z)[ξ] =

∫
Ω

γ(x)f(x, z1(x))ξ1(x) dx.

In particular, for z = (z1, z2) ∈ D(B) and w = (w1, w2) ∈ Z we obtain, omitting
the argument x ∈ Ω in some of the expressions below,

DV (z)[Bz + w]

=
∫

Ω

γ(x)
(

ε(δz1+z2)(δ(z2+w1)+(−(1/ε)α(x)z2−(1/ε)β(x)z1+(1/ε)Lz1+w2))

+ (A∇z1) · ∇(z2 + w1) + (β(x)− δα(x) + δ2ε)z1(z2 + w1)
)

dx

and
DV ∗(z)[Bz + w] =

∫
Ω

γ(x)f(x, z1(x))(z2 + w1) dx.
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Evaluating further we see that

DV (z)[Bz + w]

=
∫

Ω

γ(x)(ε(δz1 + z2)(δ(z2 + w1) + (−(1/ε)α(x)z2 − (1/ε)β(x)z1 + w2))

+ (A∇z1) · ∇w1 + (β(x)− δα(x) + δ2ε)z1(z2 + w1)) dx

+
∫

Ω

γ(x)
(

(δz1 + z2)Lz1 + (A∇z1) · ∇z2

)
dx.

By Green’s formula∫
Ω

γ(x)((δz1 + z2)Lz1 + (A∇z1) · ∇z2) dx = −
∫

Ω

γ(x)(A∇(δz1 + z2)) · ∇z1 dx

−
∫

Ω

(δz1 + z2)(A∇γ) · ∇z1 dx +
∫

Ω

γ(x)(A∇z1) · ∇z2 dx

= −
∫

Ω

γ(x)(A∇(δz1)) · ∇z1 dx−
∫

Ω

(δz1 + z2)(A∇γ) · ∇z1 dx

so we obtain

DV (z)[Bz + w] =
∫

Ω

γ(x)(ε(δz1 + z2)(δ(z2 + w1) + (−(1/ε)α(x)z2 + w2))

+ (A∇z1) · ∇w1 + (−δα(x) + δ2ε)z1(z2 + w1) + β(x)(z1w1 − δz1z1)) dx

−
∫

Ω

γ(x)(A∇(δz1)) · ∇z1 dx−
∫

Ω

(δz1 + z2)(A∇γ) · ∇z1 dx.

Define the maps W :Z × Z → R and W ∗:Z × Z → R by

W (z, w) =
∫

Ω

γ(x)(ε(δz1 + z2)(δ(z2 + w1) + (−(1/ε)α(x)z2 + w2))

+ (A∇z1) · ∇w1 + (−δα(x) + δ2ε)z1(z2 + w1) + β(x)(z1w1 − δz1z1)) dx

−
∫

Ω

γ(x)(A∇(δz1)) · ∇z1 dx−
∫

Ω

(δz1 + z2)(A∇γ) · ∇z1 dx

and

W ∗(z, w) =
∫

Ω

γ(x)f(x, z1(x))(z2(x) + w1(x)) dx

for (z, w) ∈ Z × Z. In the particular case where w1 = 0 we thus obtain

(4.2) W (z, w) =
∫

Ω

γ(x)(ε(δz1 + z2)(δz2 + (−(1/ε)α(x)z2 + w2))

+ (−δα(x) + δ2ε)z1z2 − δβ(x)z1z1) dx

−
∫

Ω

γ(x)(A∇(δz1)) · ∇z1 dx−
∫

Ω

(δz1 + z2)(A∇γ) · ∇z1 dx

and

(4.3) W ∗(z, w) =
∫

Ω

γ(x)f(x, z1(x))z2(x) dx.
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Using Hypothesis 3.1 and Proposition 3.13 we see that W and W ∗ are continuous
from Z × Z to R and so Theorem 2.7, formulas (4.2) and (4.3) and a straight-
forward computation complete the proof. �

Consider the following hypothesis.

Hypothesis 4.2.

(a) α0 > 0;
(b) C, ρ, τ ∈ [0,∞[ and µ ∈ ]0,∞[ are constants and c: Ω → [0,∞[ is

a function with c ∈ L1(Ω). If N ≥ 3, then ρ ≤ (2∗/2)− 1;
(c) a: Ω → R is a measurable function such that the assignments u 7→ |a|u

and u 7→ |a|1/2u induce bounded linear operators from H1
0 (Ω) to L2(Ω);

(d) f : Ω× R → R satisfies a C1-Carathéodory condition;
(e) F is the canonical primitive of f ;
(f) ∂uf satisfies a (C, ρ, a)-growth condition;
(g) |f( · , 0)|L2 ≤ τ ;
(h) f(x, u)u − µF (x, u) ≤ c(x) and F (x, u) ≤ c(x) for almost every x ∈ Ω

and every u ∈ R.

A sufficient condition for the dissipativity assumption (h) to hold is contained
in the following lemma:

Lemma 4.3. Let f : Ω × R → R satisfy a C0-Carathéodory condition and F

be the canonical primitive of f . Let ν, γ ∈ ]1,∞[ be constants and D ∈ L1(Ω)
be a function with D(x) > 0 for all x ∈ Ω and such that F (x, u) ≤ D(x) for all
x ∈ Ω and all u ∈ R. Assume also that the function u 7→ (γD(x)− F (x, u))ν is
convex for almost every x ∈ Ω. Then f(x, u)u− µF (x, u) ≤ c(x) and F (x, u) ≤
c(x) for almost every x ∈ Ω and every u ∈ R. Here, µ := (1/ν) and c(x) :=
max(1, γν(γ − 1)1−νν−1)D(x), x ∈ Ω.

Proof. Define G(x, u) = −(γD(x) − F (x, u))ν for x ∈ Ω and u ∈ R. Our
convexity assumption implies that the function u 7→ ∂uG(x, u) is nonincreasing
and continuous for almost every x ∈ Ω. Notice that whenever h: R → R is
continuous and nonincreasing then h(u)u ≤

∫ u

0
h(s) ds for all u ∈ R. It follows

that, for almost every x ∈ Ω and every u ∈ Ω,

(4.4) νf(x, u)(γD(x)− F (x, u))ν−1u

≤ G(x, u)−G(x, 0) = −(γD(x)− F (x, u))ν + (γD(x))ν .

Since, for almost every x ∈ Ω and every u ∈ Ω,

γD(x)− F (x, u) ≥ (γ − 1)D(x) > 0
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we obtain from (4.4) that

νf(x, u)u ≤ −(γD(x)− F (x, u)) + (γD(x))ν((γ − 1)D(x))1−ν

≤ F (x, u) + γν(γ − 1)1−νD(x).

The lemma is proved. �

Fix a C∞-function ϑ: R → [0, 1] with ϑ(s) = 0 for s ∈ ]−∞, 1] and ϑ(s) = 1
for s ∈ [2,∞[. Let

ϑ := ϑ
2
.

For k ∈ N let the functions ϑk: RN → R and ϑk: RN → R be defined by

ϑk(x) = ϑ(|x|2/k2) and ϑk(x) = ϑ(|x|2/k2), x ∈ RN .

Theorem 4.4. Assume Hypothesis 4.2. Choose δ and ν ∈ ]0,∞[ with

(4.5) ν ≤ min(1, µ/2), λ1 − δα1 > 0 and α0 − 2δε ≥ 0.

Under these hypotheses, there is a constant c′ ∈ [0,∞[ and for every R ∈ [0,∞[
there are constants M ′ = M ′(R), ck = ck(R) ∈ [0,∞[, k ∈ N with ck → 0 for
k → ∞ and such that for every τ0 ∈ [0,∞[ and every solution z( · ) of πf on
I = [0, τ0] with |z(0)|Z ≤ R

(4.6)
∫

Ω

((ε/2)|z2(t)(x)|2 + (A(x)∇z1(t)(x)) · ∇z1(t)(x)

+ (β(x)− δα(x))|z1(t)(x)|2) dx ≤ c′ + M ′e−2δνt,

for t ∈ I. If |z(t)|Z ≤ R for t ∈ I, then

(4.7)
∫

Ω

ϑk(x)((ε/2)|z2(t)(x)|2 + (A(x)∇z1(t)(x)) · ∇z1(t)(x)

+ (β(x)− δα(x))|z1(t)(x)|2) dx ≤ ck + M ′e−2δνt,

for k ∈ N and t ∈ I.

Lemma 4.5. Assume the hypotheses of Theorem 4.4. Let γ, γ, V = Vγ and
V ∗ = V ∗

γ be as in Proposition 4.1. For all z ∈ Z and x ∈ Ω define s(z)(x) =
sγ(z)(x) by

s(z)(x) = −2γ(x)z1(x)(A(x)∇γ(x)) · ∇z1(x)− |z1(x)|2(A(x)∇γ(x)) · γ(x).

Given τ0 ∈ [0,∞[ and a solution z( · ) of πf on I = [0, τ0], define

η(t) = ηγ(t) = Vγ(z(t))− V ∗
γ (z(t)), t ∈ I.

Then, for t ∈ I,

(4.8) η′(t) + 2δνη(t) ≤ 2δ(µ− ν)
∫

Ω

γ(x)c(x) dx

−
∫

Ω

(δz1 + z2)(A∇γ) · ∇z1 dx− δ(1− ν)
∫

Ω

sγ(z(t))(x) dx.
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Proof. It is clear that, for all z ∈ Z and x ∈ Ω

|γ(x)|2(A(x)∇z1(x)) · ∇z1(x) = (A(x)∇(γz1)(x)) · ∇(γz1)(x) + s(z)(x).

Thus, by the definition of V ,

2V (z) ≥
∫

Ω

γ(x)((A(x)∇z1(x)) · ∇z1(x) + (β(x)− δα(x))|z1(x)|2) dx

=
∫

Ω

((A(x)∇(γz1)(x)) · ∇(γz1)(x) + (β(x)− δα(x))|γ(x)z1(x)|2) dx

+
∫

Ω

sγ(z)(x) dx

≥ (λ1 − δα1)|γz1|2L2 +
∫

Ω

sγ(z)(x) dx ≥
∫

Ω

sγ(z)(x) dx.

Hence

(V ◦ z)′(t) + 2δν(V ◦ z)(t) = (V ◦ z)′(t) + 2δ(V ◦ z)(t)− δ(1− ν)2(V ◦ z)(t)

≤ (V ◦ z)′(t) + 2δ(V ◦ z)(t)− δ(1− ν)
∫

Ω

sγ(z(t))(x) dx.

It follows that

(V ◦ z)′(t) + 2δν(V ◦ z)(t) + δ(1− ν)
∫

Ω

sγ(z(t))(x) dx

≤ (V ◦ z)′(t) + 2δ(V ◦ z)(t)

≤ (2δε− α0)
∫

Ω

γ(x)(δz1 + z2)2 dx

+
∫

Ω

γ(x)(δz1 + z2)f(x, z1(t)(x)) dx−
∫

Ω

(δz1 + z2)(A∇γ) · ∇z1 dx

≤ δ

∫
Ω

γ(x)z1f(x, z1(t)(x)) dx

+
∫

Ω

γ(x)z2f(x, z1(t)(x)) dx−
∫

Ω

(δz1 + z2)(A∇γ) · ∇z1 dx

≤ δµ

∫
Ω

γ(x)(F (x, z1(t)(x)) + c(x)) dx− 2δν(V ∗ ◦ z)(t)

+ 2δν(V ∗ ◦ z)(t) + (V ∗ ◦ z)′(t)−
∫

Ω

(δz1 + z2)(A∇γ) · ∇z1 dx =: S∗.

Now

S∗ = δ(µ− 2ν)
∫

Ω

γ(x)F (x, z1(t)(x)) dx + δµ

∫
Ω

γ(x)c(x) dx

+ 2δν(V ∗ ◦ z)(t) + (V ∗ ◦ z)′(t)−
∫

Ω

(δz1 + z2)(A∇γ) · ∇z1 dx
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≤ δ(2µ− 2ν)
∫

Ω

γ(x)c(x) dx

+ 2δν(V ∗ ◦ z)(t) + (V ∗ ◦ z)′(t)−
∫

Ω

(δz1 + z2)(A∇γ) · ∇z1 dx.

This immediately implies (4.8) and proves the lemma. �

Proof of Theorem 4.4. Let τ0 ∈ [0,∞[ be arbitrary and z( · ) of πf be
an arbitrary solution of πf on I = [0, τ0] with |z(0)|Z ≤ R. Set γ = γ ≡ 1. Then
sγ(z(t)) ≡ 0. Thus Lemma 4.5 implies that

(4.9) η′γ + 2δνηγ ≤ c.

where c = 2δ(µ − ν)
∫
Ω

γ(x)c(x) dx. Differentiating the function t 7→ ηγ(t)e2δνt

and using (4.9) we obtain

(4.10) ηγ(t) ≤ (1/(2δν))c[1− e−2δνt] + ηγ(0)e−2δνt, t ∈ I.

Our assumptions imply that there is a continuous imbedding H1
0 (Ω) → Lρ+2(Ω)

with an imbedding constant C2. Let Lβ , resp. La be bounds on the operators
from H1

0 (Ω) to L2(Ω) given by the assignments u 7→ |β|1/2u, resp. u 7→ |a|1/2u.
Now a simple calculation using Proposition 3.13 shows that

(4.11) |ηγ(0)| ≤ (1/2)(2δ2εR2 + 2εR2 + a1R
2 + (L2

β + δ2ε)R2)

+ C(L2
aR2/2 + (C2)ρ+2Rρ+2/(ρ + 2)) + Rτ =: M.

The definitions of Vγ and V ∗
γ and our assumption on F now imply that, for t ∈ I,

(4.12)
1
2

∫
Ω

(ε|δz1(t)(x) + z2(t)(x)|2 + (A(x)∇z1(t)(x)) · ∇z1(t)(x)

+ (β(x)− δα(x) + δ2ε)|z1(t)(x)|2
)

dx

≤ 1
2δν

c[1− e−2δνt] + Me−2δνt + V ∗
γ (z(t))

≤ 1
2δν

c[1− e−2δνt] + Me−2δνt +
∫

Ω

c(x) dx.

Now, for a1, a2 ∈ R we have |a1|2 = |(a1 +a2)+(−a2)|2 ≤ 2(|a1 +a2|2 + |a2|2) so
|a1 + a2|2 ≥ (1/2)|a1|2 − |a2|2 and thus setting a1 = z2(t)(x) and a2 = δz1(t)(x)
in (4.12) we obtain

(4.13)
1
2

∫
Ω

((ε/2)|z2(t)(x)|2 + (A(x)∇z1(t)(x)) · ∇z1(t)(x)

+ (β(x)− δα(x))|z1(t)(x)|2) dx

≤ 1
2δν

c[1− e−2δνt] + Me−2δνt +
∫

Ω

c(x) dx.

Setting c′ = 2((1/(2δν))c +
∫
Ω

c(x) dx) and M ′ = 2M we obtain (4.6).
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Assume now that |z(t)|Z ≤ R for all t ∈ I. Let k ∈ N be arbitrary and set
Vk = Vγk

, V ∗
k = V ∗

γk
, sk(z)(x) = sγk

(z)(x) and ηk(t) = ηγk
, where γk = ϑk and

γk = ϑk. Since ∇ϑk(x) = (2/k2)ϑ′(|x|2/k2)x and ∇ϑk(x) = (2/k2)ϑ
′
(|x|2/k2)x

we have

(4.14) sup
x∈Ω

|∇ϑk(x)| ≤ Cϑ/k and sup
x∈Ω

|∇ϑk(x)| ≤ Cϑ/k

where Cϑ = 2
√

2 supy∈R |ϑ′(y)| and Cϑ = 2
√

2 supy∈R |ϑ
′
(y)|.

We thus obtain

(4.15) −
∫

Ω

(δz1 + z2)(A∇ϑk) · ∇z1 dx ≤ a1(Cϑ/k)(δR + R)R

and

(4.16) −δ(1− ν)
∫

Ω

sk(z(t))(x) dx ≤ a1δ(1− ν)(2Cϑ/k + C2
ϑ
/k2)R2.

Set

(4.17) ξk = 2δ(µ− ν)
∫
{x∈Ω||x|≥k}

|c(x)| dx

+ a1(Cϑ/k)(δR + R)R + a1δ(1− ν)(2Cϑ/k + C2
ϑ
/k2)R2.

Using Lemma 4.5 we thus have that

(4.18) η′k + 2δνηk ≤ ξk, k ∈ N.

Differentiating the function t 7→ ηk(t)e2δνt and using (4.18) we obtain

(4.19) ηk(t) ≤ (1/(2δν))ξk[1− e−2δνt] + ηk(0)e−2δνt, t ∈ I.

We have

(4.20) |ηk(0)| ≤ M

where M is as in (4.11). Using our assumptions on ϑ we obtain

(4.21) V ∗(z(t)) ≤
∫

Ω

ϑk(x)c(x) dx ≤
∫
{x∈Ω||x|≥k}

c(x) dx =: ζk, t ∈ I.

It follows that, for t ∈ I,

(4.22)
1
2

∫
Ω

ϑk(x)(ε|δz1(t)(x) + z2(t)(x)|2 + (A(x)∇z1(t)(x)) · ∇z1(t)(x)

+ (β(x)− δα(x) + δ2ε)|z1(t)(x)|2) dx ≤ 1
2δν

ξk + Me−2δνt + ζk.

As before, this implies that

(4.23)
1
2

∫
Ω

ϑk(x)((ε/2)|z2(t)(x)|2 + (A(x)∇z1(t)(x)) · ∇z1(t)(x)

+ (β(x)− δα(x))|z1(t)(x)|2) dx ≤ 1
2δν

ξk + Me−2δνt + ζk.
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Setting M ′ = 2M and ck = 2((1/(2δν))ξk + ζk), k ∈ N we obtain (4.7). The
theorem is proved. �

Theorem 4.6. Assume Hypothesis 4.2. Then πf is a global semiflow. More-
over, there is a constant Cπf

∈ [0,∞[ with the property that for every z0 there is
a tz0 ∈ [0,∞[ such that |z0πf t|Z ≤ Cπf

for all t ∈ [tz0 ,∞[. Furthermore, every
bounded subset of Z is ultimately bounded (rel. to πf ).

Proof. Using the first part of Theorem 4.4 together with Lemma 3.5 (with
κ = δα1) we conclude that for every z0 ∈ Z there is a constant Cz0 ∈ [0,∞[
such that |z0πf t|Z ≤ Cz0 for t ∈ [0, ωz0 [. Since πf does not explode in bounded
subsets of Z, this implies that ωz0 = ∞, so πf is a global semiflow. Similar
arguments prove the other assertions of the theorem. �

Now consider the following alternative hypotheses:

Hypothesis 4.7. ρ is subcritical and ã ∈ Lr
loc(RN ) for some r ∈ R with

r > max(N, 2).

Hypothesis 4.8. ρ is critical, a ∈ Lr(Ω) + L∞(Ω) for some r ∈ [N,∞[
and (3.16) is satisfied.

Lemma 4.9. Let Ñ be an arbitrary ultimately bounded set in Z = H1
0 (Ω)×

L2(Ω) (relative to πf ), (zn)n be an arbitrary sequence in Ñ and (tn)n be a se-
quence in [0,∞[ with tn →∞.

(a) If Hypothesis 4.7 holds, then the sequence (znπf tn)n has a subsequence
which converges in Z,

(b) If Hypothesis 4.8 holds, then (znπf tn)n has a subsequence which con-
verges in Y = L2(Ω)×H−1(Ω).

Proof. There is a t
eN and an R ∈ [0,∞[ such that |zπf t|Z ≤ R for all z ∈ Ñ

and all t ∈ [t
eN ,∞[. We may assume that tn ≥ t

eN and therefore, replacing zn by
znπf t

eN and tn by tn − t
eN we may assume that |znπf t|Z ≤ R for all n ∈ N and

t ∈ [0, tn]. For n ∈ N and t ∈ [0, tn] let un(t) be the first component of znπf t.
Let τ0 ∈ ]0,∞[ be arbitrary to be determined later. Then there an n0(τ0) ∈ N
such that tn ≥ 2τ0 for all n ∈ N with n ≥ n0(τ0). For such n we have

znπf tn = T (τ0)znπf (tn − τ0)

+
∫ τ0

0

T (τ0 − s)(0, (1/ε)(f̂(un(tn − τ0 + s))− f̂((1− ϑk)un(tn − τ0 + s)))) ds

+
∫ τ0

0

T (τ0 − s)(0, (1/ε)f̂((1− ϑk)un(tn − τ0 + s)) ds

We have

(4.24) |T (τ0)znπf (tn − τ0)|Z ≤ Me−µτ0R, n ≥ n0(τ0).
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Since supk∈N |ϑk|W 1,∞(RN ) < ∞ it follows from Lemma 3.10 that

sup
k,n∈N

sup
t∈[0,tN ]

(|un(t)|H1
0

+ |(1− ϑk)un(t)|H1
0
) < ∞.

It follows from our hypotheses and from Proposition 3.14 that there is an L ∈
]0,∞[ such that, for all k ∈ N, n ∈ N and t ∈ [0, tn],

|f̂(un(t))− f̂((1− ϑk)un(t))|L2 ≤ L|ϑkun(t)|H1
0
.

This implies that

(4.25)
∣∣∣∣ ∫ τ0

0

T (τ0 − s)(0, (1/ε)(f̂(un(tn − τ0 + s))

− f̂((1− ϑk)un(tn − τ0 + s)))) ds

∣∣∣∣
Z

≤ sup
s∈[0,τ0]

|ϑkun(tn − τ0 + s)|H1
0
(1/ε)LM

∫ τ0

0

e−µ(τ0−s) ds

≤ (LM/(µε)) sup
s∈[0,τ0]

|ϑkun(tn − τ0 + s)|H1
0
,

for n ≥ n0(τ0). Now use Lemma 3.5 with κ = δα1. Let c > 0 be as in that
Lemma. It follows that, for k, n ∈ N and t ∈ [0, tn]

(4.26) c|ϑkun(t)|2H1
0
≤ 〈A∇(ϑkun(t)),∇(ϑkun(t))〉+ 〈βϑkun(t), ϑkun(t)〉

− δα1〈ϑkun(t), ϑkun(t)〉
≤ 〈A∇(ϑkun(t)),∇(ϑkun(t))〉+ 〈βϑkun(t), ϑkun(t)〉
− δ〈αϑkun(t), ϑkun(t)〉

=
∫

Ω

ϑk(x)(〈A∇un(t),∇un(t)〉+ (β(x)− δα(x))|un(t)(x)|2) dx

+ 2〈ϑkA∇un(t), un(t)∇ϑk〉+ 〈un(t)A∇ϑk, un(t)∇ϑk〉
≤ ck + M ′e−2δνt + a1(2Cϑ/k + C2

ϑ
/k2)R2.

Now, if n ≥ n0(τ0) and s ∈ [0, τ0] then t = tn− τ0 + s ≥ τ0 so (4.26) implies that

sup
n≥n0(τ0)

sup
s∈[0,τ0]

|ϑkun(tn − τ0 + s)|H1
0
→ 0

for k →∞ and τ0 →∞. It follows that the right hand sides of (4.24) and (4.25)
can be made as small as we wish, by taking k ∈ N and τ0 > 0 sufficiently large.
Therefore, a standard argument using Kuratowski measure of noncompactness
implies that the sequence (znπf tn)n has a subsequence which converges in Z

(resp. in Y ) provided we can prove that, for every k ∈ N and τ0 ∈ ]0,∞[ the set

K0 := {T (τ0 − s)(0, (1/ε)f̂((1− ϑk)un(tn − τ0 + s)) | n ≥ n0(τ0), s ∈ [0, τ0]}

is relatively compact in Z (resp. in Y ).
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Let (zl)l be a sequence in K0. It follows that for every l ∈ N there are nl ∈ N
sl ∈ [0, τ0] with zl = T (τ0−sl)(0, (1/ε)f̂(vl)) where vl = (1−ϑk)unl

(tnl
−τ0+sl).

By choosing subsequences if necessary we may assume that sl → s∞ for some
s∞ ∈ [0, τ0]. By Proposition 3.11 (vl)l is compact in Ls(Ω) for each s ∈ [2,∞[
such that s ∈ [2, 2∗[ if N ≥ 3.

First suppose that Hypothesis 4.7 holds. Then s ∈ [2, 2∗[ for s ∈ {2r/(r−2),
2(ρ + 1)}. Taking subsequences if necessary, we may thus assume that there is
a v ∈ H1

0 (Ω) such that (vl)l converges to v weakly in H1
0 (Ω) and strongly in

Ls(Ω) for s ∈ {2r/(r − 2), 2(ρ + 1)}. Moreover, whenever x ∈ Ω and |x| ≥
√

2k

then vl(x) = 0 for all l ∈ N, and so we may assume that v(x) = 0. Thus

(4.27) a(x)(vl(x)− v(x)) = a1(x)(vl(x)− v(x)), l ∈ N, x ∈ Ω

where a1: RN → R is defined by a1(x) = ã(x) if x ∈ Ω and |x| ≤
√

2k and
a1(x) = 0 otherwise. Note that a1 ∈ Lr(RN ) so the map L2r/(r−2)(Ω) →
L2(Ω), h 7→ a1h is defined, linear and bounded. Now (3.24) and (4.27) imply
that |f̂(vl) − f̂(v)|L2 → 0 as l → ∞. This clearly implies that |zl − T (τ0 −
s∞)(0, (1/ε)f̂(v))|Z → 0 as l →∞.

Now suppose Hypothesis 4.8. Then 2 ∈ [2, 2∗[ for N ≥ 3. Taking subse-
quences if necessary, we may thus assume that there is a v ∈ H1

0 (Ω) such that
(vl)l converges to v weakly in H1

0 (Ω) and strongly in L2(Ω). Using (3.28) we
obtain that |f̂(vl) − f̂(v)|H−1 → 0 as l → ∞. Proposition 3.9 now implies that
|zl − T (τ0 − s∞)(0, (1/ε)f̂(v))|Y → 0 as l →∞. The lemma is proved. �

We can now prove the first main result of this paper.

Theorem 4.10. Assume Hypotheses 4.2 and 4.7. Then πf is a global semi-
flow and it has a global attractor.

Proof. This is an immediate consequence of Theorem 4.6, Lemma 4.9 and
Proposition 2.2. �

We will now treat the critical case.

Proposition 4.11. Assume Hypotheses 4.2 and 4.8. Let C6 ∈ [0,∞[ be
arbitrary. Then there is a constant C7 ∈ [0,∞[ such that whenever t ∈ [0,∞[
and z1 and z2 ∈ Z are such that |z1|Z ≤ C6 and |z2|Z ≤ C6 then

|z1πf t− z2πf t|Y ≤ C7e
C7t|z1 − z2|Y .

Proof. By Theorem 4.4 and Lemma 3.5 there is a constant C8 ∈ [0,∞[
such that whenever z ∈ Z and |z|Z ≤ C6 then |zπf t|Z ≤ C8 for all t ∈ [0,∞[.
By (3.28) we now obtain a constant C9 ∈ [0,∞[ such that |f̂(u1)− f̂(u2)|H−1 ≤
C9|u1−u2|L2 for all z1 = (u1, v1), z2 = (u2, v2) ∈ Z with |z1|Z ≤ C8 and |z2|Z ≤
C8. Now Proposition 3.9, the variation-of-constants formula and Gronwall’s
lemma complete the proof. �
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Theorem 4.12. Assume Hypotheses 4.2 and 4.8. Then πf is asymptotically
compact.

Proof. We use an ingenious method due to J. Ball, cf. [5], [18], [21].

Let Ñ be a πf -ultimately bounded subset of Z. Then there is a t
eN ∈ [0,∞[

and a C10 ∈ [0,∞[ such that |zπf t| ≤ C10 whenever z ∈ Ñ and t ≥ t
eN . Let (zn)n

be an arbitrary sequence in Ñ and (tn)n be an arbitrary sequence in [0,∞[ with
tn → ∞ as n → ∞. We must prove that a subsequence of (znπf tn)n converges
strongly in Z. Now using Lemma 4.9 and Cantor’s diagonal procedure we see
that there is a strictly increasing sequence (nk)k in N and for every l ∈ Z with
l ≥ 0 there are a k0(l) ∈ N and a wl ∈ Z with |wl| ≤ C10 such that tnk

− l ≥ t
eN

for k ≥ k0(l) and the sequence (znk
πf (tnk

− l))k≥k0(l) converges to wl weakly
in Z and strongly in Y . By Proposition 4.11, for every l ∈ N and t ∈ [0,∞[,

(4.28) (znk
πf (tnk

− l))πf t → wlπf t, as k →∞, strongly in Y .

This shows that wlπf l = w0 for all l ∈ N. Now define the function F :Z → R by

F(z) = V (z)− V ∗(z), z ∈ Z

where V and V ∗ are as in Proposition 4.1 with γ ≡ 0 and δ ∈ ]0,∞[ such that
λ − δα1 > 0 and α0 − 2δε ≥ 0. Using (3.25) we see that there is a constant
C11 ∈ [0,∞[ such that

sup
z∈Z,|z|Z≤C10

|F(z)| ≤ C11.

Note that Ψ: Z → Z, (u, v) 7→ (u, δu + v), is an isomorphism of normed spaces.
Thus

[(u1, v1), (u2, v2)] := ε〈δu1 + v1, δu2 + v2〉+ 〈A∇u1, u2〉+ 〈(β − δα + δ2ε)u1, u2〉

defines a scalar product on Z whose norm z 7→ ‖z‖ :=
√

[z, z] is equivalent to
the usual norm on Z. Note that F(z) = ‖z‖2 − V ∗(z) for z ∈ Z.

Let ζ = (ζ1, ζ2): [0,∞[ → Z be an arbitrary solution of πf . Proposition 4.1
implies that the function F ◦ ζ is continuously differentiable and, for every t ∈
[0,∞[,

(F ◦ ζ)′(t) + 2δF(ζ(t)) =
∫

Ω

(2δε− α(x))(δζ1(t)(x) + ζ2(t)(x))2 dx

+
∫

Ω

δζ1(t)(x)f(x, ζ1(t)(x)) dx− 2δ

∫
Ω

F (x, ζ1(t)(x)) dx.
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It follows that for every t ∈ [0,∞[

(4.29) F(ζ(t)) = e−2δtF(ζ(0))

+
∫ t

0

e−2δ(t−s)

( ∫
Ω

(2δε− α(x))(δζ1(s)(x)+ζ2(s)(x))2 dx

)
ds

+
∫ t

0

e−2δ(t−s)

( ∫
Ω

δζ1(s)(x)f(x, ζ1(s)(x)) dx−2δ

∫
Ω

F (x, ζ1(s)(x)) dx

)
ds.

Fix l ∈ N and, for k ≥ k0(l), let ζk(t) = (znk
πf (tnk

− l))πf t and ζ(t) = wlπf t

for t ∈ [0,∞[. Then (4.29) with t = l implies that

(4.30) ‖znk
πf (tnk

)‖2 − V ∗(znk
πf (tnk

)) = e−2δlF(znk
πf (tnk

− l))

+
∫ l

0

e−2δ(l−s)

( ∫
Ω

(2δε− α(x))(δζk,1(s)(x) + ζk,2(s)(x))2 dx

)
ds

+
∫ l

0

e−2δ(l−s)ρ(s) ds

where

ρ(s) =
∫

Ω

δζk,1(s)(x)f(x, ζk,1(s)(x)) dx− 2δ

∫
Ω

F (x, ζk,1(s)(x)) dx,

for s ∈ [0, l], and

(4.31) ‖w0‖2 − V ∗(w0) = e−2δlF(wl)

+
∫ l

0

e−2δ(l−s)

( ∫
Ω

(2δε− α(x))(δζ1(s)(x) + ζ2(s)(x))2 dx

)
ds

+
∫ l

0

e−2δ(l−s)

( ∫
Ω

δζ1(s)(x)f(x, ζ1(s)(x)) dx

− 2δ

∫
Ω

F (x, ζ1(s)(x)) dx

)
ds.

Using (3.26) and (3.28) we see that

(4.32) V ∗(znk
πf (tnk

)) → V ∗(w0)

and

(4.33)
∫ l

0

e−2δ(l−s)

( ∫
Ω

δζk,1(s)(x)f(x, ζk,1(s)(x)) dx

− 2δ

∫
Ω

F (x, ζk,1(s)(x)) dx

)
ds

→
∫ l

0

e−2δ(l−s)

( ∫
Ω

δζ1(s)(x)f(x, ζ1(s)(x)) dx

− 2δ

∫
Ω

F (x, ζ1(s)(x)) dx

)
ds
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as k →∞. We claim that

(4.34) lim sup
k→∞

∫ l

0

e−2δ(l−s)

( ∫
Ω

(2δε− α(x))(δζk,1(s)(x) + ζk,2(s)(x))2 dx

)
ds

≤
∫ l

0

e−2δ(l−s)

( ∫
Ω

(2δε− α(x))(δζ1(s)(x) + ζ2(s)(x))2 dx

)
ds.

In fact, since α(x)− 2δε ≥ 0 for all x ∈ Ω we have by Fatou’s lemma

(4.35) lim sup
k→∞

∫ l

0

e−2δ(l−s)

( ∫
Ω

(2δε− α(x))(δζk,1(s)(x) + ζk,2(s)(x))2 dx

)
ds

= − lim inf
k→∞

∫ l

0

e−2δ(l−s)

( ∫
Ω

(α(x)− 2δε)(δζk,1(s)(x) + ζk,2(s)(x))2 dx

)
ds

≤ −
∫ l

0

e−2δ(l−s) lim inf
k→∞

( ∫
Ω

(α(x)− 2δε)(δζk,1(s)(x) + ζk,2(s)(x))2 dx

)
ds.

Let s ∈ [0, l] be arbitrary. Since ((ζk,1(s), ζk,2(s)))k converges to (ζ1(s), ζ2(s))
weakly in Z and Ψ is continuous, linear, hence weakly continuous, it follows that
((ζk,1(s), δζk,1(s) + ζk,2(s)))k converges to (ζ1(s), δζ1(s) + ζ2(s)) weakly in Z. It
follows that for every v ∈ L2(Ω)

〈v, δζk,1(s) + ζk,2(s)〉 → 〈v, δζ1(s) + ζ2(s)〉 as k →∞.

Taking v = (α− 2δε)(δζ1(s) + δζ2(s)) we thus obtain

|(α− 2δε)1/2(δζ1(s) + δζ2(s))|2L2

= 〈(α− 2δε)1/2(δζ1(s) + δζ2(s)), (α− 2δε)1/2(δζ1(s) + δζ2(s))〉
= lim

k→∞
〈(α− 2δε)1/2(δζ1(s) + δζ2(s)), (α− 2δε)1/2(δζk,1(s) + δζk,2(s))〉

≤ |(α− 2δε)1/2(δζ1(s) + δζ2(s))|L2 lim inf
k→∞

|(α− 2δε)1/2(δζk,1(s) + δζk,2(s))|L2

and so

(4.36)
( ∫

Ω

(α(x)− 2δε)(δζ1(s)(x) + ζ2(s)(x))2 dx

)
≤ lim inf

k→∞

( ∫
Ω

(α(x)− 2δε)(δζk,1(s)(x) + ζk,2(s)(x))2 dx

)
.

Inequalities (4.36) and (4.35) prove (4.34). Using (4.30)–(4.34) we obtain

lim sup
k→∞

‖znk
πf (tnk

)‖2 − V ∗(w0) ≤ e−2δlC11

+
∫ l

0

e−2δ(l−s)

( ∫
Ω

(2δε− α(x))(δζ1(s)(x) + ζ2(s)(x))2 dx

)
ds

+
∫ l

0

e−2δ(l−s)

( ∫
Ω

δζ1(s)(x)f(x, ζ1(s)(x)) dx

− 2δ

∫
Ω

F (x, ζ1(s)(x)) dx

)
ds
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= e−2δlC11 + ‖w0‖2 − V ∗(w0)− e−2δlF(wl)

≤ 2e−2δlC11 + ‖w0‖2 − V ∗(w0).

Thus for every l ∈ N

lim sup
k→∞

‖znk
πf (tnk

)‖2 ≤ 2e−2δlC11 + ‖w0‖2

so
lim sup

k→∞
‖znk

πf (tnk
)‖ ≤ ‖w0‖.

Since (znk
πf (tnk

))k converges to w0 weakly in (Z, [ · , · ]) we have

lim inf
k→∞

‖znk
πf (tnk

)‖ ≥ ‖w0‖.

Altogether we obtain
lim

k→∞
‖znk

πf (tnk
)‖ = ‖w0‖.

This implies that (znk
πf (tnk

))k converges to w0 strongly in Z and completes the
proof. �

We can now prove the second main result of this paper.

Theorem 4.13. Assume Hypotheses 4.2 and 4.8. Then πf is a global semi-
flow and it has a global attractor.

Proof. This is an immediate consequence of Theorem 4.6, Theorem 4.12
and Proposition 2.2. �
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[16] O. Ladyženskaya, Attractors for Semigroups and Evolution Equations, Cambridge Uni-

versity Press, Cambridge, 1991.

[17] J. E. Metcalfe, Global Strichartz Estimates for Solutions of the Wave Equation Ex-

terior to a Convex Obstacle, PhD dissertation, Johns Hopkins University, Baltimore,

2003.

[18] I. Moise, R. Rosa and X. Wang, Attractors for non-compact semigroups via energy

equations, Nonlinearity 11 (1998), 1369–1393.

[19] M. Prizzi and K. P. Rybakowski, Attractors for reaction-diffusion equations on ar-

bitrary unbounded domains, Topological Methods in Nonl. Anal. (to appear).

[20] M. Prizzi and K. P. Rybakowski, Attractors for singularly perturbed semilinear

damped wave equations on unbounded domains, Topol. Methods Nonlinear Anal. (to

appear).

[21] G. Raugel, Global attractors in partial differential equations, Handbook of dynamical

systems, Vol. 2, North-Holland, Amsterdam, 2002, pp. 885–982.

[22] H. F. Smith and C. D. Sogge, On Strichartz and eigenfunction estimates for low

regularity metrics, Math. Res. Lett. 1 (1994), 729–737.

[23] B. Wang, Attractors for reaction-diffusion equations in unbounded domains, Physica D

179 (1999), 41–52.

Manuscript received April 2, 2007

Martino Prizzi
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