EXISTENCE, MULTIPLICITY AND CONCENTRATION OF POSITIVE SOLUTIONS FOR A CLASS OF QUASILINEAR PROBLEMS

Claudianor O. Alves - Yanheng Ding

Abstract

Using variational methods we establish existence and multiplicity of positive solutions for the following class of quasilinear problems

$$
-\Delta_{p} u+\lambda V(x)|u|^{p-2} u=\mu|u|^{p-2} u+|u|^{p^{*}-2} u \quad \text { in } \mathbb{R}^{N}
$$

where $\Delta_{p} u$ is the p-Laplacian operator, $2 \leq p<N, p^{*}=p N /(N-p)$, $\lambda, \mu \in(0, \infty)$ and $V: \mathbb{R}^{N} \rightarrow \mathbb{R}$ is a continuous function verifying some hypothesis.

1. Introduction

We are concerned with the existence of positive solutions for the following class of quasilinear elliptic problems
$\left(\mathrm{P}_{\lambda, \mu}\right) \quad \begin{cases}-\Delta_{p} u+\lambda V(x)|u|^{p-2} u=\mu|u|^{p-2} u+|u|^{p^{*}-2} u & \text { in } \mathbb{R}^{N}, \\ u>0 & \text { in } \mathbb{R}^{N}, \\ u \in W^{1, p}\left(\mathbb{R}^{N}\right) & \end{cases}$
where $\Delta_{p} u=\operatorname{div}\left(|\nabla u|^{p-2} \nabla u\right), 2 \leq p<N, p^{*}=p N /(N-p), \lambda, \mu \in(0, \infty)$
and $V: \mathbb{R}^{N} \rightarrow \mathbb{R}$ is a continuous function. Nonlinear equations involving the
2000 Mathematics Subject Classification. 35A15, 35B33, 35J55.
Key words and phrases. Variational methods, critical exponent, elliptic equation.
The first named author supported by IM-AGIMB and CNPq/PADCT 620017/2004-0.
The second named author supported by special funds for Major State Basic Research Projects of China.
p-Laplacian Δ_{p} have been studied extensively in the last years, see for example [1]-[4], [14]-[16] and the references cited in these works. In this paper we study the problems $\left(\mathrm{P}_{\lambda, \mu}\right)$ with V verifying the following hypotheses:
$\left(\mathrm{H}_{1}\right) V \geq 0, \Omega=\mathrm{int}, V^{-1}(0)$ is a nonempty bounded set with smooth boundary.
$\left(\mathrm{H}_{2}\right)$ There exists $M_{0}>0$ such that $\mathcal{L}\left\{x \in \mathbb{R}^{N}: V(x) \leq M_{0}\right\}<\infty$ where \mathcal{L} denotes the Lebesgue measure in \mathbb{R}^{N}.
Such hypotheses were firstly posed to the potentials of a class of Schrödinger equations by Bartsch and Wang in the paper [5]. See also [6], [11] and [12]. Motivated by [6] and [11], we are here interested in the following problems related to $\left(\mathrm{P}_{\lambda, \mu}\right)$:

- Existence of least energy solutions for large λ.
- The concentration behaviour of the solutions as $\lambda \rightarrow \infty$.
- Multiplicity of solutions involving the Lusternick-Schineralmann category of Ω.
Here by a least energy solution we understand a positive solution with minima energy over all nontrivial solutions of $\left(\mathrm{P}_{\lambda, \mu}\right)$. By concentration behaviors we describe tendencies of solutions u_{λ} of $\left(\mathrm{P}_{\lambda, \mu}\right)$ as $\lambda \rightarrow \infty$. Precisely, letting $\left(\mathrm{D}_{\mu}\right)$ denote the limit problem
$\left(\mathrm{D}_{\mu}\right)$

$$
\begin{cases}-\Delta_{p} u=\mu|u|^{p-2} u+|u|^{p^{*}-2} u & \text { in } \Omega \\ u>0 & \text { in } \Omega \\ u=0 & \text { in } \partial \Omega\end{cases}
$$

we say that the solutions $\left(u_{n}\right)$ of $\left(\mathrm{P}_{\lambda_{n}, \mu}\right)$ will be concentrate at a solution u of $\left(\mathrm{D}_{\mu}\right)$ if a subsequence converges strongly to u in $W^{1, p}\left(\mathbb{R}^{N}\right)$ as $\lambda_{n} \rightarrow \infty$.

We say that a sequence $\left(u_{n}\right)$ of solutions of $\left(\mathrm{P}_{\lambda_{n}, \mu}\right)$ concentrates at a solution u of $\left(\mathrm{D}_{\mu}\right)$ if along a subsequence it converges to u strongly in $W^{1, p}\left(\mathbb{R}^{N}\right)$ as $\lambda_{n} \rightarrow \infty$.

The paper is organized as follows. In Section 2 we shall fix some notations and give several technical results. Section 3 is devoted to prove the existence of positive solution for $\left(\mathrm{P}_{\lambda, \mu}\right)$, the main result reads as follows:

Theorem A. Assume $\left(\mathrm{H}_{1}\right)$ and $\left(\mathrm{H}_{2}\right)$ hold and $N \geq p^{2}$. Then, for every $0<\mu<\mu_{1}$, there exists $\lambda_{\mu}>0$ such that $\left(\mathrm{P}_{\lambda, \mu}\right)$ has at least energy solution u_{λ} for each $\lambda \geq \lambda(\mu)$.

Here by μ_{1} we denote the first eigenvalue of $\left(-\Delta_{p}, W_{0}^{1, p}(\Omega)\right)$. In Section 4 we shall study the concentrate behavior of the solutions found in the Theorem A, and the main result is:

Theorem B. Every sequence of solutions $\left(u_{n}\right)$ of $\left(\mathrm{P}_{\lambda_{n}, \mu}\right)$ such that $\mu \in$ $\left(0, \mu_{1}\right), \lambda_{n} \rightarrow \infty$ and $I_{\lambda_{n}, \mu}\left(u_{n}\right) \rightarrow c<1 / N S^{N / p}$ as $n \rightarrow \infty$ concentrates at a solution of $\left(\mathrm{D}_{\mu}\right)$.

In the above theorem, S is the best Sobolev constant of the imbedding $D^{1, p}\left(\mathbb{R}^{N}\right) \hookrightarrow L^{p^{*}}\left(\mathbb{R}^{N}\right)$, given by

$$
S=\inf _{u \in W^{1, p} \backslash\{0\}} \frac{|\nabla u|_{p}^{p}}{|u|_{p^{*}}^{p}},
$$

and $I_{\lambda, \mu}$ is functional related to $\left(\mathrm{P}_{\lambda, \mu}\right)$ given by

$$
I_{\lambda, \mu}(u)=\int_{\mathbb{R}^{N}}\left(\frac{1}{p}|\nabla u|^{p}+\frac{1}{p}(\lambda V(x)-\mu)|u|^{p}-\frac{1}{p^{*}}|u|^{p^{*}}\right) d x .
$$

In Section 5 , we conclude the paper by showing a result of multiplicity which is related to the Lusternick-Schineralmann category of Ω denoted by cat (Ω). The result is the following:

Theorem C. Assume $\left(\mathrm{H}_{1}\right)$ and $\left(\mathrm{H}_{2}\right)$ hold and that $N \geq p^{2}$. Then there exist $0<\mu^{*}<\mu_{1}$ and for each $0<\mu<\mu^{*}$ two numbers $\Lambda(\mu)>0$ and $0<c(\mu)<1 / N S^{(N / p)}$ such that, if $\lambda \geq \Lambda(\mu)$, then $\left(\mathrm{P}_{\lambda, \mu}\right)$ has at least cat (Ω) solutions with energy $I_{\lambda, \mu} \leq c(\mu)$.

Our methods to the problems are variational. The solutions are obtained from critical points of $I_{\lambda, \mu}$ on its Nehari manifold. Since the problem is posed on \mathbb{R}^{N} and the imbedding of $W^{1, p}\left(\mathbb{R}^{N}\right)$ into $L^{p}\left(\mathbb{R}^{N}\right)$ is not compact, we analyze the Palais-Smale sequences with the aid of the parameter λ. We adapt an argument similar to that of Brézis and Nirenberg [10] to deal with the critical nonlinearity. By letting μ small and λ large we connect the multiplicity of solutions with the topology of Ω; the idea here may go back to the work of Benci and Cerami $[7]$ (see also, e.g. [6], [11] and [20]). In addition, since the p-Laplacian operator Δ_{p} is nonlinear, it is clear that the arguments for general $p \geq 2$ are more subtle than that for $p=2$.

2. Notations and technical results

From now on we always assume that $\left(\mathrm{H}_{1}\right)-\left(\mathrm{H}_{2}\right)$ hold and that $N \geq p^{2}$. We denote by $|\cdot|_{q}$ and $\|\cdot\|_{1, p}$ the usual norms in the Banach spaces $L^{q}\left(\mathbb{R}^{N}\right)$ for $q \in[1, \infty]$ and $W^{1, p}\left(\mathbb{R}^{N}\right)$ respectively, and by μ_{1} the first eigenvalue of the following problem

$$
\begin{cases}-\Delta_{p} u=\eta|u|^{p-2} u & \text { in } \Omega \\ u=0 & \text { in } \partial \Omega\end{cases}
$$

Let

$$
E=\left\{u \in W^{1, p}\left(\mathbb{R}^{N}\right): \int_{\mathbb{R}^{N}} V(x)|u|^{p} d x<\infty\right\}
$$

be the Banach space endowed with the norm

$$
\|u\|=\left(\|u\|_{1, p}^{p}+\int_{\mathbb{R}^{N}} V(x)|u|^{p} d x\right)^{1 / p}
$$

which is equivalent to each of the norms

$$
\|u\|_{\lambda}=\left(\|u\|_{1, p}^{p}+\lambda \int_{\mathbb{R}^{N}} V(x)|u|^{p} d x\right)^{1 / p} \quad \text { for } \lambda>0
$$

LEmma 2.1. Let $\lambda_{n} \geq 1$ and $u_{n} \in E$ be such that $\lambda_{n} \rightarrow \infty$ and $\left\|u_{n}\right\|_{\lambda_{n}}^{p}<K$ for some positive constant K. Then there is $u \in W_{0}^{1, p}(\Omega)$ such that, up to a subsequence, $u_{n} \rightharpoonup u$ weakly in E and $u_{n} \rightarrow u$ in $L^{p}\left(\mathbb{R}^{N}\right)$.

Proof. Since $\left\|u_{n}\right\|^{p} \leq\left\|u_{n}\right\|_{\lambda_{n}}^{p}<K$ we may assume that $u_{n} \rightharpoonup u$ weakly in E and $u_{n} \rightarrow u$ in $L_{\mathrm{loc}}^{p}\left(\mathbb{R}^{N}\right)$. Set $C_{m}=\{x:|x| \leq m, V(x) \geq 1 / m\}, m \in \mathbb{N}$. Then

$$
\int_{C_{m}}\left|u_{n}\right|^{p} \leq m \int_{C_{m}} V(x)\left|u_{n}\right|^{p} \leq \frac{m K}{\lambda_{n}} \rightarrow 0 \quad \text { as } n \rightarrow \infty
$$

for every m. This implies that $u(x)=0$ for a.e. $x \in \mathbb{R}^{N} \backslash \Omega$. Hence, since $\partial \Omega$ is smooth, $u \in W_{0}^{1, p}(\Omega)$.

We now show that $u_{n} \rightarrow u$ in $L^{p}\left(\mathbb{R}^{N}\right)$. Let $F=\left\{x \in \mathbb{R}^{N}: V(x) \leq M_{0}\right\}$ with M_{0} as in $\left(\mathrm{H}_{2}\right)$. Then

$$
\int_{F^{c}}\left|u_{n}\right|^{p} \leq \frac{1}{\lambda_{n} M_{0}} \int_{F^{c}} \lambda_{n} V(x)\left|u_{n}\right|^{p} \leq \frac{K}{\lambda_{n} M_{0}} \rightarrow 0 \quad \text { as } n \rightarrow \infty .
$$

Setting $B_{R}=\left\{x \in \mathbb{R}^{N}:|x| \leq R\right\}$, and choosing $r \in(1, N /(N-p)), r^{\prime}=$ $r /(r-1)$, we have

$$
\int_{B_{R}^{c} \cap F}\left|u_{n}-u\right|^{p} \leq\left|u_{n}-u\right|_{p r}^{p} \mathcal{L}\left(B_{R}^{c} \cap F\right)^{1 / r^{\prime}} \leq c\left\|u_{n}-u\right\|^{p} \mathcal{L}\left(B_{R}^{c} \cap F\right)^{1 / r^{\prime}} \rightarrow 0
$$

as $R \rightarrow \infty$ due to $\left(\mathrm{H}_{2}\right)$. Finally, since $u_{n} \rightarrow u$ in $L_{\mathrm{loc}}^{p}\left(\mathbb{R}^{N}\right)$,

$$
\int_{B_{R}}\left|u_{n}-u\right|^{p} d x \quad \text { as } n \rightarrow \infty
$$

from where follows $u_{n} \rightarrow u$ in $L^{p}\left(\mathbb{R}^{N}\right)$.
Hereafter we denote by $L_{\lambda}: W^{1, p}\left(\mathbb{R}^{N}\right) \rightarrow\left(W^{1, p}\left(\mathbb{R}^{N}\right)\right)^{\prime}$ the operator given by

$$
\left\langle L_{\lambda} u, v\right\rangle=\int_{\mathbb{R}^{N}}\left(|\nabla u|^{p-2} \nabla u \nabla v+\lambda V(x)|u|^{p-2} u v\right) d x
$$

and the number

$$
\gamma_{\lambda}=\inf \left\{\int_{\mathbb{R}^{N}}\left(|\nabla u|^{p}+\lambda V(x)|u|^{p}\right) d x ; u \in E,|u|_{p}=1\right\} .
$$

It is easy to check that γ_{λ} is a nondecreasing function in λ.

Lemma 2.2. For each $\mu \in\left(0, \mu_{1}\right)$ there is $\lambda(\mu)>0$ such that

$$
\gamma_{\lambda} \geq \frac{\left(\mu+\mu_{1}\right)}{2} \quad \text { for all } \lambda \geq \lambda(\mu)
$$

Consequently, there exists $\alpha_{\mu}>0$ such that

$$
\alpha_{\mu}\|u\|_{\lambda}^{p} \leq \int_{\mathbb{R}^{N}}\left(|\nabla u|^{p}+(\lambda V(x)-\mu)|u|^{p}\right) d x \quad \text { for all } u \in E \text { and } \lambda \geq \lambda(\mu)
$$

Proof. Assume by contradiction that there exists a sequence $\lambda_{n} \rightarrow \infty$ such that

$$
\gamma_{\lambda_{n}}<\left(\mu+\mu_{1}\right) / 2 \quad \text { for all } n \in \mathbb{N}
$$

and

$$
\gamma_{\lambda_{n}} \rightarrow \tau \leq\left(\mu+\mu_{1}\right) / 2 \quad \text { as } n \rightarrow \infty .
$$

Let $u_{n} \in E$ be such that $\left|u_{n}\right|_{p}=1$ and $\left\langle L_{\lambda_{n}} u_{n}, u_{n}\right\rangle=\tau+o_{n}(1)$. Since

$$
\left\|u_{n}\right\|_{\lambda_{n}}^{p}=\int_{\mathbb{R}^{N}}\left(\left|\nabla u_{n}\right|^{p}+\left(1+\lambda_{n} V(x)\right)\left|u_{n}\right|^{p}\right) d x
$$

we have

$$
\left\|u_{n}\right\|_{\lambda_{n}}^{p} \leq 2\left(1+\mu_{1}\right)
$$

for all n large. By Lemma 2.1 there is $u \in W_{0}^{1, p}(\Omega)$ such that

$$
u_{n} \rightharpoonup u \quad \text { weakly in } E \quad \text { and } \quad u_{n} \rightarrow u \quad \text { in } L^{p}\left(\mathbb{R}^{N}\right) .
$$

Therefore

$$
|u|_{p}=1 \quad \text { and } \quad \liminf _{n \rightarrow \infty} \int_{\mathbb{R}^{N}}\left|\nabla u_{n}\right|^{p} d x \geq \int_{\mathbb{R}^{N}}|\nabla u|^{p} d x
$$

so

$$
\int_{\Omega}\left(|\nabla u|^{p}-\tau|u|^{p}\right) d x \leq \liminf _{n \rightarrow \infty} \int_{\mathbb{R}^{N}}\left(\left|\nabla u_{n}\right|^{p}-\tau\left|u_{n}\right|^{p}\right) d x
$$

which implies

$$
\int_{\Omega}\left(|\nabla u|^{p}-\tau|u|^{p}\right) d x \leq \liminf _{n \rightarrow \infty}\left(\left\langle L_{\lambda_{n}} u_{n}, u_{n}\right\rangle-\tau\right)=0
$$

and thus

$$
\int_{\Omega}|\nabla u|^{p} d x \leq \tau \int_{\Omega}|u|^{p} d x=\tau<\mu_{1}
$$

obtaining this way a contradiction.
Consider the functional

$$
I_{\lambda, \mu}(u)=\frac{1}{p} \int_{\mathbb{R}^{N}}\left(|\nabla u|^{p}+\lambda V(x)|u|^{p}-\mu|u|^{p}\right) d x-\frac{1}{p^{*}} \int_{\mathbb{R}^{N}}|u|^{p^{*}} d x
$$

that is,

$$
I_{\lambda, \mu}(u)=\frac{1}{p}\left(\left\langle L_{\lambda} u, u\right\rangle-\mu|u|_{p}^{p}\right)-\frac{1}{p^{*}}|u|_{p^{*}}^{p^{*}} .
$$

Then $I_{\lambda, \mu} \in C^{1}(E, \mathbb{R})$ and critical points of $I_{\lambda, \mu}$ are solutions of

$$
-\Delta_{p} u+\lambda V(x)|u|^{p-2} u=\mu|u|^{p-2} u+|u|^{p^{*}-2} u, \quad u \in W^{1, p}\left(\mathbb{R}^{N}\right)
$$

Recall that a sequence $\left(u_{n}\right) \subset E$ is called a $(\mathrm{PS})_{c}$ sequence for $I_{\lambda, \mu}$, if $I_{\lambda, \mu}\left(u_{n}\right) \rightarrow c$ and $I_{\lambda, \mu}^{\prime}\left(u_{n}\right) \rightarrow 0$ as $n \rightarrow \infty . I_{\lambda, \mu}$ is said to satisfy the (PS) ${ }_{c}$ condition if any (PS) ${ }_{c}$ sequence contains a convergent subsequence.

LEmma 2.3. If $\mu \in\left(0, \mu_{1}\right)$ and $\lambda \geq \lambda(\mu)$, the functional $I_{\lambda, \mu}$ satisfies the $(\mathrm{PS})_{c}$ condition for all $c<1 / N S^{(N / p)}$.

Proof. By definition,

$$
\begin{equation*}
I_{\lambda, \mu}\left(u_{n}\right)-\frac{1}{p^{*}} I_{\lambda, \mu}^{\prime}\left(u_{n}\right) u_{n}=\frac{1}{N}\left(\left\langle L_{\lambda} u_{n}, u_{n}\right\rangle-\mu\left|u_{n}\right|_{p}^{p}\right) \tag{2.1}
\end{equation*}
$$

and

$$
\begin{equation*}
I_{\lambda, \mu}\left(u_{n}\right)-\frac{1}{p} I_{\lambda, \mu}^{\prime}\left(u_{n}\right) u_{n}=\frac{1}{N}\left|u_{n}\right|_{p^{*}}^{p^{*}} . \tag{2.2}
\end{equation*}
$$

Using Lemma 2.2 and (2.1), we get that u_{n} is a bounded sequence in E.
To prove that $\left(u_{n}\right)$ has a strongly convergent subsequence in E, we assume that $\lambda(\mu)$ verifies the following inequality $\lambda(\mu) \geq \mu / M_{0}$, thus

$$
\begin{equation*}
\lambda M_{0}-\mu \geq 0 \quad \text { for all } \lambda \in[\lambda(\mu), \infty) \tag{2.3}
\end{equation*}
$$

Since $\left(u_{n}\right)$ is a bounded in E, we may assume without loss of generality that

$$
\begin{array}{cl}
u_{n} \rightharpoonup u & \text { in } E, \\
u_{n} \rightarrow u & \text { in } L_{\mathrm{loc}}^{p}\left(\mathbb{R}^{N}\right), \\
u_{n}(x) \rightarrow u(x) & \text { a.e. in } x \in \mathbb{R}^{N} .
\end{array}
$$

Moreover, using the same arguments developed in Garcia Azorero and Peral Alonso [14], Gueda and Veron [16] and Alves [1], we have

$$
\left|\nabla u_{n}\right|^{p-2} \frac{\partial u_{n}}{\partial x_{i}} \rightharpoonup|\nabla u|^{p-2} \frac{\partial u}{\partial x_{i}} \quad \text { in } L^{p}\left(\mathbb{R}^{N}\right), i=1, \ldots, N .
$$

The above informations imply that u is a weak solution of

$$
-\Delta_{p} u+\lambda V(x)|u|^{p-2} u=\mu|u|^{p-2} u+|u|^{p^{*}-2} u \quad \text { in } \mathbb{R}^{N}
$$

Let $w_{n}=u_{n}-u$. By the Brézis and Lieb Lemma [9], we have

$$
\begin{align*}
\left|V^{1 / p} u_{n}\right|_{p}^{p} & =\left|V^{1 / p} u\right|_{p}^{p}+\left|V^{1 / p} w_{n}\right|_{p}^{p}+o_{n}(1) \tag{2.4}\\
\left|u_{n}\right|_{p^{*}}^{p^{*}} & =|u|_{p^{*}}^{p^{*}}+\left|w_{n}\right|_{p^{*}}^{p^{*}}+o_{n}(1) \tag{2.5}
\end{align*}
$$

Moreover, using a lemma proved by Alves in [2], we also have

$$
\begin{equation*}
\left.\int_{\mathbb{R}^{N}}| | \nabla u_{n}\right|^{p-2} \nabla u_{n}-|\nabla u|^{p-2} \nabla u-\left.\left|\nabla w_{n}\right|^{p-2} \nabla w_{n}\right|^{p /(p-1)} d x=o_{n}(1) . \tag{2.6}
\end{equation*}
$$

From (2.4)-(2.6) together $I_{\lambda, \mu}^{\prime}\left(u_{n}\right) \rightarrow 0$ follow

$$
\begin{equation*}
\left(\left\langle L_{\lambda} w_{n}, w_{n}\right\rangle-\mu\left|w_{n}\right|_{p}^{p}\right)-\left|w_{n}\right|_{p^{*}}^{p^{*}}=o_{n}(1) \tag{2.7}
\end{equation*}
$$

By the last equality, up to a subsequence, we can assume that

$$
\lim _{n \rightarrow \infty}\left(\left\langle L_{\lambda} w_{n}, w_{n}\right\rangle-\mu\left|w_{n}\right|_{p}^{p}\right)=l \quad \text { and } \quad \lim _{n \rightarrow \infty}\left|w_{n}\right|_{p^{*}}^{p^{*}}=l \leq N c<S^{N / p}
$$

As in the proof of Lemma 2.1 one shows that

$$
\int_{F}\left|w_{n}\right|^{p} d x \rightarrow 0 \quad \text { as } n \rightarrow \infty
$$

where $F=\left\{x \in \mathbb{R}^{N}: V(x) \leq M_{0}\right\}$. Using the inequality (2.3)

$$
S\left|w_{n}\right|_{p^{*}}^{p^{*}} \leq\left|\nabla w_{n}\right|_{p}^{p} \leq\left|\nabla w_{n}\right|_{p}^{p}+\int_{F^{c}}(\lambda V(x)-\mu)\left|w_{n}\right|^{p} d x
$$

hence

$$
S\left|w_{n}\right|_{p^{*}}^{p^{*}} \leq\left(\left\langle L_{\lambda} w_{n}, w_{n}\right\rangle-\mu\left|w_{n}\right|_{p}^{p}\right)+\mu \int_{F}\left|w_{n}\right|^{p} d x
$$

or equivalently

$$
S\left|w_{n}\right|_{p^{*}}^{p^{*}} \leq\left(\left\langle L_{\lambda} w_{n}, w_{n}\right\rangle-\mu\left|w_{n}\right|_{p}^{p}\right)+o_{n}(1)
$$

Passing to the limit in the last inequality, we obtain $S l^{\left(p / p^{*}\right)} \leq l$. Since $l<S^{(N / p)}$ it follows $l=0$, hence $w_{n} \rightarrow 0$ in E.

3. Existence of positive solutions

The main objective of this section is to prove the Theorem A. We begin recalling the definition of the Nehari manifold $\mathcal{M}_{\lambda, \mu}$ related to the functional $I_{\lambda, \mu}$ given by

$$
\mathcal{M}_{\lambda, \mu}=\left\{u \in E \backslash\{0\}: I_{\lambda, \mu}^{\prime}(u) u=0\right\}
$$

Note that by well know arguments, we have that following equality

$$
c_{\lambda, \mu}=\inf _{u \in \mathcal{M}_{\lambda, \mu}} I_{\lambda, \mu}(u)=\frac{1}{N} \inf _{v \in \mathcal{V}}\left(\left\langle L_{\lambda} u, u\right\rangle-\mu|u|_{p}^{p}\right)^{N / p}
$$

where $\mathcal{V}=\left\{v \in E:|v|_{p^{*}}=1\right\}$.
Using arguments explored by Benci and Cerami [7], we have the following result:

Proposition 3.1. Let $u \in \mathcal{M}_{\lambda, \mu}$ be a critical point of $I_{\lambda, \mu}$ with $I_{\lambda, \mu}(u)<$ $2 c_{\lambda, \mu}$. Then u does not change sign, hence, we can assume that it is a positive function of $\left(\mathrm{P}_{\lambda, \mu}\right)$.

Below, for every domain $\mathcal{D} \subset \mathbb{R}^{N}$, we consider the functional $I_{\mu, \mathcal{D}}(u)=\frac{1}{p} \int_{\mathcal{D}}\left(|\nabla u|^{p}-\mu|u|^{p}\right) d x-\frac{1}{p^{*}} \int_{\mathcal{D}}|u|^{p^{*}} d x=\frac{1}{p}\left(\left\langle L_{0} u, u\right\rangle-\mu|u|_{p}^{p}\right)-\frac{1}{p^{*}}|u|_{p^{*}}^{p^{*}}$
on $W_{0}^{1, p}(\mathcal{D})$. Its Nehari manifold is

$$
\mathcal{M}_{\mu, \mathcal{D}}=\left\{u \in W_{0}^{1, p}(\mathcal{D}) \backslash\{0\}:\left\langle L_{0} u, u\right\rangle-\mu|u|_{p}^{p}=|u|_{p^{*}}^{p^{*}}\right\}
$$

and

$$
c(\mu, \mathcal{D})=\inf _{u \in \mathcal{M}_{\mu, \mathcal{D}}} I_{\mu, \mathcal{D}}(u)=\frac{1}{N} \inf _{v \in \mathcal{V}_{\mathcal{D}}}\left(\left\langle L_{0} u, u\right\rangle-\mu|u|_{p}^{p}\right)^{N / p}
$$

where $\mathcal{V}_{\mathcal{D}}=\left\{v \in W_{0}^{1, p}(\mathcal{D}):|v|_{p^{*}}=1\right\}$.
Lemma 3.2. If $\mu \in\left(0, \mu_{1}\right)$, and $\lambda \geq \lambda(\mu)$ then

$$
\frac{1}{N}\left(\alpha_{\mu} S\right)^{N / p} \leq c_{\lambda, \mu}<c(\mu, \Omega)<\frac{1}{N} S^{N / p}
$$

Proof. By Lemma 2.2,

$$
\alpha_{\mu}\|v\|_{W^{1, p}}^{p} \leq \alpha_{\mu}\|v\|_{\lambda}^{p} \leq\left\langle L_{\lambda} v, v\right\rangle-\mu|v|_{p}^{p} .
$$

Using the definitions of the numbers $S, c_{\lambda, \mu}$ and $c(\mu, \Omega)$, we have the following inequalities

$$
\frac{1}{N}\left(\alpha_{\mu} S\right)^{N / p} \leq c_{\lambda, \mu} \leq c(\mu, \Omega)
$$

From the results showed by Guedda and Veron in [16], we know that

$$
c(\mu, \Omega)<\frac{1}{N} S^{N / p} \quad \text { for all } \mu \in\left(0, \mu_{1}\right)
$$

and $c(\mu, \Omega)$ is achieved at some $u_{0}>0$ with $u_{0} \in W_{0}^{1, p}(\Omega) \cap C(\bar{\Omega})$. Therefore $c_{\lambda, \mu}<c(\mu, \Omega)$, because otherwise would be also achieved at u_{0} which vanish outside Ω. From Harnack's inequality (see Trudinger [19]) follows that $u_{0} \equiv 0$ in \mathbb{R}^{N}, contradicting the fact that u_{0} is positive on Ω.

Proof of Theorem A. Let $\left(u_{n}^{\lambda}\right)$ be a minimizing sequence for $I_{\lambda, \mu}$ on $\mathcal{M}_{\lambda, \mu}$. Then by Ekeland's variational principle (see Ekeland [13]), we may assume that it is a (PS) sequence. It follows from Proposition 3.1 and Lemmas 2.3 and 2.4 that a subsequence converges to a least energy solution u_{λ} of $\left(\mathrm{P}_{\lambda, \mu}\right)$.

4. Concentration of the solutions

Now we prove Theorem B. We need two technical results. The first one is the following (cf. Alves, Carrião and Medeiros [3])

Lemma 4.1. Let $F \in C^{2}\left(\mathbb{R}, \mathbb{R}_{+}\right)$a convex and even function such $F(0)=0$ and $f(s)=F^{\prime}(s) \geq 0$ for all $s \in[0, \infty)$. Then, for all $\phi, \varphi \geq 0$ we have

$$
|F(\phi-\varphi)-F(\phi)-F(\varphi)| \leq 2(f(\phi) \varphi+f(\varphi) \phi)
$$

Proof. Indeed, we have two cases to be considered. If $\varphi \leq \phi$, by convexity we have

$$
\frac{F(\varphi)-F(0)}{\varphi-0} \leq f(\phi)
$$

that is, $F(\varphi) \leq f(\phi) \varphi$. On the other hand, since $f^{\prime}=F^{\prime \prime} \geq 0$ we have that f is nondecreasing and consequently

$$
|F(\phi-\varphi)-F(\phi)| \leq \varphi \int_{0}^{1} f(\phi-t \varphi) d t \leq \varphi f(\phi)
$$

Therefore,

$$
\begin{equation*}
|F(\phi-\varphi)-F(\phi)-F(\varphi)| \leq 2 \varphi f(\phi) \tag{4.1}
\end{equation*}
$$

If $\phi \leq \varphi$, we repeat the above argument to find

$$
\begin{equation*}
|F(\phi-\varphi)-F(\phi)-F(\varphi)| \leq 2 \phi f(\varphi) \tag{4.2}
\end{equation*}
$$

From (4.1)-(4.2) the lemma follows.
The second one reads as
Proposition 4.2. Let u_{n} be a sequence of solutions related to $\left(\mathrm{P}_{\lambda_{n}, \mu}\right)$ with $\lambda_{n} \rightarrow \infty$. Then, if $w_{n}=u_{n}-u$ where u is the weak limit of u_{n} in E, we have

$$
\left\langle L_{\lambda_{n}} u_{n}, u_{n}\right\rangle=\left\langle L_{0} u, u\right\rangle+\left\langle L_{\lambda_{n}} w_{n}, w_{n}\right\rangle+o_{n}(1) .
$$

Proof. Using Lemma 4.1 with $F(u)=|u|^{p}(p \geq 2), \phi=u_{n}$ and $\varphi=u$, we get

$$
\begin{equation*}
\left|u_{n}\right|^{p}+|u|^{p}-2 p \Theta_{n} \leq\left|w_{n}\right|^{p} \leq\left|u_{n}\right|^{p}+|u|^{p}+2 p \Theta_{n} \tag{4.3}
\end{equation*}
$$

where $\Theta_{n}=\left|u_{n}\right|^{p-2} u_{n} u+|u|^{p-2} u u_{n}$. Repeating the same arguments explored in the proof of Lemma 2.1, we observe that $u \in W_{0}^{1, p}(\Omega)$, thus

$$
\int_{\mathbb{R}^{N}} V(x) \Theta_{n} d x=0
$$

and, by (4.3),

$$
\int_{\mathbb{R}^{N}} V(x)\left|u_{n}\right|^{p} d x=\int_{\mathbb{R}^{N}} V(x)\left|w_{n}\right|^{p} d x
$$

The last equality and Brézis and Lieb's Lemma imply

$$
\left\langle L_{\lambda_{n}} u_{n}, u_{n}\right\rangle=\left\langle L_{0} u, u\right\rangle+\left\langle L_{\lambda_{n}} w_{n}, w_{n}\right\rangle+o_{n}(1) .
$$

Proof of Theorem B. Let $\left(u_{n}\right)$ be a sequence of solutions of $\left(\mathrm{P}_{\lambda_{n}, \mu}\right)$, $\mu \in\left(0, \mu_{1}\right), \lambda_{n} \rightarrow \infty$ such that

$$
N I_{\lambda_{n}, \mu}\left(u_{n}\right)=\left\langle L_{\lambda_{n}} u_{n}, u_{n}\right\rangle-\mu\left|u_{n}\right|_{p}^{p} \rightarrow N c<S^{N / p}
$$

Then, it follows from Lemmas 2.1 and 2.2 that there exists a $u \in W_{0}^{1, p}(\Omega)$ such that along a subsequence $u_{n} \rightharpoonup u$ weakly in E and

$$
\begin{equation*}
u_{n} \rightarrow u \quad \text { in } L^{p}\left(\mathbb{R}^{N}\right) \tag{4.4}
\end{equation*}
$$

Since u_{n} is a solution of $\left(\mathrm{P}_{\lambda_{n}, \mu}\right)$, we have, for all $v \in E$, the following equality:

$$
\int_{\mathbb{R}^{N}}\left|\nabla u_{n}\right|^{p-2} \nabla u_{n} \nabla v+\lambda_{n} V(x)\left|u_{n}\right|^{p-2} u_{n} v-\mu\left|u_{n}\right|^{p-2} u_{n} v=\int_{\mathbb{R}^{N}}\left|u_{n}\right|^{p^{*}-2} u_{n} v .
$$

Using the Concentration-Compactness Principle by Lions [17], and similar arguments found in [14] and [1], we have that

$$
u_{n} \rightarrow u \quad \text { in } L_{\mathrm{loc}}^{p^{*}}(\Omega)
$$

which implies

$$
u_{n} \rightarrow u \quad \text { in } W_{\operatorname{loc}}^{1, p}(\Omega)
$$

If $v \in W_{0}^{1, p}(\Omega)$ then $\int_{\mathbb{R}^{N}} V(x)\left|u_{n}\right|^{p-2} u_{n} v d x=0$ for all $n \in \mathbb{N}$. So, letting $n \rightarrow \infty$ in the above equality yields

$$
\int_{\mathbb{R}^{N}}|\nabla u|^{p-2} \nabla u \nabla v-\mu|u|^{p-2} u v=\int_{\mathbb{R}^{N}}|u|^{p^{*}-2} u v \quad \text { for all } v \in W_{0}^{1, p}(\Omega)
$$

This implies that u is a solution of $\left(\mathrm{D}_{\mu}\right)$. Setting $w_{n}=u_{n}-u$, by Proposition 4.2 and Brézis and Lieb's Lemma

$$
\left(\left\langle L_{\lambda_{n}} w_{n}, w_{n}\right\rangle-\mu\left|w_{n}\right|_{p}^{p}\right)-\left|w_{n}\right|_{p^{*}}^{p^{*}}=o_{n}(1) .
$$

We claim that $\left|w_{n}\right|_{p^{*}} \rightarrow 0$. Assume by contradiction that $\left.\left|w_{n}\right|\right|_{p^{*}} ^{p^{*}} \rightarrow l>0$. Then, since

$$
S\left|w_{n}\right|_{p^{*}}^{p} \leq\left|\nabla w_{n}\right|_{p}^{p} \leq\left(\left\langle L_{\lambda_{n}} w_{n}, w_{n}\right\rangle-\mu\left|w_{n}\right|_{p}^{p}\right)+o_{n}(1)
$$

we have

$$
S\left|w_{n}\right|_{p^{*}}^{p} \leq\left|w_{n}\right|_{p^{*}}^{p^{*}}+o_{n}(1)
$$

Using the fact that $\left|u_{n}\right|_{p^{*}}^{p^{*}} \geq\left|w_{n}\right|_{p^{*}}^{p^{*}}+o_{n}(1)$, we get

$$
S^{N / p} \leq \lim _{n \rightarrow \infty}\left|u_{n}\right|_{p^{*}}^{p^{*}}=N c<S^{N / p}
$$

which is a contradiction. Therefore, $\left|w_{n}\right|_{p^{*}} \rightarrow 0$ and $\left\langle L_{\lambda_{n}} w_{n}, w_{n}\right\rangle-\mu\left|w_{n}\right|_{p}^{p} \rightarrow 0$ which, jointly with (4.4), implies $\left\langle L_{\lambda_{n}} w_{n}, w_{n}\right\rangle \rightarrow 0$ consequently,

$$
\begin{equation*}
\int_{\mathbb{R}^{N}}\left(\left|\nabla w_{n}\right|^{p}+\lambda_{n} V\left|w_{n}\right|^{p}\right) \rightarrow 0 \tag{4.5}
\end{equation*}
$$

Now the combination of (4.4) and (4.5) shows that $u_{n} \rightarrow u$ in E finishing the proof.

Corollary 4.3. For each $\mu \in\left(0, \mu_{1}\right), \lim _{\lambda \rightarrow \infty} c_{\lambda, \mu}=c(\mu, \Omega)$.
Proof. By Lemma 3.2, $c_{\lambda, \mu} \rightarrow c \leq c(\mu, \Omega)<(1 / N) S^{N / p}$ and, by Theorem $\mathrm{A}, c_{\lambda, \mu}$ is achieved for $\lambda \geq \lambda(\mu)$. So Theorem B implies that c is achieved by $I_{\mu, \Omega}$ on $\mathcal{M}_{\mu, \Omega}$. Hence, $c \geq c(\mu, \Omega)$.

5. Multiplicity of solutions involving $\operatorname{cat}(\Omega)$

In this section we prove Theorem C which establishes the existence of multiply solutions related with category of set Ω.

Following the arguments of Benci and Cerami [7], Since Ω is a bounded smooth domain of \mathbb{R}^{N}, we may fix $r>0$ small enough such that

$$
\Omega_{2 r}^{+}=\left\{x \in \mathbb{R}^{N}: \operatorname{dist}(x, \Omega)<2 r\right\} \quad \text { and } \quad \Omega_{r}^{-}=\{x \in \Omega: \operatorname{dist}(x, \partial \Omega)>r\}
$$

are homotopically equivalent to Ω. Moreover, we may assume that $B_{r}=\{x \in$ $\left.\mathbb{R}^{N}:|x|<r\right\} \subset \Omega$. We write $c(\mu, r)=c\left(\mu, B_{r}\right)$. Then, arguing as in the proof of Lemma 3.2, we have that

$$
c(\mu, \Omega)<c(\mu, r)<\frac{1}{N} S^{N / p} \quad \text { for } 0<\mu<\mu_{1}
$$

By Talenti [18], we know that the numbers $c(0, G)$ with $G \subset \mathbb{R}^{N}$ are independing of G, in the sense that $c(0, G)=(1 / N) S^{N / p}$. Moreover, in Alves and Ding [4, Lemma 2.4] it was proved that

$$
\begin{equation*}
\lim _{\mu \rightarrow 0} c(\mu, G)=\frac{1}{N} S^{N / p} . \tag{5.1}
\end{equation*}
$$

For $0 \neq u \in L^{p^{*}}(\Omega)$ we consider its center of mass

$$
\beta(u)=\frac{\int_{\Omega}|u|^{p^{*}} x d x}{\int_{\Omega}|u|^{p^{*}} d x} .
$$

Using the same arguments explored by Alves and Ding in [4, Lemma 3.3], we have the following result

Lemma 5.1. There exists a $\mu^{*}=\mu^{*}(r) \in\left(0, \mu_{1}\right)$ such that, for $0<\mu<\mu^{*}$,
(a) $c(\mu, r)<2 c(\mu, \Omega)$,
(b) $\beta(u) \in \Omega_{r}^{+}$for every $u \in \mathcal{M}_{\mu, \Omega}$ with $I_{\mu, \Omega}(u) \leq c(\mu, r)$.

As in Bartsch and Wang [6], we choose $R>0$ with $\bar{\Omega} \subset B_{R}$ and set

$$
\xi(t)= \begin{cases}1 & \text { for } 0 \leq t \leq R \\ R / t & \text { for } R \leq t\end{cases}
$$

Define

$$
\beta_{0}(u)=\frac{\int_{\Omega}|u|^{p^{*}} \xi(|x|) x d x}{\int_{\Omega}|u|^{p^{*}} d x} \quad \text { for } u \in L^{p^{*}}\left(\mathbb{R}^{N}\right) \backslash\{0\} .
$$

Lemma 5.2. There exist $\mu^{*}=\mu^{*}(r) \in\left(0, \mu_{1}\right)$ and for each $0<\mu<\mu^{*}$ a number $\Lambda(\mu) \geq \lambda(\mu)$ with the following properties:
(a) $c(\mu, r)<2 c_{\lambda, \mu}$ for all $\lambda \geq \Lambda(\mu)$, and
(b) $\beta_{0}(u) \in \Omega_{2 r}^{+}$for all $\lambda \geq \Lambda(\mu)$ and all $u \in \mathcal{M}_{\lambda, \mu}$ with $I_{\lambda, \mu} \leq c(\mu, r)$.

Proof. Assertion (a) follows immediately from Lemma 5.1 and Corollary 4.3. We now prove (b). Assume, by contradiction, that for μ arbitrarily small there is a sequence $\left(u_{n}\right)$ such that $u_{n} \in \mathcal{M}_{\lambda_{n}, \mu}, \lambda_{n} \rightarrow \infty, I_{\lambda_{n}, \mu}\left(u_{n}\right) \rightarrow c \leq c(\mu, r)$ and $\beta_{0}\left(u_{n}\right) \notin \Omega_{2 r}^{+}$. Then, by Lemma 2.1, there is $u \in W_{0}^{1, p}(\Omega)$ such that $u_{n} \rightharpoonup u$ weakly in E and $u_{n} \rightarrow u$ in $L^{p}\left(\mathbb{R}^{N}\right)$. We distinguish two cases:

Case 1. $|u|_{p^{*}}^{p^{*}} \leq\left\langle L_{0} u, u\right\rangle-\mu|u|_{p}^{p}$.
Let $w_{n}=u_{n}-u$. Since $V(x)=0$ for $x \in \Omega$, as before, we have

$$
\left\langle L_{\lambda_{n}} u_{n}, u_{n}\right\rangle-\mu\left|u_{n}\right|_{p}^{p}=\left\langle L_{0} u, u\right\rangle-\mu|u|_{p}^{p}+\left\langle L_{\lambda_{n}} w_{n}, w_{n}\right\rangle-\mu\left|w_{n}\right|_{p}^{p}+o_{n}(1) .
$$

Using the fact that $u_{n} \in \mathcal{M}_{\lambda_{n}, \mu}$,

$$
\left\langle L_{\lambda_{n}} w_{n}, w_{n}\right\rangle-\mu\left|w_{n}\right|_{p}^{p} \leq\left|w_{n}\right|_{p^{*}}^{p^{*}}+o_{n}(1) .
$$

We claim that $\left|w_{n}\right|_{p^{*}} \rightarrow 0$. Assume by contradiction that $\left|w_{n}\right|_{p^{*}}^{p^{*}} \rightarrow l>0$. Then, since

$$
S\left|w_{n}\right|_{p^{*}}^{p} \leq\left|\nabla w_{n}\right|_{p}^{p} \leq\left\langle L_{\lambda_{n}} w_{n}, w_{n}\right\rangle-\mu\left|w_{n}\right|_{p}^{p}+o_{n}(1)
$$

that is,

$$
S\left|w_{n}\right|_{p^{*}}^{p} \leq\left|w_{n}\right|_{p^{*}}^{p^{*}}+o_{n}(1) .
$$

Recalling that $\left|u_{n}\right|_{p^{*}}^{p^{*}} \geq\left.\left|w_{n}\right|\right|_{p^{*}} ^{p^{*}}$ follows that

$$
S^{N / p} \leq \lim _{n \rightarrow \infty}\left|u_{n}\right|_{p^{*}}^{p^{*}}=N c<S^{N / p}
$$

which a contradiction. Consequently, $u_{n} \rightarrow u$ in $L^{p^{*}}\left(\mathbb{R}^{N}\right)$ and, therefore, $\beta_{0}\left(u_{n}\right)$ $\rightarrow \beta(u)$. But, since $I_{\mu, \Omega}(u) \leq c(\mu, r)$, it follows from Lemma 5.1 that $\beta(u) \in \Omega_{r}^{+}$. This contradicts our assumptions that $\beta_{0}\left(u_{n}\right) \notin \Omega_{2 r}^{+}$.

Case 2. $|u|_{p^{*}}^{p^{*}}>\left\langle L_{0} u, u\right\rangle-\mu|u|_{p}^{p}$.
In this case $t u \in \mathcal{M}_{\mu, \Omega}$ for some $t \in(0,1)$ and, therefore,

$$
c(\mu, \Omega) \leq I_{\mu, \Omega}(t u)=\frac{t^{p}}{N}\left(\left\langle L_{0} u, u\right\rangle-\mu|u|_{p}^{p}\right) \leq \lim _{n \rightarrow \infty} I_{\lambda_{n}, \mu}\left(u_{n}\right) \leq c(\mu, r) .
$$

Since, by (5.1),

$$
\lim _{\mu \rightarrow 0} c(\mu, \Omega)=\lim _{\mu \rightarrow 0} c(\mu, r)=\frac{1}{N} S^{N / p}
$$

we have that for each $\epsilon>0$,

$$
\left|\lim _{n \rightarrow \infty} I_{\lambda_{n}, \mu}\left(u_{n}\right)-I_{\mu, \Omega}(t u)\right|<\frac{\epsilon}{2 N} \quad \text { for all } \mu \in\left(0, \mu^{*}\right) .
$$

Consequently, there is a $n(\mu)$ large enough such that

$$
\left|\left|u_{n(\mu)}\right|\right|_{p^{*}}^{p^{*}}-|t u|_{p^{*}}^{p^{*}} \mid<\varepsilon
$$

which implies

$$
\left|\beta_{0}\left(u_{n(\mu)}\right)-\beta(t u)\right|<r .
$$

From Lemma 5.1, $\beta(t u) \in \Omega_{r}^{+}$, consequently by the last inequality $\beta_{0}\left(u_{n(\mu)}\right) \in$ $\Omega_{2 r}^{+}$, which is a contradiction.

We will apply the following result of [11] to prove Theorem C.
Proposition 5.3. Let $I: M \rightarrow \mathbb{R}$ be an even C^{1}-functional on a complete symmetric $C^{1,1}$-submanifold $M \subset X \backslash 0$ of some Banach space X. Assume that I is bounded below and satisfies the Palais-Smale condition $(\mathrm{PS})_{c}$ for all $c \leq b$. Further, assume that there are maps

$$
i: Z \rightarrow I^{\leq b} \quad \text { and } \quad \beta_{0}: I^{\leq b} \rightarrow W
$$

where $I^{\leq b}=\{u \in M: I(u) \leq b\}$, whose compositions $\beta_{0} i$ is a homotopy equivalence, and that $\beta_{0}(u)=\beta_{0}(-u)$ for all $u \in M \cap I \leq b$. Then I has at least cat (Z) pairs $\{u,-u\}$ of critical points with $I(u)=I(-u) \leq b$.

Proof of Theorem C. We are going to apply Proposition 5.3. Take $X=$ $E, Z=\Omega_{r}^{-}$and $W=\Omega_{2 r}^{+}$. For $0<\mu \leq \mu^{*}$ and $\lambda \geq \Lambda(\mu)$ we consider $I=I_{\lambda, \mu}$, $M=\mathcal{M}_{\lambda, \mu}$ and $b=c(\mu, r)$. As mentioned before, $b<(1 / N) S^{N / p}$, hence by Lemma $2.3 I_{\lambda, \mu}$ satisfies the $(\mathrm{PS})_{c}$ condition for all $c \leq b$. Clearly $I_{\lambda, \mu}(u)=$ $I_{\lambda, \mu}(-u)$. Take $\alpha=\beta_{0}$ defined above. Lemma 5.2 shows that it is well defined from $I_{\lambda, \mu}^{\leq c(\mu, r)}$ into $\mathcal{M}_{\lambda, \mu}$. By definition $\beta_{0}(u)=\beta_{0}(-u)$. Let $u_{r} \in W_{0}^{1, p}\left(B_{r}\right) \subset E$ be a minimizer of $I_{\mu, B_{r}}$ on $\mathcal{M}_{\mu, B_{r}}$ with $u_{r}>0$, radially symmetric. We define the map i by setting $i(x)=u_{r}(\cdot-x)$. Since $i(x) \equiv 0$ in $\mathbb{R}^{N} \backslash \Omega$ for every $x \in \Omega_{r}^{-}$, we have $i(x) \in \mathcal{M}_{\lambda, \mu}$ and $I_{\lambda, \mu}(i(x))=I_{\mu, B_{r}}\left(u_{r}\right)=c(\mu, r)$. The radially symmetry implies that $\beta_{0}(i(x))=x$ for every $x \in \Omega_{r}^{-}$. Now it follows from Proposition 5.3 that $\left(\mathrm{P}_{\lambda, \mu}\right)$ has at least $\operatorname{cat}(\Omega)$ solutions, finishing the proof.

References

[1] C. O. Alves, Existência de solução positiva de equações não-lineares variacionais em \mathbb{R}^{N}, Doct. Dissertation, Un. B., 1996.
[2] C. O. Alves, Existence of positive solutions for a problem with lack of compactness involving the p-Laplacian, Nonlinear Anal. 51 (2002), 1187-1206.
[3] C. O. Alves, P. C. Carrião and E. S. Medeiros, Multiplicity of solutions for a class of quasilinear problem in exterior domains with Neumann conditions, Abstr. Appl. Anal. 3 (2004), 251-268.
[4] C. O. Alves and Y. H. Ding, Multiplicity of positive solutions to a p-Laplacian equation involving critical nonlinearity, J. Math. Anal. Appl. 279 (2003), 508-521.
[5] T. Bartsch and Z. Q. Wang, Existence and multiplicity results for some superlinear elliptic problems in \mathbb{R}^{N}, Comm. Partial Differential Equations 20 (1995), 1725-1741.
[6] , Multiple positive solutions for a nonlinear Schrödinger equation, Z. Angew Math. Phys. 51 (2000), 366-384.
[7] V. Benci and G. Cerami, The effect of the domain topology on the number of positive solutions of nonlinear elliptic problems, Arch. Rational Mech. Anal. 114 (1991), 79-83.
[8] , Existence of positive solutions of the equation $-\Delta u+a(x) u=u^{(N+2) /(N-2)}$ in \mathbb{R}^{N}, J. Funct. Anal. 88 (1990), 91-117.
[9] H. Brézis and E. Lieb, A relation between pointwise convergence of funtions and convergence of functionals, Proc. Amer. Math. Soc. 88 (1983), 486-490.
[10] H. Brézis and L. Nirenberg, Positive solutions of nonlinear elliptic equations invovling critical Sobolev exponents, Comm. Pure Appl. Math. 36 (1983), 437-447.
[11] M. Clapp and Y. H. Ding, Positive solutions of a Schrodinger equation with critical nonlinearity, Z. Angew. Math. Phys 55 (2004), 592-605.
[12] D. G. de Figueiredo and Y. H. Ding, Solutions of a nonlinear Schrodinger equation, Discr. Cont. Dynam. System 08 (2002), 563-584.
[13] I. Ekeland, On the variational principle, J. Math. Anal. Appl. 47 (1974), 324-353.
[14] J. Garcia Azorero and I. Peral Alonso, Existence and non-uniqueness for the p-Laplacian: Nonlinear eigenvalues, Comm. Partial Differentil Equations 12 (1987), 1389-1430.
[15] , Multiplicity of solutions for elliptic problems with critical exponent or with a nonsymmetric term, Trans. Amer. Math. Soc. 323 (1991), 877-895.
[16] M. Gueda and L. Veron, Quasilinear ellipitc equations involving critical Sobolev exponents, Nonlinear Anal. 13 (1989), 879-902.
[17] P. L. Lions, The concentration-compactness principle in the calculus of variations: The limit case, Rev. Mat. Iberoamericana 1 (1985), 145-201.
[18] G. Talenti, Best constant in Sobolev inequality, Annali di Mat. 110 (1976), 353-372.
[19] N. S. Trudinger, On Harnack type imequalities and their applications to a quasilinear ellipitc equations, Comm. Pure Appl. Math. 20 (1967), 721-747.
[20] W. Willem, Minimax Theorems, Birkhäuser, 1986.

Claudianor O. Alves

Universidade Federal de Campina Grande
Departamento de Matemática e Estatística
CEP:58109-970, Campina Grande, PB, BRASIL
E-mail address: coalves@dme.ufcg.edu.br

Yanheng Ding
Institute of Mathematics, AMSS
Chine? Academy of Science
100080 Beijing, P.R. China
E-mail address: dingyh@math03.math.ac.cn

