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CONLEY INDEX OVER THE BASE MORPHISM
FOR MULTIVALUED DISCRETE DYNAMICAL SYSTEMS

Kinga Stolot

Abstract. We define an index of Conley type for a certain class of up-
persemicontinuous multivalued dynamical systems, using techniques intro-
duced by Mrozek, Reineck and Srzednicki [4] for the index over the base.
We give the characterisation of the nontrivial index and present an example,
proving that our index detects isolated invariant sets that are not detected
by Kaczyński and Mrozek’s [2] index.

1. Introduction

The classical Conley index is a toplogical invariant defined for flows, which
provides information on the existence and structure of isolated invariant sets.
The notion of an index pair is crucial for the definition of some quotient space
obtained by shrinking of an exit set to a point. The actual index is the homotopy
type of this quotient space. It appears that the significant information is lost
due to this shrinking procedure. This is overcome in case of flows by introducing
a notion of a base [4]. Roughly speaking, instead of “glueing” to a point (i.e.
shrinking an exit set to a base point) one is “glueing” to an arbitrary space.
In the basic form the Conley index detects isolated invariant sets, but can

not distinguish between the sets which are positioned differently in the space
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but locally look the same. This last feature can be captured if we use the index
defined by Mrozek, Reineck and Srzednicki [4].
Although, there are several extensions of the classical Conley index for the

discrete dynamical systems (both singlevalue and multivalued), the generalisa-
tion of the Mrozek–Reineck–Srzednicki’s index over the base still remains an
open problem. However, the definitions and results that are presented here in
the multivalued setting lacks the generality of the singlevalued version for flows
[4], but still we can present an example that our index detects more isolated
invariant sets than the cohomological index defined by Kaczyński and Mrozek
[2] for multivalued maps.
To obtain the full generality, as in the single valued case one would have to

admit more spaces to act as a “base” (here we admit only a space on which
the dynamical system acts) and more “glueing functions of an exit set to the
base” (here we glue via identity). The results presented in this paper open the
way to further extensions. It seems that the cohomological version of the index
over the base for multivalued maps would be easier to obtain than the complete
generalisation of the homotopy index.
It is worth mentioning that there is a significant difference between Mrozek,

Reineck and Srzednicki’s construction for flows and the one presented here for
discrete multivalued dynamical system. To pose a correct definition of the index
one needs not only to fix a “base space”, but also a “map acting on the base
space” — this is why we call our index, an “index over the base morphism”
(or more specifically “over a dynamical system”), and not just an “index over
a base” like in [4].
This approach combined with the use of the Szymczak functor, instead of

cohomologies and Leray reductions used by Kaczyński and Mrozek, enables us
to give some characterization of a trivial index and by this to prove that our
index detects more isolated invariant sets than the one defined in [2].

2. Notation

By Z, N, Z−, R, I we denote respectively integers, natural numbers (with
zero), negative integers with zero, real numbers and an interval [0, 1]. Let X be
a topological space.
By Top we denote the category of topological spaces with continuous func-

tions. HTop stands for a homotopy category over a category Top. Morphisms of
HTop are homotopy classes denoted by [f ]Top, for f ∈ Top(X,Y ). Composition
of the morphisms of this category is denoted by

[g]Top • [f ]Top = [g ◦ f ]Top,
where f ∈ Top(X,Y ) and g ∈ Top(Y, Z).
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Let X and Y be topological spaces. Then F :X � Y is a multivalued map
i.e. a map of the values being subsets of Y . For the editorial reasons instead of
� we use → in diagrams. The set

graph(F ) = {(x, y) ∈ X × Y : y ∈ F (x)}
is called a graph of the map F . If singlevalued maps appear in the multivalued
context then we identify y with {y}, for y ∈ Y . Therefore we use the term graph
in the above sense also for single-valued maps.
For P = (P1, P2) by F (P ) we mean a pair of sets (F (P1), F (P2)).
Let Z be also a topological space and G:Y � Z be a multivalued map. A

composition of the maps F and G is a map G ◦ F :X � Z, defined as

(2.1) G ◦ F (x) :=
⋃
{G(y) : y ∈ F (x)}, for x ∈ X.

For F :X � X , by F k, for k ∈ N \ {0} we understand k-times composition
according to the formula (2.1).
If F :X � Y is a multivalued map between two Hausdorff spaces, it is said

to be upper semicontinuous if the set

F ∗−1(A) := {x ∈ X : F (x) ∩A �= ∅},
called a large counter image of the set A is closed for any closed ∅ �= A ⊂ Y .
Let us denote by USCc, the category of Hausdorff spaces with upper semi-

continuous maps of compact values. Composition of morphisms is defined by
the formula (2.1).
If f :X → Y is a continuous (single-valued) map such that

graph(f) ⊂ graph(F ),
we call it a selector of F and we would write then f ∈ F .
Let us quote after [5] the definition of the induced morphism by the multi-

valued map.

Definition 2.1 [5, Definition 3.2]. We say that F ∈ USCc(X,Y ) induces a
morphism if F possess a selector and any two selectors of F can be joined by
the homotopy in F i.e.

for all f, f ′ ∈ F there exists h ∈ Top(X × I, Y ) such that h0 = f and h1 = f ′,
and moreover, ht ∈ F , for any t ∈ I.

We call F̂ defined as

(2.2) F̂ := {f ∈ Top(X,Y ) : f ∈ F}
a morphism induced by F or briefly an induced morphism. If f ∈ USCc(X,Y ) is
a singlevalued map we write f , instead of f̂ as it should be according to (2.2).
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The composition of induced morphisms Ĝ◦ F̂ , for G ∈ USCc(Y, Z) is defined
along selectors (for details see [5, (3.2)]).
To simplify notation below we would write x instead of {x}.
Definition 2.2 ([2, Definition 2.1]). Let (X, dX) be a locally compact met-

ric space and Φ:X × Z � X an upper semicontinous map of compact values.
We call Φ a multivalued dynamical system if

(a) Φ(x, 0) = x for all x ∈ X ,
(b) Φ(Φ(x, n),m) = Φ(x, n+m) for all m,n ∈ Z, mn > 0 for all x ∈ X ,
(c) y ∈ Φ(x,−1) if and only if x ∈ Φ(y, 1) for all x, y ∈ X .

If X is as in the above definition and F :X � X is upper semicontinous map
of compact values, then we can define ΦF :X × Z � X as

(2.3) ΦF (x, n) :=


Fn(x) for x ∈ X and n > 0,
x for x ∈ X and n = 0,
(F ∗−1)−n(x) for x ∈ X and n < 0.

Obviously ΦF satisfies conditions from Definition 2.2. We say that F induces
a multivalued dynamical system (2.3), or briefly we would call F a dynamical
system. A trajectory (solution) for a dynamical system F passing through x ∈ X
is a (singlevalued) map σ: J → X , such that σ(n+1) ∈ F (σ(n)), for n, n+1 ∈ J ,
and σ(n0) = x, for some n0 ∈ J , where J is an interval in Z. By an interval
in Z we understand a trace of a closed interval in R and denote it by [m,n], for
m,n ∈ Z or m = −∞ or n = +∞.
Assume N ⊂ X is a compact subset and F :X � X is a dynamical system.

We use the following notation:

Inv+N := {x ∈ N : ∃ solution σ:N→ N for F passing through x},
Inv−N := {x ∈ N : ∃ solution σ:Z− → N for F passing through x},
InvN := {x ∈ N : ∃ solution σ:Z→ N for F passing through x}.

The sets Inv+N , Inv−N and InvN are called respectively a positive, negative
invariant part of N , and an invariant part of N .
A compact set N ⊂ X is called, after [2], an isolating neighbourhood for

a dynamical system F if and only if

InvN ∪ F (InvN) ⊂ intN.
A compact set S ⊂ X is called an isolated invariant set for a dynamical system F ,
if there exists an isolating neighbourhood N such that S is it’s invariant part.
For our purposes we use a slightly modified definition of an index pair intro-

duced in the multivalued context by Kaczyński and Mrozek, [2].
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Definition 2.3. Let N be an isolating neighbourhood for a multivalued
dynamical system F . Then the pair P = (P1, P2) of compact subsets of N
such that P1 \ P2 ⊂ intN is called an index pair in the neighbourhood N for
a multivalued dynamical system F if

(a) F (Pi) ∩N ⊂ Pi, i = 1, 2,
(b) F (P1 \ P2) ⊂ intN ,
(c) Inv−N ⊂ intNP1 and Inv+N ⊂ N \ P2.

Despite other differences notice that here we admit index pairs that are
not topological pairs, i.e. we omit the condition P2 ⊂ P1, required in [2]. By
IP (N,F ) we denote a family of index pairs for F and an isolating neighbour-
hood N .
Following [4] we put U(P ) := X × 0∪P1× 1/ ∼P , where ∼P is the following

equivalence relation

(x, i) ∼P (x′, i′) ⇔ x = x′ ∧ (i = i′ ∨ x ∈ P2).

In U(P ) we consider a quotient topology induced by the natural projection
q∼P :X × 0 ∪ P1 × 1→ U(P ).
Let us remind after [5] the definition of index map and joining maps. Assume

N andM are isolating neighbourhoods for the same invariant set, P ∈ IP (N,F )
and Q ∈ IP (M,F ). Moreover assume that the following condition holds

F (Q) ∩N ⊂ P.

Under the above assumptions we define a map FQP :U(Q)� U(P ) as

FQP ([x, i]∼Q) := {[y, i]∼P : y ∈ F (x) ∩N} ∪ {[y, 0]∼P : y ∈ F (x) ∩ (X \ intN)}.

The map FQP is called a joining map. In case P = Q we call it an index map
and then denote by FP instead of FPP .
Let us remind that the Szymczak relation denoted here by ≡ and Szymczak

functor denoted by Sz are defined in [8] (one can also find them in [6], where the
notation is compatible with the one used in this paper).

3. Objects over the base morphism

Assume X ∈ Top, and F ∈ USCc(X,X) induce a morphism F̂ ⊂ Top(X,X).
Let us define a category of objects over the base morphism, which we denote by

HTop(X, F̂ ). The objects of HTop(X, F̂ ) are triples (U, rU , sU ), where U ∈ Top
and rU ∈ Top(U,X), sU ∈ Top(X,U) are such that rU ◦ sU = idX .
Assume that also (V, rV , sV ) ∈ HTop(X, F̂ ). We say that

Φ ∈ HTop(X, F̂ )((U, rU , sU ), (V, rV , sV ))
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if and only if there exists φ ∈ Top(U, V ) such that Φ = [φ]Top, and moreover,
there exists k ∈ N such that the following diagrams of the morphisms of the
category HTop commute

U
[φ]Top

��

[rU ]Top
��

V

[rV ]Top
��

X
[ �F ]kTop

�� X

U
[φ]Top

�� V

X

[sU ]Top

��

[ �F ]kTop

�� X

[sV ]Top

��

If k > 0 then [F̂ ]kTop denotes k time composition of [F̂ ]Top in the category HTop.
When k = 0 then [F̂ ]0Top := [idX ]Top.

Composition of the morphisms in the category HTop(X, F̂ ) is defined as
Ψ • Φ := [ψ̂ ◦ φ̂]Top,

where Φ is as above and Ψ ∈ HTop(X, F̂ )((V, rV , sV ), (W, rW , sW )) and Ψ =
[ψ̂]Top. The identity morphism

Id(U,rU ,sU ) ∈ Top(X, F̂ )((U, rU , sU ), (U, rU , sU )),
is defined as [idU ]Top ∈ HTop(U,U).

4. Objects over the dynamical system

Assume that X is a locally compact metric space and F ∈ USCc(X,X) in-
duces a morphism F̂ and satisfies some technical assumption — namely condition
(C) from [5].
Recall from [5] that F satisfies condition (C) if for any compact set ∅ �= K ⊂

X any

s:X → X and s:K → X such that s ∈ F, s ∈ F |K
can be joined by a homotopy hs,s:K × I → X , which satisfies the following
conditions

(hs,s)0 = s|K and (hs,s)1 = s,

(hs,s)t ∈ F |K , for any t ∈ I,
(hs,s)t(x) = s(x) = s(x) for x ∈ K such that s(x) = s(x).

We call s a full selector of F and s a partial selector of a map F .
Condition (C) guarantees that the joining maps generated by the dynamical

system F which induces a morphism also induce morphisms.
These assumptions hold from now on to the end of this paper.
The category HTop(X, F̂ ) defined for a dynamical system F satisfying the

above assumptions will be called a category of objects over a dynamical system F .
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Let P = (P1, P2) ∈ IP (N,F ), for some isolating neighbourhood N for a dy-
namical system F . Let us consider a triple

(U(P ), rP , sP ),

where rP :U(P )→ X and sP :X → U(P ) are defined as

rP ([x, i]∼P ) := x, for [x, i]∼P ∈ U(P ),
sP (x) := [x, 0]∼P , for x ∈ X.

Note that both rP and sP are well defined and continuous.

P x 11

X x 0

P2P2

rP

[x,i]~P

x

sP

[x,0]~P

x

X

Figure 1. An example of the space (U(P ), rP , sP )

Theorem 4.1. Under above assumptions and notation we have for any P ∈
IP (N,F ):

(a) (U(P ), rP , sP ) ∈ HTop(X, F̂ ),
(b) [F̂P ]Top ∈ HTop(X, F̂ )((U(P ), rP , sP ), (U(P ), rP , sP )),
(c) if in addition there is given Q ∈ IP (M,F ) such that the pairs P and Q
satisfy assumptions under which map FQP is defined, then

[F̂QP ]Top ∈ HTop(X, F̂ )((U(Q), rQ, sQ), (U(P ), rP , sP )),

(d) if there is given Q ∈ IP (M,F ) such that i:P ⊂ Q, then

[U(i)]Top ∈ HTop(X, F̂ )((U(P ), rP , sP ), (U(Q), rQ, sQ)),

where U(i):U(P ) → U(Q) is defined as U(i)([x, i]∼P ) := [x, i]∼Q , for
[x, i]∼P ∈ U(P ).

Proof. To prove (a) it is sufficient to note that rP ◦sP (x) = rP ([x, 0]∼P ) =
x, for any x ∈ X .
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Let us prove (c) (note that (b) is a particular case of (c) for Q = P and
M = N). It is easy to check that diagrams

(4.1)

U(Q) FQP ��

rQ

��

U(P )
rP

��

X
F

�� X

U(Q) FQP �� U(P )

X

sQ

��

F
�� X

sP

��

commute in the category USCc. Obviously the maps rP , rQ, sP and sQ in-
duce morphisms in the sense of Definition 2.1 and from the assumptions F also
induces a morphism. Due to [5, Theorem 4.10] also the map FQP induces a mor-
phism. Therefore for all maps mentioned above the homotopy partial functor
Ĥtp:USCc −→◦ HTop is defined (for the definition of the functor see [5]).
To prove that [F̂QP ]Top is a morphism in the category HTop(X, F̂ ) it is

enough to show that the following is true

[rP ]Top • [F̂QP ]Top = [F̂ ]Top • [rQ]Top,(4.2)

[F̂QP ]Top • [sQ]Top = [sP ]Top • [F̂ ]Top.(4.3)

The formulas (4.2) and (4.3) follows from the commutativity of the diagrams
(4.1), provided all compositions rP ◦ FQP , F ◦ rQ, FQP ◦ sQ and sP ◦ F induce
morphisms. Indeed both (4.2) and (4.3) holds, because the partial homotopy
functor applied to (4.1) preserves the compositions if only all maps under con-
sideration induce morphisms [5, Definition 3.1(b)]. Therefore it remains to show
that

(i) F ◦ rQ induces a morphism,
(ii) sP ◦ F induces a morphism.
Note first that both F ◦ rQ and sP ◦F possess a selector, because F does so.

To prove (i) it is enough to show that any two selectors of F ◦ rQ are homotopic
within a graph of F ◦ rQ. A similar property needs to be shown for selectors of
sP ◦ F .
Before we write appropriate homotopies we prove some specific properties of

selectors of F ◦ rQ and sP ◦ F .

If g ∈ F ◦ rQ, then g = g ◦ sQ ◦ rQ.(4.4)

If g ∈ sP ◦ F, then g = sP ◦ rP ◦ g.(4.5)

Note first that from (4.1) we obtain that

g([x, i]∼Q) ∈ F ◦ rQ([x, i]∼Q) = rP ◦ FQP ([x, i]∼Q) = {y : y ∈ F (x)},

therefore g([x, i]∼Q) = g([x, 0]∼Q) which justifies (4.4).
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Similarly to prove (4.5) we exploit (4.1) to obtain that

g(x) ∈ FQP ◦ sQ(x) = sP ◦ F (x) = {[y, 0]∼P : y ∈ F (x)}.

Let us write appropriate homotopies in case of (i). Assume g(k) ∈ F ◦ rQ, for
k = 1, 2. Then g(k) ◦ sQ ∈ F ◦ rQ ◦ sQ = F , and so we can define a map f̃ (k) as

f̃ (k)([x, i]∼Q) :=

{
[g(k) ◦ sQ(x), 1]∼P for i = 1 ∧ x ∈ Q1 \Q2,
[g(k) ◦ sQ(x), 0]∼P for i = 0 ∨ (i = 1 ∧ x ∈ Q1 ∩Q2).

From [5, Conclusion 4.12] we obtain that f̃ (k) ∈ FQP , and from [5, Theorem 4.10]
we know that there exists a homotopy H:U(Q)× I → U(P ), such that

H( · , 0) = f̃ (1) and H( · , 1) = f̃ (2),

and H( · , t) ∈ FQP , for any t ∈ I. Then rP ◦ H:U(Q) × I → X is a homotopy
joining

rP ◦ H( · , 0) = rP ◦ f̃ (1) = g(1) ◦ sQ ◦ rQ,(4.6)

rP ◦ H( · , 1) = rP ◦ f̃ (2) = g(2) ◦ sQ ◦ rQ,(4.7)

and

(4.8) rP ◦ H( · , t) ∈ rP ◦ FQP = F ◦ rQ, for any t ∈ I.

From (4.4), (4.6)–(4.8) we obtain an appropriate homotopy joining

rP ◦ H( · , 0) = g(1) and rP ◦ H( · , 1) = g(2).

To prove (ii) let us consider g(k) ∈ sP ◦ F , for k = 1, 2. Then rP ◦ g(k) ∈
rP ◦ sP ◦F = F , and from the assumption that F induces a morphism we obtain
that there exists a homotopy h:X × I → X , such that

h( · , 0) = rP ◦ g(1) and h( · , 1) = rP ◦ g(2),

and h( · , t) ∈ F , for any t ∈ I. Therefore by using (4.5) we know that sP ◦h:X×
I → U(P ) is a homotopy joining

sP ◦ h( · , 0) = sP ◦ rP ◦ g(1) = g(1),
sP ◦ h( · , 1) = sP ◦ rP ◦ g(2) = g(2),

in such a way that sP ◦ h(·, t) ∈ sP ◦ F , for any t ∈ I.
To complete the proof of (c) it is enough to apply the homotopy partial

functor to (4.1).
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In order to prove (d) it is enough to notice that the following diagrams of
singlevalued continuous maps commute

(4.9)

U U(i)
��

rP

��

U(Q)
rQ

��

X
idX

�� X

U U(i)
�� U(Q)

X

sP

��

idX
�� X

sQ

��

Because all maps appearing in diagrams (4.9) are singlevalued then they trivially
induce morphisms. By applying a homotopy partial functor to (4.9), similarly
as in the proof of (c) we obtain that

[rQ]Top • [U(i)]Top = [idX ]Top • [rP ]Top,
[U(i)]Top • [sP ]Top = [sP ]Top • [idX ]Top. �

Conclusion 4.2. Under the assumptions of the previous theorem

[rP ]Top • [(F̂P )n]Top = [(F̂ )n]Top • [rP ]Top,
[(F̂P )n]Top • [sP ]Top = [sP ]Top • [(F̂ )n]Top,

for any n ∈ N.

5. Definition and characterization of the index

The following theorem enables us to pose the definition of the index over the
base morphism. Recall that everything that we present here is done under the
assumptions stated at the beginning of Section 4.

Theorem 5.1. Assume S is an isolated invariant set for a multivalued
dynamical system F . Then for any isolating neighbourhood N of S and any
P ∈ IP (N,F ) the objects in the Szymczak category Sz(HTop(X, F̂ )) of the form

((U(P ), rP , sP ), [F̂P ]Top),

are isomorphic.

The proof of this theorem is analogous to the proof of [5, Theorem 5.2],
with only that difference that now one needs to check additional conditions to
guarantee that the maps used in the proof of Theorem 5.1 are actually the
morphisms in the category HTop(X, F̂ ). This is proved in the Theorem 4.1, as
the only maps used to construct the appropriate isomorphisms in Theorem 5.1
are these coming from inclusions and joining maps.

Theorem 5.1 justifies that the following definition is well posed.
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Definition 5.2. The family of all objects in the Szymczak category

Sz(HTop(X, F̂ ))
isomorphic with the object ((U(P ), rP , sP ), [F̂P ]Top) defined in Theorem 5.1 is
called a homotopy Conley index over the multivalued dynamical system F for an
isolated invariant set S and is denoted by C(X,F )(S).

The proof of the homotopy property of the index over a dynamical system,
goes along the same way as the proof given in [7].
For a locally compact metric spaceX and F ∈ USCc(X×I,X) which induces

a morphism F̂ , let us define Fµ ∈ USCc(X,X), for µ ∈ I as follows
Fµ(x) := F (x, µ), for x ∈ X.

Assume that each of the maps Fµ for µ ∈ I induces a morphism F̂µ and satisfies
assumption (C) .
By Inv(N,µ) we denote an invariant part of the set N under the multi-

valued dynamical system Fµ. Similarly we introduce notation Inv+(N,µ) and
Inv−(N,µ). By IP (N,µ) we understand a family of index pairs for Fµ in an
isolating neighbourhood N .
Under the above assumptions and using the established notation we can state

the homotopy property of the index over the base morphism.

Theorem 5.3. Assume that N is an isolating neighbourhood for Fλ0 , for
some λ0 ∈ I. Then
(a) N is an isolating neighbourhood for Fλ, if λ is sufficiently close to λ0;
(b) if N is an isolating neighbourhood for all λ ∈ I, then C(X,Fλ)(Inv(N,λ))
does not depend on the parameter λ.

Below we give some characterization of the trivial index over the base.
Let us consider the isolated invariant set ∅ for the multivalued dynamical

system F :X � X . Obviously (∅, ∅) is an index pair for ∅ and we can write an
index map as F∅:X × 0� X × 0, as follows

F∅((x, 0)) = (F (x), 0), for x ∈ X.
Moreover, r∅:X × 0→ X and s∅:X → X × 0 are given by formulas

r∅(x, 0) = x and s∅(x) = (x, 0), for x ∈ X.
Then

(5.1) ((X × 0, r∅, s∅), [F̂∅]Top) ∈ HTop(X, F̂ ).
The family of objects isomorphic with (5.1) is denoted by 0(X, �F ).
The proof of the Ważewski property of the index over a dynamical system,

is analogous to the proof given in [5] and [7].
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Theorem 5.4. If C(X,F )(S) �= 0(X, �F ), then S �= ∅.

It is straightforward that

Remark 5.5. Objects ((X × 0, r∅, s∅), [F̂∅]Top) and ((X, idX , idX), [F̂ ]Top)
are isomorphic in the category Endo(HTop(X, F̂ )).

Let us prove the characterization of the index of the empty set, which enables
us to show that our index detects more isolated invariant sets than the one defined
by Kaczyński and Mrozek.

Theorem 5.6. If ((U(P ), rP , sP ), [F̂P ]Top) ∈ 0(X, �F ) then for some m,n ∈ N

[(F̂P )m]Top = [sP ◦ (F̂ )n ◦ rP ]Top.

Proof. From the assumptions and from Remark 5.5 we obtain that the
following objects are isomorphic in the category Sz(HTop(X, F̂ ))

(5.2) ((U(P ), rP , sP ), [F̂P ]Top) � ((X, idX , idX), [F̂ ]Top).

Condition (5.2) is equivalent to the fact that there exists p, r ∈ N and morphisms
φ ∈ Top(U(P ), X) and ψ ∈ Top(X,U(P )) such that

[[φ]Top, p]≡: ((U(P ), rP , sP ), [F̂P ]Top) → ((X, idX , idX), [F̂ ]Top),
[[ψ]Top, r]≡: ((X, idX , idX), [F̂ ]Top) → ((U(P ), rP , sP ), [F̂P ]Top)

are mutually inverse in the Szymczak category Sz(HTop(X, F̂ )), i.e.

[[ψ ◦ φ]Top, r + p]≡ = [[idU(P )]Top, 0]≡,(5.3)

[[φ ◦ ψ]Top, p+ r]≡ = [[idX ]Top, 0]≡.(5.4)

From the definition of the relation ≡ (see [8]) conditions (5.3) and (5.4) are
equivalent to

[ψ ◦ φ]Top • [(F̂P )s]Top = [(F̂P )s+r+p]Top,
[φ ◦ ψ]Top • [(F̂ )t]Top = [(F̂ )t+p+r]Top.

for some s, t ∈ N. The above two equations are equivalent to

[ψ ◦ φ ◦ (F̂P )s]Top = [(F̂P )s+r+p]Top,(5.5)

[φ ◦ ψ ◦ (F̂ )t]Top = [(F̂ )t+p+r]Top.(5.6)

The following diagrams commute for some k ∈ N, because

[φ]Top ∈ HTop(X, F̂ )((U(P ), rP , sP ), (X, idX , idX)).
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(5.7)

U(P ) [φ]Top ��

[rP ]Top
��

X

[idX ]Top
��

X
[( �F )k]Top

�� X

��
U(P ) [φ]Top �� X

��

X
[(�F )k]Top

��

[sP ]Top

��

X

[idX ]Top

��

Similarly, because [ψ]Top ∈ HTop(X, F̂ )((X, idX , idX), (U(P ), rP , sP )), therefore
for some l ∈ N diagrams below commute

(5.8)

X
[ψ]Top

��

��

U(P )
[rP ]Top

��

X
[(�F )l]Top

��

[idX ]Top

��

X

X
[ψ]Top

��

[idX ]Top
��

U(P )

X
[(�F )l]Top

��

��

X

[sP ]Top

��

From the commutativity of the left diagram in (5.7) and the right diagram
in (5.8) we obtain

[φ]Top = [(F̂ )k ◦ rP ]Top, [ψ]Top = [sP ◦ (F̂ )l]Top.

Using the above two equations and the fact that rP ◦ sP = idX we learn that
(5.5) and (5.6) can be expressed respectively as

[sP ◦ (F̂ )l+k ◦ rP ◦ (F̂P )s]Top = [(F̂P )s+r+p]Top,(5.9)

[(F̂ )k+l+t]Top = [(F̂ )t+p+r]Top.(5.10)

From Conclusion 4.2

[rP ◦ (F̂P )s]Top = [(F̂ )s ◦ rP ]Top,

therefore condition (5.9) is equivalent to

[sP ◦ (F̂ )l+k+s ◦ rP ]Top = [(F̂P )s+r+p]Top,

To complete the proof it is enough to put m := s+ r + p and n := l+ k + s. �

6. Index over the base morphism versus the cohomological index

We give an example of the isolated invariant set which can be detected by
the index over the base morphism, but can not be detected by the cohomological
index of Kaczyński and Mrozek.

Let us consider a space

X := (−∞, 0] ∪
{[

2
2n+ 1

,
1
n

]
: n ∈ N \ {0}

}
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and a multivalued dynamical system generated by the map F :X � X , defined
as

(6.1) F (x) :=



[−3(n+ 1),−3n] for x ∈ (−(n+ 1),−n), n ∈ N,

[−3(n+ 1),−3(n− 1)] for x = −n, n ∈ N \ {0},
[−3, 0] for x = 0,[

2
2(n+ 1) + 1

,
1
n+ 1

]
for x ∈

[
2

2n+ 1
,
1
n

]
, n ∈ N \ {0}.

The upper part of Figure 2 illustrates the graph of F .
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Figure 2

Let us identify the diagonal ∆X = {(x, x) : x ∈ X} with the space X ⊂ R,
on which the multivalued dynamical system F acts.

At the upper part of the Figure 2 an example of two trajectories is presented
(obviously for a multivalued system there can be more than one trajectory pass-
ing through each point).
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It is easy to check that S = [−1, 0] is an isolated invariant set for F :X � X .
Note that

S = ∆X ∩ graphF
therefore for any x ∈ S there exists a trajectory {xn}n∈Z such that xn = x, for
any n ∈ Z, therefore S is an invariant set.
Let us show that N := [−7, 1/2] ∩ X is an isolating neighbourhood of S.

Note that for any x ∈ N \ S all trajectories exit N either for positive times (if
x ∈ [−7,−1)), or for negative times (if x ∈ (0, 1/2] ∩X). Therefore InvN = S,
because as we have already shown S is an invariant set and S ⊂ N . Moreover,

InvN ∪ F (InvN) = [−1, 0] ∪ [−3, 0] ⊂ intXN,
and so N is an isolating neighbourhood for S.
Because F has convex values, therefore any two of its selectors can be joined

by the homotopy going in the graph of F . Therefore F induces a morphism F̂ .
Moreover, any partial selector of F can be joined with the full selector by the
homotopy which does not change anything on the coincidence points and so
condition (C) holds.
Let us put

(6.2) P1 := [−7, 1/3]∩X and P2 := [−7,−2].
We shall first check that P = (P1, P2) is an index pair in the isolating neigh-
bourhood N . Both sets are compact subsets of X and

P1 \ P2 = (−2, 1/3]∩X ⊂ intXN.
Let us check the remaining conditions from Definition 2.3.

(a) F (P1) ∩N = ([−21, 1/4]∩X) ∩ ([−7, 1/2]∩X) ⊂ [−7, 1/3]∩X = P1;
F (P2) ∩N = [−21,−6]∩ ([−7, 1/2] ∩X) = [−7,−6] ⊂ [−7,−2] = P2;

(b) F (P1 \ P2) = F (([−7, 1/3] ∩ X) \ [−7,−2]) = F ((−2, 1/3] ∩ X) =
(−6, 1/4] ∩X ⊂ intXN .

To prove condition (c) note that

(6.3) Inv−N = [−7, 0] and Inv+N = [−1, 1/2]∩X.
Applying (6.3) we obtain that

Inv−N = [−7, 0] ⊂ int[−7,1/2]∩X([−7, 1/3]∩X) = intNP1,
Inv+N = [−1, 1/2]∩X ⊂ (−2, 1/2]∩X = ([−7, 1/2] ∩X) \ [−7,−2] = N \ P2.
Let us consider f :X → X , defined by the formula

(6.4) f(x) :=


3x for x ∈ (−∞, 0],
1
n+ 1

for x ∈
[
2

2n+ 1
,
1
n

]
, n ∈ N \ {0}.
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By comparing formulas (6.1) and (6.4) we obtain immediately that f is a selector
of F .
It is equally easy to check that g:U(P )→ U(P ) defined as

(6.5) g([x, i]∼P ) :=


[f(x), i]∼P for x ∈ (−∞, 0] such that F (x) ⊂ [−7, 0],

or x ∈
[
2

2n+ 1
,
1
n

]
, n ∈ N \ {0},

[f(x), 0]∼P for x ∈ (−∞, 0] such that F (x) �⊂ [−7, 0].
is a selector of an index map FP . The lower part of Figure 2 illustrates a space
U(P ) (the vertical arrows indicate the identification of points from “the first
level” with the “zero level”).
We shall show that for f ∈ F and g ∈ FP defined above the following holds

(6.6) [gm]Top �= [sP ◦ fn ◦ rP ]Top, for any m,n ∈ N,

then certainly also

[(F̂P )m]Top �= [sP ◦ (F̂ )n ◦ rP ]Top, for any m,n ∈ N

and so by the contraposition of Theorem 5.6 we obtain that C(X,F )(S) �= 0(X, �F ).
In order to prove (6.6) let us number the subsequent connected components

of X by giving a number n to the component [2/(2n+ 1), 1/n], for n ∈ N \ {0}.
The component (−∞, 0] is numbered by 0 and it will not be used later. Let
us give the analogous numbers to the components of U(P ), giving number i0 to
the component from the “level zero”, placed over the i-th component of X , and
number i1 respectively to the one from the “level one”.
Let us consider x∗ = 1/5 (any x∗ ∈ (0, 1/3)∩X would suit) and anym,n ∈ N.

Note that [x∗, 1]∼P belongs to the component 51 of U(P ). According to the
definition (6.5) the point gm([x∗, 1]∼P ) belongs to the component (5 + m)

1 of
U(P ). On the other hand

sP ◦ fn ◦ rP ([x∗, 1]∼P ) = sP ◦ fn(x∗) = [fn(x∗), 0]∼P
belongs to the component (5 + n)0 of U(P ).
Concluding, the maps gm and sP ◦ fn ◦ rP are not homotopic, because for

[x∗, 1]∼P ∈ U(P ) the values gm([x∗, 1]∼P ) and sP ◦ fn ◦ rP ([x∗, 1]∼P ) lie in
different connected components of U(P ). So we proved that the index over the
base morphism of the set S is nontrivial.
Let us show now that Kaczyński and Mrozek’s index KM(S, F ) of the set S

is trivial. Let us briefly remind after [2] definition of KM(S, F ).
Note first that P = (P1, P2) defined by (6.2) is also an index pair in the sense

of Kaczyński and Mrozek [2] (in particular it is a topological pair). We shall use
the following notation,

TN(P ) := (P1 ∪ (X \ intN), P2 ∪ (X \ intN))
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and iP :P → TN (P ) is an inclusion.
By I∗P :H

∗(P )→ H∗(P ) Kaczyński and Mrozek denote an index map defined
as

I∗P := H
∗(FP,TN (P )) ◦ (H∗(iP ))−1,

where H∗ stands for Aleksander–Spanier’s cohomologies functor and

FP,TN (P ):P � TN(P )

is an appropriate restriction of the map F . According to [2] the index of the set
S is equal to

(6.7) KM(S, F ) = L(H∗(P ), I∗P ),

where L denotes Leray reduction. From the definition of the Leray reduction
(for definition see [3]) we can write (6.7) as

L(H∗(P ), I∗P ) = {L(Hn(P ), I(n)P )}n∈N = {(gim(I(n)P )′, (I(n)P )′′)}n∈N,

where

(I(n)P )
′:Hn(P )/gker(I(n)P ) � [a] → [(I(n)P )(a)] ∈ Hn(P )/gker(I(n)P ),
(I(n)P )

′′: gim(I(n)P )
′ � a → (I(n)P )′(a) ∈ gim(I(n)P )′.

Note that in our example only H0(P ) is nontrivial, because P1 \ P2 ⊂ R has
infinitely many connected components, but already H0(P )/gkerI(0)P is trivial,
because

(6.8) gkerI(0)P = H
0(P ).

To explain (6.8) it is enough to notice that F transforms connected component
of X of number n into component (n+ 1), for n > 0. Therefore homomorphism
I
(0)
P takes generators of a group H

0(P ) into subsequent generators with just the
order reversed.
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