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ON THE STRUCTURE OF FIXED POINT SETS
OF ASYMPTOTICALLY REGULAR MAPPINGS

IN HILBERT SPACES

Jarosław Górnicki

Abstract. The purpose of this paper is to prove the following theorem:
Let H be a Hilbert space, let C be a nonempty bounded closed convex

subset of H and let T : C → C be an asymptotically regular mapping. If

lim inf
n→∞

‖T n‖ <
√

2,

then Fix T = {x ∈ C : Tx = x} is a retract of C.

1. Introduction

The concept of asymptotically regular mapping is due to F. E. Browder and
W. V. Petryshyn [2].

Definition 1.1. Let (M,d) be a metric space. A mapping T :M → M is
called asymptotically regular if limn→∞ d(Tnx, Tn+1x) = 0 for all x ∈M .

Example 1.2. Let T : [0, 1]→ [0, 1] be an arbitrary nonexpansive mapping.
It is easy to check that S = (I + T )/2 is also nonexpansive. Thus

|Sn+1x− Snx| ≤ . . . ≤ |S2x− Sx| ≤ |Sx− x|.
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Furthermore, S is nondecreasing function. Indeed, if x ≤ y and Sx > Sy we
have (x+ Tx)/2 > (y + Ty)/2 which implies

|Tx− Ty| ≥ Tx− Ty > y − x = |x− y|.

Thus

1 ≥ |Sn+1x− x| =
n∑
k=1

|Sk+1x− Skx| ≥ n · |Sn+1x− Snx|

which implies |Sn+1x− Snx| ≤ 1/n. Then S is asymptotically regular.

In 1976 S. Ishikawa obtained a surprising result, a special case of which may
be stated as follows: Let C be an arbitrary nonempty bounded closed convex
subset of a Banach space E, T :C → C nonexpansive, and λ ∈ (0, 1). Set
Tλ = (1 − λ)I + λT . Then for each x ∈ C, ‖Tn+1λ x − Tnλ x‖ → 0 as n → ∞,
and FixT = FixTλ. In 1978, M. Edelstein and R. C. O’Brien proved that
{Tn+1λ x−Tnλ x} converges to 0 uniformly for x ∈ C, and, in 1983, K. Goebel and
W. A. Kirk proved that this convergence is even uniform for T ∈ T , where T
denotes the collection of all nonexpansive self mappings of C, see [3], [5].
If T is a mapping from a set C into itself, then we use the symbol ‖T‖ to

denote the Lipschitz constant of T , that is

‖T‖ = sup
{
‖Tx− Ty‖
‖x− y‖

: x, y ∈ C, x 6= y
}
.

The present author proved the following result [6]:

Theorem 1.3. Let M be a complete metric space with k(M) > 1 (k(M)
denotes the Lifshitz constant of M space, [1]) and T be a mapping from M
to M . If T is asymptotically regular,

lim inf
n→∞

‖Tn‖ < k(M),

and, for some x ∈ M , the sequence {Tnx} is bounded then T has a fixed point
in C.

In particular, the Lifshitz constant of a Hilbert space H, k0(H) =
√
2, [1,

Theorem 2.7]. For more results concerning asymptotically regular mappings
see [1] and references therein.
In this note, by means of techniques of asymptotic center (introduced in 1972

by M. Edelstein) in a Hilbert space, we give an elementary proof of Theorem 1.3
in a Hilbert space and prove that in this theorem set FixT is not only connected
but even a retract of C, that is, there exists a continuous mapping R:C → FixT
such that R|FixT = I. For more information on the structure of fixed point sets
see [3], [5] and references therein.
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2. Fixed point theorems

Let H be a Hilbert space and let C be a nonempty bounded closed convex
subset of H, T :C → C be a mapping such that limn→∞‖Tn‖ = k. Consider the
functional for fix u ∈ C

r(x) = lim sup
n→∞

‖x− Tnu‖, x ∈ C,

and

r(C, {Tnu}) = inf{r(x) : x ∈ C},
A(C, {Tnu}) = {z ∈ C : r(z) = r(C, {Tnu})}.

The set A(C, {Tnu}) is called asymptotic center of {Tnu} with respect to C, and
it is well known that in a uniformly convex Banach space the asymptotic center
is a singleton, i.e. A(C, {Tnu}) = {z}, [4, Lemma 4.3]. We define the functional

d(u) = lim sup
n→∞

‖u− Tnu‖, u ∈ C.

Then

(a) ‖z − u‖ ≤ 2d(u),
(b) d(z) ≤ α · d(u), where α =

√
k2 − 1.

Proof of (a). Let z be the asymptotic center in C which minimizes the
functional r(x), x ∈ C. Then

‖z − u‖ ≤ ‖z − Tnu‖+ ‖Tnu− u‖,

and taking the limit superior as n→∞ on each side,

‖z − u‖ ≤ lim sup
n→∞

‖z − Tnu‖+ lim sup
n→∞

‖Tnu− u‖ ≤ r(z) + d(u) ≤ 2d(u). �

Proof of (b). First we shall shown that for each k ∈ N holds

(2.1) r(T kz) ≤ ‖T k‖ · r(z).

For n > k, we have

‖T kz − Tnu‖ ≤ ‖T kz − Tn+ku‖+ ‖Tn+ku− Tnu‖

≤ ‖T k‖ · ‖z − Tnu‖+
k−1∑
j=0

‖Tn+j+1u− Tn+ju‖.

Taking the limit superior as n→∞ on each side, by the asymptotic regularity,
we get (2.1).
Now we observe that for all x ∈ C,

(2.2) r2(z) + ‖z − x‖ ≤ r2(x).
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For every x, z, u in a Hilbert space H and 0 < t < 1, we have

‖tx+ (1− t)z − Tnu‖2 = t‖x− Tnu‖2 + (1− t)‖z − Tnu‖2 − t(1− t)‖x− z‖2,

and hence taking the limit superior as n→∞ on each side,

r2(z) ≤ r2(tx+ (1− t)z) ≤ tr2(x) + (1− t)r2(z)− t(1− t)‖x− z‖2,
tr2(z) + t(1− t)‖z − x‖2 ≤ tr2(x).

Dividing these inequalities through t, taking the t ↓ 0, we get (2.2).
Taking in inequality (2.2), x = Tnz, we obtain

r2(z) + ‖z − Tnz‖2 ≤ r2(Tnz)
(2.1)
≤ ‖Tn‖2 · r2(z)

and

‖z − Tnz‖2 ≤ (‖Tn‖2 − 1)r2(z) ≤ (‖Tn‖2 − 1)d2(u).

Taking the limit superior as n→∞ on each side, we have

d2(z) ≤ (k2 − 1)d2(u), d(z) ≤ α · d(u). �

Theorem 1.3′ (the case of a Hilbert space). Let H be a Hilbert space and
let C be a nonempty bounded closed convex subset of H. If T :C → C is an
asymptotically regular mapping such that

lim inf
n→∞

‖Tn‖ <
√
2,

then T has a fixed point in C.

Proof. Let {ni} be a sequence of natural numbers such that

lim inf
n→∞

‖Tn‖ = lim
i→∞
‖Tni‖ = k <

√
2.

Assume that k ≥ 1, otherwise if k < 1, then well known Banach Contraction
Principle guarantees a fixed point of T .

For an z1 ∈ C we inductively define a sequence {zm} in the following manner:
zm+1 is the unique asymptotic center in C if the sequence {Tnizm}i, that is, zm+1
is the unique point in C that minimizes the functional

lim sup
i→∞

‖x− Tnizm‖

over x in C, for m = 1, 2, . . . From inequalities (a), (b), where α =
√
k2 − 1 < 1,

‖zm+1 − zm‖ ≤ 2d(zm) ≤ 2 · αm−1 · d(z1)→ 0 as m→∞.
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Thus {zm} is a Cauchy sequence. Let z = limm→∞ zm. Then one can easily see
that

‖z − Tniz‖ ≤‖z − zm‖+ ‖zm − Tnizm‖+ ‖Tnizm − Tniz‖
≤ (1 + ‖Tni‖) · ‖z − zm‖+ ‖zm − Tnizm‖.

Taking the limit superior as i→∞ on each side, we get

d(z) = lim sup
i→∞

‖z − Tniz‖ ≤ (1 + k)‖z − zm‖+ d(zm)

≤ (1 + k)‖z − zm‖+ αm−1 · d(z1)→ 0

as m→∞. Therefore, d(z) = 0. This implies, Tz = z. Indeed, if d(z) = 0, then
Tniz → z as i→∞. Let p ∈ N and T p is continuous. Then

‖T p+niz − z‖ ≤ ‖T p+niz − Tniz‖+ ‖Tniz − z‖

≤
p−1∑
j=0

‖Tni+j+1z − Tni+jz‖+ ‖Tniz − z‖

and by the asymptotic regularity of T , T p+niz → z as i → ∞. Since T p is
continuous

T pz = T p
(
lim
i→∞
Tniz
)
= lim
i→∞
T p+niz = z.

It is easily verified (by induction) that T psz = z for all s ∈ N. Then

‖Tz − z‖ = ‖T ps+1z − T psz‖ → 0 as s→∞,

so Tz = z. �

Now let A:C → C denote a mapping which associates with a given x ∈ C a
unique z ∈ A(C, {Tnix}), that is, z = Ax, where

r(y) = lim sup
i→∞

‖y − Tnix‖

and {ni} is the sequence as in the proof of Theorem 1.3′, and z = infy∈C r(y).
Then analogically as shown E. Sędłak and A. Wiśnicki [7], we have the following
lemma:

Lemma 2.1. Let H be a Hilbert space and let C be a nonempty bounded
closed convex subset of H. Then the mapping A:C → C is continuous.

Theorem 2.2. Let H be a Hilbert space and let C be a nonempty bounded
closed convex subset of H. If T :C → C is an asymptotically regular mapping
such that

lim inf
n→∞

‖Tn‖ <
√
2,
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then FixT = {x ∈ C : Tx = x} is a retract of C.

Proof. Let {ni} be a sequence of natural numbers such that

lim inf
n→∞

‖Tn‖ = lim
i→∞
‖Tni‖ = k <

√
2.

By Theorem 1.3′, FixT 6= ∅.
For any x ∈ C we can inductively define a sequence {zj} in the following

manner: z1 is the unique point in C that minimizes the functional

lim sup
i→∞

‖y − Tnix‖

over y ∈ C and zj+1 is the unique point in C that minimizes the functional

lim sup
i→∞

‖y − Tnizj‖

over y ∈ C, that is, zj = Ajx, j = 1, 2, . . . As in the proof of Theorem 1.3′, from
inequalities (a), (b), we get

‖zj+1 − zj‖ ≤ 2 · αj · d(x) ≤ 2 · αj · diamC,

where α =
√
k2 − 1 < 1, j = 1, 2, . . . Thus

sup
x∈C
‖Apx−Ajx‖ ≤ αj

1− α
· 2 · diamC → 0 if p, j →∞,

which implies that sequence {Ajx} converges uniformly to a function

Rx = lim
j→∞
Ajx, x ∈ C.

It follows from Lemma 2.1, that R:C → C is continuous. Moreover,

‖Rx− TniRx‖ ≤‖Rx−Ajx‖+ ‖Ajx− TniAjx‖+ ‖TniAjx− TniRx‖
≤ (1 + ‖Tni‖) · ‖Rx−Ajx‖+ ‖Ajx− TniAjx‖.

Taking the limit superior as i→∞ on each side, we get

d(Rx) = lim sup
i→∞

‖Rx− TniRx‖

≤
(
1 + lim

i→∞
‖Tni‖

)
· ‖Rx−Ajx‖+ lim sup

i→∞
‖Ajx− TniAjx‖

≤ (1 + k) · ‖Rx−Ajx‖+ d(Ajx)
(b)
≤ (1 + k) · ‖Rx−Ajx‖+ αj · d(x)
≤ (1 + k) · ‖Rx−Ajx‖+ αj · diamC → 0

as j →∞. Thus d(Rx) = 0, and as in the proof of Theorem 1.3′, Rx = TRx for
every x ∈ C, and R is a retraction of C onto FixT . �
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