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NONTRIVIAL SOLUTIONS
FOR SUPERQUADRATIC

NONAUTONOMOUS PERIODIC SYSTEMS

Shouchuan Hu — Nikolas S. Papageorgiou

Abstract. We consider a nonautonomous second order periodic system

with an indefinite linear part. We assume that the potential function is su-
perquadratic, but it may not satisfy the Ambrosetti–Rabinowitz condition.

Using an existence result for C1-functionals having a local linking at the

origin, we show that the system has at least one nontrivial solution.

1. Introduction

We consider the following second order periodic system

(1.1)

{
−x′′(t)−A(t)x(t) = ∇F (t, x(t)) a.e. on T = [0, b],

x(0) = x(b), x′(0) = x′(b).

Here A:T → RN×N is a continuous map such that for every t ∈ T , A(t) is a
symmetric N ×N matrix; F :T ×RN → R is measurable, it is C1 in the x ∈ RN

variable and ∇F (t, x) denotes the gradient of the map x → F (t, x).
Problem (1.1) was studied by Rabinowitz [14] under the assumption that for

each t ∈ T , the N×N matrix A(t) is negative definite and the potential function
x → F (t, x) = F (x) is strictly superquadratic. More precisely, it satisfies the
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so-called Ambrosetti–Rabinowitz condition (AR-condition), namely, there exist
ϑ > 2 and M > 0 such that

(1.2) 0 < ϑF (x) ≤ (∇F (x), x)RN for all ‖x‖ ≥ M.

The approach of Rabinowitz is variational, based on purely minimax meth-
ods. Since then, condition (1.2) has been used extensively in the study of su-
perquadratic periodic systems. We mention the works of Ekeland–Ghoussoub [3],
Girardi–Matzeu [7], Li–Willem [8], Long [9], Xu [16] and the references therein.
An existence theorem for superquadratic periodic systems with a nonsmooth po-
tential was proved by Motreanu–Motreanu–Papageorgiou [12], who employed a
nonsmooth analog of condition (1.2). In all the aforementioned works, the ap-
proach is variational, based on the critical point theory. Superquadratic systems
with a convex potential function were studied by Ekeland [2], Mawhin [10] and
Mawhin–Willem [11], using the dual action principle. Recently, Fei [5] consid-
ered superquadratic Hamiltonian systems, without assuming the AR-condition
and with a Hamiltonian function H(t, x) which is nonnegative and C1 on T×RN

and proved an existence result using the linking theorem. Related are also the
works of Faraci–Kristaly [4] and Motreanu–Motreanu–Papageorgiou [13].

In this paper we consider system (1.1), when the Carathéodory potential
function F exhibits a superquadratic growth near infinity and near zero, but may
not satisfy the AR-condition. Also, we do not impose any global sign condition
on either F or A. Under these general conditions and using a slight variant of a
result of Li–Willem [8], we are able to show that problem (1.1) admits at least
one nontrivial solution.

In the next section, we present the mathematical tools to be used in this
work. In Section 3, we have all the auxiliary results leading to the existence
theorem.

2. Mathematical background

The hypotheses on the matrix valued function t → A(t), are the following:

(A) A:T → RN×N is continuous such that A(t) is symmetric for every t ∈ T .

In the analysis of problem (1.1), we will use the Sobolev space

W 1,2
per((0, b), RN ) = {x ∈ W 1,2((0, b), RN ) : x(0) = x(b)}.

Recall that W 1,2((0, b), RN ) is compactly embedded in C(T, RN ). Hence, in
the above definition, the evaluation of W 1,2((0, b), RN ) functions at t = 0 and t =
b makes sense. We consider the Nemytskĭı operator Â ∈ L(C(T, RN ), C(T, RN ))
corresponding to the map t → A(t), namely,

(Âx)(t) = A(t)x(t).



Superquadratic Nonautonomous Periodic Systems 329

From Mawhin–Willem [11, p. 89] and Showalter [15, p. 78], applying the
spectral theorem for compact self-adjoint operators on a Hilbert space on the
differential operator x → −x′′−Âx, we infer that there exists a sequence of eigen-
functions for the operator, which constitute an orthonormal basis for L2(T, RN )
and an orthogonal basis for W 1,2

per((0, b), RN ). Hence, we have the following or-
thogonal direct sum decomposition (spectral resolution):

W 1,2
per((0, b), RN ) = H− ⊕H0 ⊕H+,

where

H− = span{x ∈ W 1,2
per((0, b), RN ) : −x′′ − Âx = λx for some λ < 0},

H0 = ker(−x′′ − Âx),

H+ = span{x ∈ W 1,2
per((0, b), RN ) : −x′′ − Âx = λx for some λ > 0}.

Note that both H− and H0 are finite dimensional spaces.
In what follows, ‖ · ‖2 denotes the norm of L2(T, RN ), and ‖ · ‖ denotes both

the norm of RN and the norm of the Sobolev space W 1,2
per((0, b), RN ). It will be

clear from the context which one is used at each time.
The next lemma can be found in [12] and gives useful information about the

component spaces H− and H+.

Lemma 2.1.

(a) There exists ξ0 > 0 such that

‖x′‖22 −
∫ b

0

(A(t)x(t), x(t))RN dt ≥ ξ0‖x‖2 for all x ∈ H+.

(b) There exists ξ1 > 0 such that

‖x′‖22 −
∫ b

0

(A(t)x(t), x(t))RN dt ≤ −ξ1‖x‖2 for all x ∈ H−.

Now, let X be a Banach space that admits a direct sum decomposition
X = Y ⊕ V and ϕ ∈ C1(X). We say that ϕ has a local linking at the origin
(with respect to (Y, V )), if there exists r > 0 such that{

ϕ(y) ≤ 0 for all y ∈ Y with ‖y‖ ≤ r,

ϕ(v) ≥ 0 for all v ∈ V with ‖v‖ ≤ r.

Evidently, the origin is a critical point of ϕ, if ϕ has a local linking at 0.
Recall that ϕ ∈ C1(X) satisfies the “C-condition”, if every sequence {xn} ⊆

X such that for all n ≥ 1 and some M1 > 0,

|ϕ(xn)| ≤ M1 and (1 + ‖xn‖)ϕ′(xn) → 0 as n →∞,

contains a strongly convergent subsequence.
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The next result is essentially due to Li–Willem [8]. In their formulation,
they use a graded version of the well-known PS-condition. Recalling that the
deformation lemma is also valid if the functional satisfies the C-condition (see
Bartolo–Benci–Fortunato [1] and Gasinski–Papageorgiou [6]), we can state the
following slight variant of Theorem 2 in Li–Willem [8].

Proposition 2.2. If X is a Banach space with a direct decomposition X =
Y ⊕ V , dim Y < ∞ and ϕ ∈ C1(X) satisfies the following conditions:

(a) ϕ has a local linking at 0 with respect to (Y, V );
(b) ϕ satisfies the C-condition;
(c) ϕ maps bounded sets into bounded sets;
(d) for every E ⊆ V finite dimensional subspace, we have ϕ(u) → −∞ as

‖u‖ → ∞, u ∈ Y ⊕ E

then ϕ has at least one nontrivial critical point.

3. Existence of nontrivial solutions

In this section we shall establish the existence of at least one nontrivial
solution for problem (1.1). To do this, we employ hypothesis (A). Note that
this hypothesis does not impose any sign condition on the matrix-valued map
t → A(t), which means that in the spectral resolution of the linear differential
operator x → −x′′ − Âx, the negative, zero and positive parts, can all be non-
trivial (i.e. H− 6= 0,H0 6= 0 and H+ 6= 0). So, our problem may have indefinite
linear part. This is in sharp contrast to the work of Rabinowitz [14], where
H− = H0 = {0}.

The hypotheses on the potential function F are given below, where

L1(T )+ = {y ∈ L1(T ) : y(t) ≥ 0 a.e. on T}.

(F) F :T × RN → R is a function such that:
(a) for all x ∈ RN , t → F (t, x) is measurable;
(b) for almost every t ∈ T , x → F (t, x) is continuously differentiable;
(c) for almost all t ∈ T and all x ∈ RN we have

‖∇F (t, x)‖ ≤ a(t) + c‖x‖r,

where a ∈ L1(T )+, c > 0 and 1 < r < ∞;
(d) there exists η, with either η ≥ 2 or η > r − 1, such that

lim inf
‖x‖→∞

(∇F (t, x), x)RN − 2F (t, x)
‖x‖η

> 0 and lim
‖x‖→∞

F (t, x)
‖x‖2

= ∞

uniformly for almost every t ∈ T ;
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(e) limx→0 F (t, x)/‖x‖2 = 0 uniformly for almost every t ∈ T and if
dim H0 6= 0, then there exists δ > 0 such that

F (t, x) ≤ 0 for a.e. t ∈ T and ‖x‖ ≤ δ,

or F (t, x) ≥ 0 for a.e. t ∈ T and ‖x‖ ≤ δ.

Remark 3.1. Hypotheses (F)(d) and (e) imply that the potential function
x → F (t, x) is superquadratic both near infinity and near zero. Note that we do
not require that F ≥ 0 as in Fei [5]. The following functions satisfy hypotheses
(F), but fail to satisfy the AR-condition (see (1.2)). For the sake of simplicity,
we drop the t-variable. With α > 0, consider

F1(x) =
1
2
‖x‖2 ln(1 + ‖x‖α)

and with some appropriate choice of ξ: R+ → R, we may also consider

F2(x) =

{
ξ(‖x‖) if ‖x‖ ≤ 1,

‖x‖2 ln ‖x‖+ ξ(1) if ‖x‖ > 1.

Let ϕ:W 1,2
per((0, b), RN ) → R be the Euler functional for problem (1.1), de-

fined by

ϕ(x) =
1
2
‖x′‖22 −

1
2

∫ b

0

(A(t)x(t), x(t))RN dt−
∫ b

0

F (t, x(t)) dt

for all x ∈ W 1,2
per((0, b), RN ). Evidently, ϕ ∈ C1(W 1,2

per((0, b), RN ), R) and we have

(3.1) ϕ′(x) = V (x)− Â(x)−N(x),

where V ∈ L(W 1,2
per((0, b), RN ),W 1,2

per((0, b), RN )∗) is defined by

(3.2) 〈V (x), y〉 =
∫ b

0

(x′(t), y′(t))RN dt,

for all x, y ∈ W 1,2
per((0, b), RN ). Here and in what follows, 〈 · , · 〉 denotes the

duality brackets for the pair (W 1,2
per((0, b), RN ),W 1,2

per((0, b), RN )∗). Also,

N(x)( · ) = ∇F ( · , x( · )) for all x ∈ W 1,2
per((0, b), RN ).

By virtue of hypothesis (F)(c), we have

N(x) ∈ L1(T, R) for all x ∈ W 1,2
per((0, b), RN ).



332 Sh. Hu — N. S. Papageorgiou

Proposition 3.2. If hypotheses (A) and (F) hold, then ϕ satisfies the C-
condition.

Proof. Let {xn} ⊆ W 1,2
per((0, b), RN ) be a sequence such that for some M1 >

0 and all n ≥ 1,

(3.3) |ϕ(xn)| ≤ M1 and (1 + ‖xn‖)ϕ′(xn) → 0 as n →∞.

By virtue of hypothesis (F)(d), we can find β, M2 > 0 such that

(3.4) (∇F (t, x), x)RN − 2F (t, x) ≥ β‖x‖η

for a.e. t ∈ T and all ‖x‖ ≥ M2. On the other hand, (F)(c) implies that

(3.5) |(∇F (t, x), x)RN − 2F (t, x)| ≤ a1(t)

for almost every t ∈ T and all ‖x‖ ≤ M2, with a1 ∈ L1(T )+. From (3.4) and
(3.5), it follows that

(∇F (t, x), x)RN − 2F (t, x) ≥ β‖x‖η − a2(t)

for almost every t ∈ T and all x ∈ R, with a2(t) = a1(t) + βMη
2 .

From (3.3), we have

(3.6) |〈ϕ′(xn), u〉| ≤ εn

(1 + ‖xn‖)
‖u‖

for all u ∈ W 1,2
per((0, b), RN ), with εn ↓ 0.

Let u = xn ∈ W 1,2
per((0, b), RN ), then (see (3.1) and (3.2))

(3.7) −‖x′n‖22+
∫ b

0

(A(t)xn(t), xn(t))RN dt+
∫ b

0

(∇F (t, xn(t)), xn(t))RN dt ≤ εn.

Also, once again from (3.3), we have for all n ≥ 1,
(3.8)

2ϕ(xn) = ‖x′n‖22 −
∫ b

0

(A(t)xn(t), xn(t))RN dt−
∫ b

0

2F (t, xn(t))RN dt ≤ 2M1.

Adding (3.7) and (3.8), we obtain∫ b

0

[(∇F (t, xn(t)), xn(t))RN − 2F (t, xn(t))] dt ≤ M3,

for some M3 > 0 and all n ≥ 1. Hence, for some M4 > 0 and all n ≥ 1 we have

(3.9) β‖xn‖η
η ≤ M4.

Therefore, {xn}n≥1 ⊆ Lη(T, RN ) is bounded.
Recall that we can write in a unique way xn = xn + x0

n + x̂n, with xn ∈ H−,
x0

n ∈ H0 and x̂n ∈ H+.



Superquadratic Nonautonomous Periodic Systems 333

In (3.6), let u = x̂n. Exploiting the orthogonality of the component spaces,
we have

(3.10) 〈ϕ′(xn), x̂n〉 = ‖x̂′n‖22 −
∫ b

0

(A(t)x̂n(t), x̂n(t))RN dt

−
∫ b

0

(∇F (t, xn(t)), x̂n(t))RN dt ≤ εn.

From Lemma 2.1(a), we have for all n ≥ 1

(3.11) ξ0‖x̂n‖2 ≤ ‖x̂′n‖22 −
∫ b

0

(A(t)x̂n(t), x̂n(t))RN dt.

Also, we have, for some c1, c2, c3 > 0,∫ b

0

(∇F (t, xn(t)), x̂n(t))RN dt ≤
∫ b

0

‖∇F (t, xn(t))‖ · ‖x̂n(t)‖ dt

≤ c1‖x̂n‖
∫ b

0

‖∇F (t, xn(t))‖ dt ≤ c1‖x̂n‖
∫ b

0

(a(t) + c‖xn(t)‖r) dt (see (F)(c))

≤ c2‖x̂n‖+ c2 ‖x̂n‖max{‖xn‖r
η, ‖xn‖r

r},

where the last inequality is based on either η ≥ 2 or η > r − 1, respectively.
In the case when η ≥ 2, we have∫ b

0

(∇f(t, xn(t)), x̂n(t))RN dt ≤ c2‖x̂n‖+ c3‖x̂n‖ ‖xn‖r
η.

Thus,
ξ0‖x̂n‖2 ≤ εn + c2‖x̂n‖+ c3‖x̂n‖ ‖xn‖r

η.

Hence, since ‖x̂n‖ ≤ ‖xn‖,

ξ0
‖x̂n‖2

‖xn‖2
≤ εn

‖xn‖2
+ c2

‖x̂n‖
‖xn‖2

+ c3
‖x̂n‖
‖xn‖2

‖xn‖r
η ≤

εn

‖xn‖2
+

c2

‖xn‖
+

c3

‖xn‖
||xn‖r

η.

Note that the sequence ||xn‖r
η is bounded, due to (3.9), the following procedure

showing the boundedness of the sequence {xn} ⊆ W 1,2
per((0, b), RN ) works also in

the current situation. So, we are going to go through details only for the second
case.

To consider the second case, we have η > r−1. Clearly we can always assume
that η ≤ r. Using the interpolation inequality (see Gasiński–Papageorgiou [6,
p. 905]), we have

‖xn‖r ≤ ‖xn‖1−t
η ‖xn‖t

∞ where t ∈ [0, 1),
1− t

η
=

1
r
,

⇒ ‖xn‖r
r ≤ M̂ ‖xn‖tr for some M̂ > 0, all n ≥ 1.

Therefore

(3.12)
∫ b

0

(∇f(t, xn(t)
)
, x̂n(t)

)
RN dt ≤ c2‖x̂n‖+ c3‖x̂n‖ ‖xn‖tr.
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Returning to (3.10) and using (3.11) and (3.12), we obtain

ξ0‖x̂n‖2 ≤ εn + c2‖x̂n‖+ c3‖x̂n‖ ‖xn‖tr.

Hence, since ‖x̂n‖ ≤ ‖xn‖,

ξ0
‖x̂n‖2

‖xn‖2
≤ εn

‖xn‖2
+ c2

‖x̂n‖
‖xn‖2

+ c3
‖x̂n‖
‖xn‖2

‖xn‖tr(3.13)

≤ εn

‖xn‖2
+

c2

‖xn‖
+

c3

‖xn‖1−tr
.

Suppose that {xn} ⊆ W 1,2
per((0, b), RN ) is unbounded. By passing to a suitable

subsequence if necessary, we may assume that ‖xn‖ → ∞. Note that η > r − 1
is equivalent to tr < 1. So from (3.13) it follows that

(3.14)
‖x̂n‖
‖xn‖

→ 0.

In a similar way, using in (3.6) u = xn and invoking this time Lemma 2.1(b),
we obtain that

(3.15)
‖xn‖
‖xn‖

→ 0.

Let yn = xn/‖xn‖. Since ‖yn‖ = 1 for all n ≥ 1, we may assume that

yn
w−→ y in W 1,2

per((0, b), RN ) and yn → y in C(T, RN ).

By virtue of (3.14) and (3.15), we see that y0 ∈ H0. Also due to (3.9), y = 0.
Moreover, because H0 is finite dimensional, we have

(3.16) y0
n =

x0
n

‖xn‖
→ 0 in W 1,2

per((0, b), RN ).

Combining (3.14)–(3.16), we have

1 = ‖yn‖ ≤
‖xn‖+ ‖x0

n‖+ ‖x̂n‖
‖xn‖

→ 0 as n →∞,

which is a contradiction. This proves that {xn}n≥1⊆W 1,2
per((0, b), RN ) is bounded

and so, we may assume that

(3.17) xn
w−→ x in W 1,2

per((0, b), RN ) and xn → x in C(T, RN ).

From (3.6) with u = xn − x, we have

(3.18)
∣∣∣∣〈V (xn), xn − x〉 −

∫ b

0

(A(t)xn(t), xn(t)− x(t))RN dt

−
∫ b

0

(∇F (t, xn(t)), xn(t)− x(t))RN dt

∣∣∣∣ ≤ εn.
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Due to (3.17) and the hypotheses (A) and (F)(c), we have∫ b

0

(A(t)xn(t), xn(t)− x(t))RN dt → 0,∫ b

0

(∇F (t, xn(t)), xn(t)− x(t))RN dt → 0.

So, by (3.18) it follows that

(3.19) lim
n→∞

〈V (xn), xn − x〉 = 0.

Note that V (xn) w−→ V (x) in W 1,2
per((0, b), RN )∗. Hence from (3.17) and (3.19)

we obtain ‖x′n‖22 → ‖x′‖22.
We know that x′n

w−→ x′ in L2(T, RN ). Therefore, by the Kadec–Klee prop-
erty of Hilbert spaces, we have x′n → x′ in L2(T, RN ), which implies that xn → x

in W 1,2
per((0, b), RN ). �

Proposition 3.3. If (A) and (F) hold, then ϕ has a local linking at 0.

Proof. First, we assume that dim H0 6= 0 and the first option in (F)(e)
holds, namely, F (t, x) ≤ 0 for almost every t ∈ T and all ‖x‖ ≤ δ.

We consider the orthogonal direct sum decomposition:

W 1,2
per((0, b), RN ) = H− ⊕ V, with V = H0 ⊕H+.

By (F)(e), given any ε > 0 we can find δ1 = δ1(ε) > 0 such that

(3.20) |F (t, x)| ≤ ε

2
‖x‖2 for a.e. t ∈ T and all ‖x‖ ≤ δ1.

Since W 1,2
per((0, b), RN ) is embedded compactly into C(T, RN ), we can find

ρ > 0 so small, that ‖x‖ ≤ ρ implies that ‖x‖∞ ≤ δ1. Therefore, by (3.20) we
have that

|F (t, x(t))| ≤ ε

2
‖x(t)‖2

for almost every t ∈ T and all x ∈ W 1,2
per((0, b), RN ) with ‖x‖ ≤ ρ.

Let x ∈ H− with ‖x‖ ≤ ρ. Then,

ϕ(x) =
1
2
‖x′‖22 −

1
2

∫ b

0

(A(t)x(t), x(t))RN dt−
∫ b

0

F (t, x(t)) dt

≤ −ξ1

2
‖x‖2 +

ε

2
‖x‖2.

So, if we choose ε < ξ1, then

(3.21) ϕ(x) ≤ 0 for all x ∈ H− with ‖x‖ ≤ ρ.

Next, let x ∈ V = H0 ⊕H+. Then, x = x0 + x̂, with x0 ∈ H0 and x̂ ∈ H+.
Since W 1,2

per((0, b), RN ) is embedded compactly into C(T, RN ), we can find ξ2 > 0
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such that ‖u‖∞ ≤ ξ2‖u‖ for all u ∈ V . In (3.20), we let ρ ∈ (0, δ/ξ2], with δ > 0
as in (F)(e). Hence, for x ∈ V with ‖x‖ ≤ ρ, we have

‖x(t)‖ ≤ ‖x‖∞ ≤ ξ2‖x‖ ≤ δ for all t ∈ T .

By (F)(e) (first option), this implies that F (t, x(t)) ≤ 0 almost everywhere
on T . Thus,

(3.22) −
∫ b

0

F (t, x(t)) dt ≥ 0.

Therefore, for x ∈ V with ‖x‖ ≤ ρ, we have

ϕ(x) =
1
2
‖x′‖22 −

1
2

∫ b

0

(A(t)x(t), x(t))RN dt−
∫ b

0

F (t, x(t)) dt

≥ ξ0

2
‖x‖2 (see Lemma 2.1(a) and (3.22)).

Thus,

(3.23) ϕ(x) ≥ 0 for all x ∈ V with ‖x‖ ≤ ρ.

From (3.21) and (3.23) it follows that ϕ has a local linking at 0.
Next, assume that dim H0 6= 0 and the second option in (F)(e) holds, namely,

F (t, x) ≥ 0 for a.e. t ∈ T and all ‖x‖ ≤ δ.

In this case, we simply set W 1,2
per((0, b), RN ) = Y ⊕H+ with Y = H− ⊕H0, and

use Lemma 2.1(b) instead. Then the proof can easily go through as in the case
with the first option.

Finally, the case when dim H0 = 0 becomes obvious. �

Set Y = H− ⊕H0. We have

Proposition 3.4. If (A) and (F) hold and E ⊆ H+ is a finite dimensional
subspace, then ϕ(u) → −∞ as ‖u‖ → ∞ with u ∈ Y ⊕ E.

Proof. By (F)(d), given any σ > 0, we can find M4 > 0 such that

F (t, x) ≥ σ‖x‖2

for almost every t ∈ T and all ‖x‖ ≥ M4.
(F)(c) implies that

(3.25) |F (t, x)| ≤ a3(t)

for almost every t ∈ T , all ‖x‖ < M4, with some a3 ∈ L1(T )+.
From (3.24) and (3.25), we have

F (t, x) ≥ σ‖x‖2 − a4(t)

for almost every t ∈ T and all x ∈ RN , with a4 = a3(t) + σM2
4 .
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Let u ∈ Y ⊕ E. Then, for some c5 > 0,

ϕ(u) =
1
2
‖u′‖22 −

1
2

∫ b

0

(A(t)u(t), u(t))RN dt−
∫ b

0

F (t, u(t)) dt(3.26)

≤ 1
2
‖u′‖22 −

1
2

∫ b

0

(A(t)u(t), u(t))RN dt− σ‖u‖22 + c5.

Since the space Y ⊕ E is finite dimensional, all norms on it are equivalent.
Therefore, we can find ξ3, ξ4 > 0 such that

1
2
‖u′‖22 −

1
2

∫ b

0

(A(t)u(t), u(t))RN dt ≤ ξ3‖u‖2

and
ξ4‖u‖2 ≤ ‖u‖22 for all u ∈ Y ⊕ E.

Using these in (3.26), we obtain

(3.27) ϕ(u) ≤ (ξ3 − σξ4)‖u‖2 + c5.

Since σ > 0 is arbitrary, from (3.27) it follows that ϕ(u) → −∞ as ‖u‖ → ∞
with u ∈ Y ⊕ E. �

Now we are ready to state our existence theorem for problem (1.1).

Theorem 3.6. If (A) and (F) hold, then problem (1.1) has at least one
nontrivial solution x̃ ∈ C1(T, RN ).

Proof. Clearly, due to (F)(c), ϕ maps bounded sets to bounded sets. Hence,
because of Propositions 3.2–3.4, we can apply Proposition 2.2 and obtain some
x̃ ∈ W 1,2

per((0, b), RN ), with x̃ 6= 0, such that

(3.28) ϕ′(x̃) = V (x̃)− Âx̃−N(x̃) = 0.

From (3.28) as in [12], using integration by parts, we have x̃ ∈ C1(T, RN ) and
solves problem (1.1). �
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