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MULTIPLICITY OF MULTI-BUMP TYPE NODAL SOLUTIONS
FOR A CLASS OF ELLIPTIC PROBLEMS IN RY

CLAUDIANOR O. ALVES

ABSTRACT. In this paper, we establish existence and multiplicity of multi-
bump type nodal solutions for the following class of problems

—Au+AV(z)+Du=f(u), vw>0 inRY,

where N > 1, A € (0,00), f is a continuous function with subcritical growth
and V:RN — R is a continuous function verifying some hypotheses.

1. Introduction

In the present paper, we are concerned with existence and multiplicity of
multi-bump type nodal solutions for the following class of problems

—Au+ AV (z)+ u= f(u) in RY,

) ue H'(RY),

where N > 1, A € (0,00), f is a continuous function with subcritical growth and
V:RY — R is a continuous function with infg~x V(z) > 0.

There exist a lot of papers concerning with existence and multiplicity of
positive solutions to (P)y, where the behavior of function V' is an important point
to make a careful study about the behavior of the solutions, see for example, the
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papers of T. Bartsch and Z. Q. Wang [6], [7], M. Clapp and Y. H. Ding [13],
C. Gui [18], Y. H. Ding and K. Tanaka [17], C. O. Alves [1], C. O. Alves,
D. C. de Morais Filho and M. A. S. Souto [3], C. O. Alves and M. A. S. Souto [5]
and references therein. The existence and multiplicity of nodal solutions have
been considered also in some works, we would like to cite the papers of T. Bartsch,
Z. Liu and T. Weth [9], T. Bartsch and T. Weth [8], T. Bartsch, T. Weth and
M. Willem [10], A. Castro and M. Clapp [12], M. Clapp and Y. H. Ding [14],
Z. Liu and Z.-Q. Wang [19], C. O. Alves and G. M. Figueiredo [2], C. O. Alves
and S. H. M. Soares [4] and references therein.

In [14], M. Clapp and Y. H. Ding have considered the existence of nodal
solution for a class of problems of the type

—Au+ ANV (2)u = pu+ [u* 2u, in RV

Assuming that V' is 7-invariant and infgy V(z) > 0, they proved that there
exists a family {u)} of nodal solution, which has the following property: For
each \,, — oo, the sequence {uy, } converges in H*(RY) to a nontrivial solution
u of the Dirichlet problem

—Au = pu+ |ul?* 2u in Q,
u=0 on 0f,

where Q = int V~1({0}). Moreover, it is proved also that u changes sign exactly
once.

In [17], Y. H. Ding and K. Tanaka have considered the existence of multi-
bump positive solutions to (P)y, by assuming that f(u) = |u|?'u with 1 <
qg < (N+2)/(N—2), infgn V(2) > 0 and the following conditions on the set
Q:=int V-1({0}):

(Hy) Q is non-empty, bounded, 95 is smooth and V~1({0}) = Q.

(Hz) € has k connected components denoted by €, that is, @ = QqU...UQy.

In that paper, Y. H. Ding and K. Tanaka used variational methods to es-
tablish the existence of 2¥ — 1 multi-bump positive solutions for A large enough.
More precisely, for each T' C {1,... , k}, there exists a family of positive solution
{ux} satisfying the following property: For each \,, — oo, the sequence {uy, }
converges in H'(RY) to a function u, which is a positive solution of the Dirichlet

problem:
—Au+u=u? in Qr,
u(z) >0 in Qr,
u=20 on 0Qr,
where Qr = [ cr €.

In the recent papers [3] and [5], C. O. Alves et al motivated by [17] consid-
ered the existence of multi-bump positive solutions for (P)y, by assuming that
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the nonlinearity has a critical growth for the cases N > 3 and N = 2, respec-
tively. In [18], C. Gui showed the existence of multi-bump positive solutions
for a different class of elliptic problems from what considered in [17]. In [11],
A. Cao and E. S. Noussair considered also the existence of multi-bump solution
for the same class of problems studied in [18] but with critical frequency, that
is, infrn V(z) = 0.

Motivated by [14] and [17], we investigate in this paper the existence and
multiplicity of multi-bump type nodal solutions to (P)y by exploiting the number
of connected components of = int V~=1(0). Our main result completes the
studies made in [14] and [17] in the following points:

e In [17], the nonlinearity is homogeneous and the solutions found are
positives.

e In [14], in some results it is assumed that V' is 7-invariant. Moreover,
the nodal solutions found are not of the type multi-bump.

Here, we use a result related to the existence of nodal solution with least
energy on bounded domain due to T. Bartsch, T. Weth and M. Willem [10] (see
also T. Bartsch and T. Weth [8]). Moreover, we modify all the sets that appear
in the minimax arguments found in [17] to get the nodal solutions. The nodal
solutions obtained are concentrated near of nodal solutions with least energy on
the connected components €2; of €}, when A is sufficiently large.

The main result proved in this paper also can be seen as a complement of
the studies made in [8], [9], [10] and [19], because we are working with a class of
nodal solutions which was not considered in those papers.

In order to state our main result, we require the following assumptions on f:

lim 1(s)

s—0 8

(f1) =0.

Thereisp € (1,(N +2)/(N —2)) if N >3 and p € (1,00) if N = 1,2 such that

1) _

|s]—oc0 |S|p

(f2)

There is § > 2 verifying
(f3) 0<0F(s) <sf(s), forallseR\{0}.
Moreover, we also assume

(f1) f(s)s — f'(s)s* <0, forallseR\{0}.

Our main result is the following
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THEOREM 1.1. Assume that (f1)—(f4) and (H1)—-(Ha) hold. Then, for any
non-empty subset T' of {1,... ,k}, there exists \* > 0 such that, for X > \*,
problem (P)x has a nodal solution uy. Moreover, the family {ux}x>x- has the
following property: For any sequence A\, — 00, we can extract a subsequence
An; such that uy, — converges strongly in HY(RN) to a function u which satisfies
u(z) =0 forz ¢ Qr = U;cr Q. and the restriction ulq, is a nodal solution with
least energy of

—Au+u= f(u), ulpg, =0 forjel.

2. Preliminaries

In this section, we fix some notations and recall some results related to exis-
tence of nodal solutions to (P), on the connected components €2; of Q.

Throughout this paper we will use the following notations:

e If h is a measurable function, we denote by fR ~ h the following integral

Jan hdzx.
e The symbols ||ul|, |u|. (r > 1) and |u|s denote the usual norms in the

spaces HY(RY), L"(RN) and L>(RY), respectively.

e For an open set © C RY, the symbols |Jul|e, |ul.e (r > 1) and |u|w.e
denote the usual norms in the spaces H(0), L"(0) and L>(0O), re-
spectively.

e For a measurable function u, we denote by u* and u™ the positive and
negative part of u respectively, given by

u" (r) = max{u(z),0} and w” (x) = min{u(x),0}.

Hereafter, we will work with the space H ), defined by

Hy = {u € H'(RY): /]RN V(x)|ul* < oo}

endowed with the norm

= ([, 190+ 0V(o) + 1>u|2)1/2.

It easy to see that (Hy, || - ||») is a Hilbert space for A > 0.

For an open set © C RV, we also write

HA(O) = {u € H'(O): /@V(x)|u\2 < oo}
and

lullxe = (/@ Vul* + (AV () + 1)IU|2)1/2-
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As a consequence of the above considerations, if vy > 0 is sufficiently small
we have that

1
(2.1) §Hu||§® < ||u||§@ - 1/0|u|§,@ for all u € H)(©) and A > 0.
For each j € {1,...,k}, we fix a bounded open subset Q2 with smooth
boundary such that
(i) 9 c &,
(ii) ;N Q) =0 for all j #1,
and let us define the functionals I; and @, ; on Hg(€;) and H'(Q)), respectively
by
1
=3 [ (veP+laP) - [ P
J

J
1
Py j(u) = 5/9 )

It is well known that I; and ®, ; are C' and their critical points are weak

and

(Vul? + WV (@) + 1D)uf?) — / Flu).

Q

/.
J

solutions of the problems

(2.9) —Au+u= f(u) inQj,
u=20 on 0§,
and
—Au+ AV (2) + Du= f(u) in Qf,
(2.3)
u =0 on 08,

ov

respectively. Hereafter, c;, d;, ¢y ; and dy ; denote the real numbers given by

O}a
0},

&
Ny
m
T
=2

.~

=

——
o

-
A

o~

<

£

=

S~— ~— ~—
I

From results due to T. Bartsch, T. Weth and M. Willem [10] and T. Bartsch
and T. Weth [8], there exist w; and wy ; nodal solutions of (2.2) and (2.3),
respectively, such that

Ij(wj) = dj and @A’j(w)\’j) = d)\’j.
In [17], it is proved that the numbers cy ; and ¢; verifying the following limit
Cx,,j — Cj &S Ay — 00

which will be used later on.
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3. Localization of the concentration

In this section, as in M. del Pino and P. L. Felmer [16], C. Gui [18] and
Y. H. Ding and K. Tanaka [17], we modify conveniently the function f.

Let v9 > 0 be the constant given in (2.1), a > 0 verifying max{f(a)/a,
f(=a)/ —a} < vy and f,F:R — R the following functions

Ms if s < —a,
Ps) =4 fs) ifls|<a,  and  F(s) = /0 () dr.
@s if s > a,

Using the above notations, we consider the functions

g(x,s) = xr(@)f(s) + (1 = xr(2)) [(5)
and s
G(z,s) = / gz, t)dt = xr(z)F(s) + (1 — xr(z))F(s)
where I C {1,... ,k} is(; non-empty set fixed and xr denotes the characteristic

function of the set Qp = ;o 2}

Under the conditions (f;)—(f2), we can prove that functional ®y:Hy — R
given by
1
Baw =5 [ (VuP+ W@ + D) - [ Gl
2 RN RN
belongs to C'(H,,R) and its critical points are weak solutions of
(A)x —Au+ AV (z) 4+ Du = g(z,u) in RY.
An immediate result related to nodal solutions of (A), is the following

LEMMA 3.1. Ifuy is a nodal solution of (A) verifying |u(z)| < a in RN\ Qf,
then it is a nodal solution to (P)y.

In the sequel, we study the convergence of Palais—Smale sequences related to
®,, that is, of sequences {u,} C H, verifying

(3.1) Py(uy,) — ¢ and P\ (u,) —0
for some ¢ € R (shortly {u,} is a (PS). sequence).

PROPOSITION 3.2. The functional ® satisfies (PS). condition for all ceR.
More precisely, any (PS). sequence {u,} C Hy has a strongly convergent subse-
quence in Hy.

PrROOF. Let {u,} C Hy be a Palais—Smale sequence. Using assumption (f3)
and the inequality

1
Dy (un) — éq)l)\(un)(un) < e+ [lunll,
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which holds for n sufficiently large, it follows that {u,} is bounded. This way,
for some subsequence, still denoted by {u,,}, there exists u € H, such that

(3.2) u, —u weakly in Hy and H'(RY),
u, —u in LL (RY) for all ¢ € [1,2%)

and

(3.3) P\ (u) = 0.

These limits combined with the growth of g give

(3.4) g(x, up)un — g(x,u)u  in L (RY).

Once for any bounded sequence (¢,,) CHx, we can easily see that @) (u,)e, —0,
by fixing the sequence

on(z) = o(z)un(z)
where o € C°(R") is given by

olz) =1 for all x € B%(0),
o(x) =0 for all z € B, /5(0),
o(z) €[0,1] with Q. C Bg(0),

by a argument found in M. Del Pino and P. L. Felmer [16, Lemma 1.1], it is
possible to prove that for each € > 0 fixed, there exists R > 0 such that

(3.5) / |V, |? + AV (2) + 1)|un|> <e forn €N.
{z€RN:|z|>R}

Combining (3.5) with Sobolev embeddings and using the fact that g has subcri-
tical growth, for each € > 0 fixed, there exists R > 0 such that

(3.6) / g(x, up ), / g(x,u)u < =
B,(0) B,(0) 3
From (3.4) and (3.6), it follows that

(3.7) / (T, Up )y, — glz,u)u asn — co.
RN RN

Now, from (3.1)—(3.3) we derive the equality

Jun —ulf = [ gleunun ~ [ g ujuton1)
RN RN
which together with (3.7) yields u, — u in Hy. O

Our next goal is to study the behavior of a generalized Palais—Smale sequence
corresponding to a sequence of functionals. From now on, we say that a sequence
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{un} € HY(RY) is (PS) e, sequence, if there exist A, — oo such that u,, € Hy,
and

(PS)oc,c Oy, (un) = ¢ and @) (un)]}, — 0.

PROPOSITION 3.3. Let {un} be a (PS)so,c sequence. Then, for some subse-
quence, still denoted by {u,}, there exists u € H'(RN) such that

Up — u in HY(RY).

Moreover,
a) For Qp = ). Q;, we have that w=0 in RN \ Qr and u is a solution
jer ="
of
—Au+u=f(u) inQ,,
(P);
u=20 on 08,

for each j €T.
(b) [lun —ullx, — 0.
(¢) u, also satisfies

An / V@il =0, Junl?,avigp — 0
RN

and

|l | ig; —>/Q (|Vu|2 + |u\2) forall j €T.
J

PROOF. As in the proof of Proposition 3.2, it is easy to check that {||u,]x, }
is bounded in R. Thus, we can assume that, for some u € H*(RY),

(3.8) u, —u weakly in H'(RY)

and u,(z) — u(z) almost everywhere in RV. In the following, for each m € N,
we denote by C,, the set given by

Cpp = {x eRY :V(x) > 1}.
m
Then,
[P < [ V@l <
Cm A RN /\n "

n

This combined with Fatou’s Lemma leads to

/ lul> =0, forallm € N.

m

Thus u(z) = 0 on J;r_; Cpry = RV \ Q and we can assert that

ulg, € Hi(Q,) forallje{l,..., k}.
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Once @) (un)p — 0 as n — oo, for each ¢ € C§°(€2;) (and hence for each
© € H} (), it follows from (3.8)

(3.9) / VuVe + up — / glxz,u)p =0,
Q;

which gives ulq; is a solution of (P); for each j € {1,... ,k}. Moreover, for each
Jge{l,... k}\T, setting ¢ = ulq, in (3.9), we have

2 2 Iy _
Ajwt+m| Afwm 0

Hﬂ&m—l;ﬂWuzO

Since f(s)s < vp|s|? for all s € R, combining this inequality with (2.1) we get

that is,

%M@mﬁwﬁm—w@@SMﬁm—Afwwﬂ-
J

Thus, v =0 in Q;, for j € {1,... ,k} \ T, and the proof of (a) is complete.
To show (b), we begin observing that arguing as in the proof of Proposi-
tion 3.2, for each ¢ > 0 fixed, there exists R > 0 such that

/ [Vt |? + AV (2) + D|un|> <e forn €N,
{z€RN:|z| >R}
This inequality implies that
/ g(x, up ), — g(z,u)u asn — oco.
RN RN

Using the limit ||® [|5 — O together with the fact that u € Hj(Qr), we get
the equality

Jun =l = [ gtwunun = [ glzauton)
RN RN
which yields
(3.10) | —ull}, —0
and (b) follows. To prove (c), notice that
[ AV @lial = [ AV(@lun — uf? < e = ulf,
RN RN

S0,

/ AV (@) [un|*> = 0 as n — oo.
RN

The other limits also follow immediately from (3.10). O
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PROPOSITION 3.4. Let {ux} be a family of nodal solution of (A)x with uy —
0 in HY(RY \ Qr) as A — oco. Then, there exists \* > 0 such that uy is a nodal
solution of (P)y for all A > \*.

PROOF. In this proof, we will use the Moser iteration technique [20] and the
same arguments found in [1, Proposition 3.2]. The basic idea is the following:
Fixing Q) C Q; and 0 € C>(RN) verifying

0<o(r) <1 forallzecRY,
o(z) =0 forallze U Q;,

jer
o(x) =1 forallz e RV \ U ﬁj,
jer
let us define for each A\, L, 8 > 1 the functions
u;\r ifuy <L,
%“:{L if uy > L,
22'7/\ = 02|u:/\|2(5*1)uk, wz’/\ = UuA|uj{7)\|5*1.

Since uy is a solution of (A)y, using 2] , as a test function and the fact that
lg(, s)| < vpls|? for all z € RN \ QF, we get

(3.11) \wz/\@* < C/ |szr’/\\2 < 052/ \VU|2|uA|2|U2A|2(6_1)'
RN RN

The estimate (3.11) yields

b= O ([ Pl 20 0)

where T = Ujel“(ﬁj \ @)) and B =RN \ Ujer €5
Now, the last inequality together with the Moser iteration lead to

IwZ,A

Uy |oc,5 < Caluf |2 x
for some positive constant C's. On the other hand, by hypothesis
uy — 0 in HYRY \ Qr) as A — oo,
then, this limit combined with (3.12) implies that
‘UI|OO’RN\Q% <a forall A >\
for some A* > 0. A similar argument can be use to prove that
[uy oo, ri\0, < a forall A > A"
for some A* > 0. Therefore,

\U/\|oo,RN\Q/F <a forall A > \*.
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This, together with Lemma 3.1, yields uy is a solution of (P)y for all A > A*. O

4. A special class of functions

In what follows, let us fix R > 0 verifying

14 + Ij(w;t) .
(4.1) (R wy), [j(Rwy) < — for all j € T
Moreover, without loss of generality, we assume I' = {1,...,l}(I < k), and

define vo: [1/R2,1]% — H, by

! !
(4.2) Yo(S1y -+ s S, 81, ,8)(x) = Zszwj(:v) + Z@Rw;(m)
j=1 j=1

and
Syr = inf max D\(v(F,T))
YEXN (7, )€1/ R2,1)2
where (75, ?) = (81,---,85,t1,--.,t;) and

U= {y € C([L/R* 1P Ha) i v¥ oy # 0 forall j €T
and (7, F) € [1/R2, 112, 4 = 7, on a([1/R2, 1)},
We remark that v, € Xy, so Xy # 0 and Sy r is well defined.

LEMMA 4.1. For any vy € ¥y there exists (5., E’) € [1/R2, 1) such that
VOEGEL I (L)) =0 forall j e {1, 1}

PROOF. For each vy € ¥y, let us define the function H:[1/R2,1]* — R given
by

—

H(?ﬂ t ) = ( /)\,1(7+)'('Y+)7"~ a(I)l)\,l(’y+)'(’Y+)7
M) ) @ (v )(v))

where
I)\,](’yi)(,yi) = @&)J(,}/i(?’ ?))(Wi(?v ?D for .] € {1? cee 7l}
Since
H(S,1T)=Hy(s,t) foral (¥, ¢)ecd(1/R? 1%
where

Ho(5, ) = (@51 (7). (0 )« @5, (0D)-(0),
D)1 (75 )-(10 ) 5 (70)-(05)

and, by (f;), d(Hy, (1/R%,1)%,0) = 1, (topological degree). Using topological
degree, we derive d(H, (1/R? 1)%,0) = 1.
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The last equality implies that there exists (55, t-*)) € [1/R%1]% such that
H(s,, t-*)) = 0, which proves the lemma. O

In the sequel, we denote by Dr the number Dp = 22:1 dj.

PROPOSITION 4.2. The numbers Dr and Sy r verify the following relations

(a) Yi—qdr; < Sar < Dr for all A > 1.
(b) Sxr — Dr as A — .

PROOF. (a) Since 7, defined in (4.2) belongs to Xy, we have
Sxar < max D) (70 (5, T
(¥, 7)e[1/R2,1]2

)

Z tRw
tl)el/RQ et

(81500058 (t1,..-

l
_ (e Pt
= ,:lr)lgﬁ/RQ,l]l jz::l I; (SJRU)j ) +
From definition of wj, it is standard the equality
+ + .
(4.3) Zegln/&}é’l] Ij(zRwy) = Ij(wy) foralljel

and, thus,

!
Sir < Zdj =
j=1

Taking (55, E>) € [1/R?,1]? given by Lemma 4.1, it follows that
@y, (7(52, 1)) > dy,; forall jeT.

On the other hand, recalling that @ gv\o; (u) > 0 for all u € HYRN\ Qf), we
get the inequality

l
— —
Or(y(52, 1)) = Y @ (4(57, 1)
j=1
which yields
_ l
-,
_max  B(y(F, 1)) 2 A5 E)) = D day
(%, t)elL/Rr2,1]%

From definition of Sy r, we can conclude

!
Siyr > ZdA,j

=1

and the proof of (a) is complete.
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(b) The same arguments used in proof of Proposition 3.3 work to prove that
for each j € I fixed, dy ; — d; as A — oo, and, therefore,

!
Z d,\,j — D[‘.
j=1
The last limit together with (a) implies that (b) holds. O

5. A special family of nodal solutions to (A),

In this section, we show the existence of a special family of nodal solutions to
(A)y for A large enough. These nodal solutions are exactly the nodal solutions
given in Theorem 1.1.

Hereafter, Ej\r j and Ey j denote the cone of nonnegative and nonpositive
functions belongs to H({}), respectively, that is

E;Cj = {u € HA(Q)) : u(x) > 0 a.e. in Q}},
By ={u € HA(Q)) u(z) <0 ae. in Q).

From definition of ,, there exist positive constants 7 and A\* > 0 such that
dist;(7(, ), BE;) > 1 forall (¥, 7) € [1/R%1]%, j €T and A > \",
where disty ;(K, F') denotes the distance between sets of H(€2}). Taking the

number 7 obtained in the last inequality, we define
O = {u € Hy : disty ;(u, Ey ;) > 7 for all j € T}
Moreover, for any ¢, > 0 and 0 < § < 7/2, we consider the sets

S={ueHr:Pr(u) <c} and By, ={u€ O :|Pr(u) — Sar| < p}

where O, for r > 0, denotes the set O, = {u € H, : dist(u, ©) < r}.

Notice that for each u > 0, there exists A* = A*(u) > 0 such that w =
22:1 wj € By, for all A\ > A*, because w € ©, ®)(w) = Dr and S\ — Dr as
A — oo. Therefore By, # 0 for A sufficiently large.

In the sequel, let us consider Bys11(0) = {u € Hy : |lullx < M + 1} where
M is a constant large enough independent of A verifying

k
> w;
j=1
Moreover, let us denote by p* > 0 the real number

Ij(’u}ji)-FM—‘r(S.jGF}

-
Iy (s, )l

M
< > for all (75, 7) € [1/Rr? 1%
A

(5.1) pt = min{ 1



244 C. O. ALVES

PROPOSITION 5.1. For each pn > 0 fized, there exist 0, = 0o(1) > 0 and
A, = A(p) > 1 independent of A such that

@4 (w5 > 00 for A > A, and all u € (Bx 2, \ Bay) N B (0) N @Y.

PROOF. Arguing by contradiction, we assume that there exist A\, — oo and
Un € (Bx,.20 \ Br,u) N B (0) N OYT

such that [|[®) (un)|l}, — 0. Since u, € By, 2, and {[lun|x,} is a bounded
sequence, it follows that {®, (u,)} is also bounded. Thus we may assume

(I)AT,, (un) —cCE (7OOaDF]

after extracting a subsequence if necessary. Applying Proposition 3.3, we can
extract a subsequence u,, — u in HY(RY) where u € H(Qr) is a solution of

e —ull, — 0, Ao / V(@) unl? — 0 and [unln, zv\0p — 0.
RN

Once u,, € Oy for all n € N, we have that ||u$||>\n’g; /4 0 for all j € I', from
where it follows that |u®||q, # 0 for all j € I, so that  is a nodal solution of
(P;) for all j € T and

l l
> d; <Y Ii(ula,) < Dr.
j=1 j=1

This fact leads to I(u|o,) = d; for all j € T, and hence @y, (u,) — Dr. On the
other hand, since Sy, r — Dr, we can conclude that u, € By, , N @f: for n
large enough, which is an absurd. O

PROPOSITION 5.2. For each p € (0, u*), there exists A* = A*(u) > 0 such
that for all X\ > A* the functional ®) has a critical point in B,\MDEM_H(O)WI)fF.

PROOF. Arguing again by contradiction, we assume that there exists p €
(0,p*) and a sequence A, — oo, such that ®, has not critical points in
By, . N Bys1(0) N @fr. Since the Palais—Smale condition holds for ®,, (see
Proposition 3.2), there exists a constant dy, > 0 such that

@4, (W), = da, forallue By, ,NByp(0)N YT
Moreover, from Proposition 5.1, we also have

124, (W), > 00 forall u € (Bx, .2\ Bx,.u) N Bara(0) N @Y
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where 0, >0 is independent of A,, for n large enough. In what follows, ¥,,: H,,, —
R and H,: <I>f\'2 — H,, are continuous functions verifying

Up(u) =1 foru € By, 3,72 N Os N By(0),
\I/n(u) =0 foru ¢ B)\n;QN DEM.H (0),
0<T,(u) <1 forueH,

and
oy = f BNV for € By oy 1 Bara(0)
" 0 for u ¢ By, 2, N Ba+1(0),

where Y}, is a pseudo-gradient vector field for @y on M, ={u € Hy, : ®| #0}.
Hereafter, we denote by m{ the real number given by

mg = sup{®x, (u) : u € Y0 ([1/R?, 1))\ (Bx,,u N Bar(0))}

which verifies limsup,,_,,, mg < Dr. Moreover, let us denote by K,, > 0 a con-
stant verifying

[Dx,,.j(u) = @x, 5 (V)] < Knllu = vllx, 0 forallu,ve B11(0) and all j € T
From definition of H,,, we derive that

|Hp(u)|| <1 forallm € Nand u € T,
consequently there is a deformation flow n,: [0, 00) % @fnr — CD?: defined by

dn
dt
This flow satisfies the following basic properties

Hy(n), nn(0,u) =u € T,

D) (nn(t,u)) <Py, (u) forallt>0and ue Hy,

and
Nn(t,u) =u forallt >0 and u & By, 2, N Bar4+1(0)

CLAM 5.3. There exists T, = T(\,) > 0 and e* > 0 independent of n such
that

lim sup max Dy, (M (T, 70 (5, ?))) < Dr —¢"
n—oo | (3,7 )€[1/R2,1]2

In fact, set u = vo(75, ?), (’i;n =min{dy,,00}, Tn, = aoﬂ/QcT)\n and 7, (t) =
N (t,u). if u ¢ By, N Bu(0) N Og, from definition of mf§ we get
Oy (Mu(t,u) <Oy (u) <mg forallt>0.
On the other hand, if u € By, ,, N B (0) N O, we have to consider the following

cases:
Case 1. ﬁ;(t) S B/\m3#/2 HEM(O> N O for all t € [O,Tn]
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Case 2. ,(to) ¢ B, 3u/2 N Bar(0) N Os for some to € [0,T5,].
Following the same arguments found in Y. H. Ding and Tanaka [17], Case 1
implies that there exists £* > 0 independent of n such that

by, (M (Th)) < Dp —€*.

Related to Case 2, we have the following situations:
(a) There exists to € [0,T,] such that n,(t2) ¢ Os, and thus for ¢; = 0 it
follows that
11 (t2) = (t)] = 6 > p
because 0, (t1) = u € ©.
(b) There exists ta € [0,7,,] such that 7, (t2) ¢ Bas(0), so that for t; = 0 we
get
[t2) — (0] = >
because 77, (t1) = u € Byy/2(0).
(c) Mu(t) € ©5 N By (0) for all ¢t € [0,7T),], and there are 0 < t; <ty < T},
such that 1, (t) € By, 3.2 \ B, for all t € [tq,t5] with

|5, (M (t1)) = Sx,rl=p and [y, (7n(t2)) — Sx,.r| = 3p/2.
Using the definition of K,,, we have that

17 (2) = N (t1)]| =

W
oK,
The estimates showed in (a)—(c) yield, there exists C' > 0 such that t; —t; > Cp.

This, combined with some arguments found in [17], gives that there exists ¢* > 0
independent of n such that

lim sup max @5 (N (T, 70(5, ?))) < Dr —¢&*
n—00 (7, 7%)e[1/R2,1]2

and the proof of Claim 5.2 is complete.
Now, our goal is to prove that (?,?) — nn(Tn,%(?,?)) belongs to
¥, for n large enough. To this end, we begin observing that 1, (7,(s, ?)) is

a continuous functions in [1/R?,1]?. Hence, we have to show that
(T 70(F, 1)) = 70(F, 1) forall (¥,71) € d([1/R? 1)

and

(1 (T 7o(F, )™ € H' () \ {0},
for all j € T and all (5, ?) € [1/R? 1%\
Once p € (0, "), (4.1), (4.3) and (5.1) lead to

|5 (vo(5, 1)) = Dr| > 2u* forall (3, ¢)€d(1/R?1]*) and n € N.
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Hence, by using again the fact that Sy — Dr as A — oo, there is ng > 0 such
that

[Py, (Vo(5, ?)) =S\, r|>2p forall (75, ?) € 9([1/R?*1]*) and n > ny,

which implies that ’yo(?,?) ¢ By, 2, for all (?,7) € O([1/R%,1)%) and
n > ng. From this,

(T 7o(5, 1)) =70(5, ©) forall (3, )€ d(1/R%1]%) and n > ny.
On the other hand, since 0, (T, 7,(5 , ?)) € Og;s for all n, we reach that
dista, j (90 (Tn, 70( 5, ), EE, ;) > 726 > 0.

Then, (nn(Tn,%(?,?)))ﬂQj # 0 for all j € I', and we can conclude that
N (Trs Yo (5, ?)) belongs to Xy, for n large enough. Combining the definition
of Sy with Claim 5.3 and the fact that 7, (T, v,(s, ?)) belongs to X, for n
large enough, we get the inequality

limsup Sy, r < Dr —¢*
n—-+00

which contradicts the Proposition 4.2. (]
From the last proposition, we have the following result
COROLLARY 5.4. For each p € (0,u*) fized, there exists A* = A*(pu) > 1
such that (A)x has a nodal solution uy € By, for all A > A*.
6. Proof of Theorem 1.1

From Corollary 5.4, for each p € (0, u*) fixed, there exists A* = A*(u) > 1
such that (A)y has a nodal solution uy € By, for A > A* with

(6.1) disty j(ux, By ;) > 7—20>0 foralljel.
Repeating the same arguments used in the proof of Proposition 3.3, we get
uy — 0 in H'(RY \ Qr) as A — oc.

This together with Proposition 3.4 gives uy is a nodal solution of (P)y for A large
enough.

Fixing A, — oo and p,, — 0, the sequence {uy, } verifies
(I)l)\n(u)\n) =0 and (I))\n(U)\n) = S)\mr + On(l),

that is,
@) (ux,) =0 and @y (ux,)= Dr+on(1)
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and, therefore, {ux,} is a (PS)so,p. sequence. By Proposition 3.3, for some
subsequence, still denoted by {uy,, }, there exists u € H(Qr) such that

un, —u i HYRY), A, / V()us,
RN

2,0 and [lua,

2
A RNA\Qp 7 0.

These facts imply that
!
(6.2) L(u)=0 foralljeT and le(u):Dp.
j=1
Once {uy, } verifies (6.1), we derive that ||uf'\tn||,\n793 # 0 for all j € I'. Hence,
from definition of g, it follows that there is 7. > 0 such that

/ juy [P*1 >7, forallneNandall jeT,
Q'

J
and thus
/ \ui|p+1 >7, forall jerl.
Q;

Thereby, u changes signal on €2; for all j € I', and therefore,
(6.3) Ij(u) >d; forall jeT.

From (6.2) and (6.3) I;(u) = d; for all j € T. This shows that u[g, is a nodal
solution with least energy in €2; for each j € I', and the proof of Theorem 1.1 is
complete. O

7. Final remarks

The method used in the present paper can be used to show the existence
of multi-bump type solutions joining positive, negative and nodal least energy
solutions. The main modifications should be make in the Sections 4 and 5, for
example, if you want to get a positive solution w; on 1 and a negative solution
wa on {29, we must to change wljE and w2jE by w; and ws, respectively. Other mod-
ifications must be make in the definition of Sy r and in the sets By ,. Moreover,
we need to replace d; and do by mountain pass levels ¢; and ¢y associated with
the energy functionals I; and I, respectively. From this, we have the following
theorem

THEOREM 7.1. Assume that (f1)—(f4) and (Hy)—(Hg) hold. Then, for any
non-empty subsets T'y, Ta, T's of {1,... ,k} withTsNTy = 0 for s # t, there
exists \* > 0 such that, for X > X*, problem (P)x has a nontrivial solution uy
that satisfies: For any sequence Ay, — 00, we can extract a subsequence Ay, such
that uy,, converges strongly in HY(RYN) to a function u which satisfies u(x) = 0
for x ¢ Qp = UjeF Q; where I' = T'y Ul UT, and the restriction ulq, is
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a positive solution if j € I'1, a negative solution if j € T's and a nodal solution if

j € T's with least energy of the problem

—Au+u= f(u), wulaq, =0.
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