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NATURAL TOPOLOGIES ON COLOMBEAU ALGEBRAS

Jorge Aragona — Roseli Fernandez — Stanley O. Juriaans

Abstract. We define intrinsic, natural and metrizable topologies TΩ, T ,

Ts,Ω and Ts in G(Ω), K, Gs(Ω) and Ks, respectively. The topology TΩ

induces T , Ts,Ω and Ts. The topologies Ts,Ω and Ts coincide with the
Scarpalezos sharp topologies.

1. Introduction

It is well known that the Colombeau’s theory was developped aiming to solve
non-linear problems of PDEs and ODEs. In a more specific way, Colombeau’s
full algebra (denoted here as G(Ω), where Ω is an open subset of Rm) was in-
troduced to be the universe that contains a large amount of solutions of PDEs
and ODEs defined on Ω, which are not solvable classicaly (of course, G(Ω) has
many other inhabitants, but they do not matter here). The mere fact that G(Ω)
is an algebra that contains canonically a copy of D′(Ω) has represented a great
advance because it made possible the multiplication of distributions without any
kind of restriction. But this progress, despite its importance, was merely alge-
braic, letting aside all the resources of Functional Analysis. Since the machinery
of classical Functional Analysis has shown to be prolific, it was expected that,
soon or late, it would be possible to define a suitable topology (i.e. compatible
with the algebraic structure), in order to have, in this context, a complete set of
algebraic and topological tools.
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The first and most important step in this direction was done in 1995 by
D. Scarpalezos in [12] and [13], who defined the “sharp topology”, on the simpli-
fied version of Colombeau’s algebra. In this work we introduce the topology TΩ

on the full algebra G(Ω) and prove that the topologies induced by TΩ on Gs(Ω)
and Ks (ring of Colombeau’s generalized scalars (simplified version)) coincide
with Scarpalezos’s sharp topologies. The topology T induced by TΩ on K (ring
of Colombeau’s generalized scalars (full version)) made it a topological ring so
that G(Ω) is a topological algebra on K.

Our starting point differs from the one of Scarpalezos. In fact, using a partial
order relation ≤ on R (defined in [5] and [9], see Definition 2.2) we have been
able to define a notion of “generalized semi-norms” on G(Ω) from which the
definition of TΩ follows naturally. This way of working suggests an interesting
parallel between Colombeau’s algebras and the theory of locally convex spaces.

It is pertinent to say that an important part of the motivation for this work
was the resolution of a boundary value problem for a nonlinear PDE which we
now describe. Let Ω be a non-void bounded open subset of Rm, T ∈ R∗

+; then
Q := Ω× ]0, T [ is a bounded open subset of Rm+1.

Theorem 1.1 ([3, Theorem 3.5]). Consider the IBVP

(1.1)


ut −∆u + u3 = 0 in G(Q),

u|Ω×{0} = u0 in G(Ω),

u|∂Ω×[0,T ] = 0 in G(∂Ω× [0, T ]),

where u0 ∈ G(Ω). Then, there is a unique u ∈ G(Q) such that u is solution of
(1.1) (with initial data u0).

The resolution of this problem involves the completeness of TΩ, the definition
of a topology TΩ,b on G(Ω) (where Ω is a bounded open subset of Rm), the
completeness of TΩ,b, besides many other questions.

Let us explain a bit more how to solve (1.1). The first thing to be done
is to create the right environment to find a solution. Note that (1.1) was first
considered by Brézis–Friedman [7] who showed that, in case u0 = δ, there is no
solution in D′. Colombeau–Langlais [8] showed that if u0 ∈ Gc(Ω), the ideal of
G(Ω) consisting of the generalized functions of compact support, then (1.1) has
a solution in G(Ω).

To solve the problem, in case u0 ∈ G(Ω) is any generalized function, we
use topological arguments. In fact, we first use the results of this paper to
endow G(Q) and G(∂Ω × [0, T ]) with suitable but yet compatible and complete
topologies. Using the density of the ideal Gc(Ω), we get a sequence (un)n≥1 of
elements of Gc(Ω) such that un → u0 in (G(Ω), TΩ) when n →∞ and, from results
of Colombeau–Langlais, we construct a sequence (Un)n≥1, such that Un ∈ G(Q)
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for all n ≥ 1, is a solution of (1.1) with corresponding initial data un. Finally,
using algebraic and topological machinery, we show that (Un)n≥1 is a Cauchy
sequence which converges to an element U ∈ G(Q), the latter being the unique
solution of (1.1).

It is important to say that we heavily relied on estimates proved in [8],
generalized to an algebraic context, on the topological notion of quasi-regular
sets developed in [1] and on the continuity of a nonlinear differential operator
which is proved using the here developed topology.

We now present the general ideas on which the present work is based. Let Ω
be a non-void open subset of Rm and G(Ω) as in [2, Notation 2.1.1]. If (Ωl)l∈N

is an exhaustive sequence of open subsets of Ω then it is well known that the
natural locally convex topology tΩ on C∞(Ω) can be defined by the fundamental
system of semi-norms ||| · |||β,l given by

|||u|||β,l := sup
x∈Ωl

|∂βu(x)|

for u ∈ C∞(Ω), β ∈ Nm and l ∈ N.
To define our topology TΩ we proceed as follows. First, for every β ∈ Nm

and l ∈ N, we define the “generalized semi-norm” || · ||β,l on G(Ω) by

||f ||β,l := cl(ϕ ∈ A0 7→ |||f̂(ϕ, · )|||β,l ∈ R),

for all f ∈ G(Ω), where f̂ is any representative of f . Next we define a fundamental
system of 0-neighbourhoods of G(Ω), determining TΩ. To this end we need to
introduce a partial order relation ≤ on R which generalizes the partial order ≤
on Rs introduced in [5] and [9].

To get a compatible topology we allow as radius of our balls elements of the
set Q• := {α•r | r ∈ R}, which is a linearly ordered subset of R (see Example 2.3)
formed by q-positive units of R (i.e. Q• ⊂ Inv(R) ∩ R+). The consideration of
the generalized scalars α•r is the natural generalization of an idea of [4].

The same ideas, together with the obvious definition of the absolute value
for elements of K, lead to TΩ and allow us to introduce a natural topology T
on K. It is then proved that TΩ and T induce on the simplified algebras Gs(Ω)
and Ks the well-known sharp topologies (see [12], [13] and [4]).

The best way to endow an algebra (or ring) E with a topology compatible
with its algebraic structure is to give a filter basis B on E verifying a set of
axioms which essentially guarantees the continuity of the algebraic operations
of E. This set of axioms is slightly different than the one usually appearing in
text books on TVS. This is because a K-algebra is not a K-TVS. So, to make
the paper self contained, we present, in the Section 2, some results about these
axioms.
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2. Some basic facts on topological algebras

In this section we present three well know results which guarantee that the
topology determined by a given filter basis B on a ring (or module or algebra) is
compatible with the ring (or module or algebra) structure. The proofs of these
three results follow easily from [6, Chapter 3, §1, no 2 (p. 12); §6, no 3 (p. 75–76)]
and are omitted.

In what follows the word “ring” means “commutative ring with unit” and
the word “algebra” means “commutative algebra with unit”.

Proposition 2.1. Let A be a ring and B a filter basis on A verifying the
following conditions:

(GA′
I) for every U ∈ B there exists V ∈ B such that V + V ⊂ U ;

(GA′
II) for every U ∈ B there exists V ∈ B such that −V ⊂ U ;

(AV′
I) for every a ∈ A and every U ∈ B there exists V ∈ B such that a.V ⊂ U ;

(AV′
II) for every U ∈ B there exists V ∈ B such that V.V ⊂ U .

Then, there exists a unique topology τ on A, compatible with the ring structure
of A, such that B is a fundamental system of τ -neighbourhoods of 0.

Proposition 2.2. Let A be a topological ring.
(a) Let X be an A-module and B a filter basis on X verifying the conditions

(GA′
I) and (GA′

II) of Proposition 2.1 and, in addition, the three conditions:

(MV′
I) for every x0 ∈ X and every V ∈ B there exists a 0-neighbourhood S in

A such that S.x0 ⊂ V ;
(MV′

II) for every λ0 ∈ A and every V ∈ B there exists W ∈ B such that
λ0.W ⊂ V ;

(MV′
III) for every V ∈ B there exist W ∈ B and a 0-neighbourhood S in A such

that S.W ⊂ V .

Then, there exists a unique topology τ on X, compatible with the A-module struc-
ture of X, such that B is a fundamental system of τ -neighbourhoods of 0.

(b) Let X an A-algebra and B a filter basis on X verifying the conditions
(GA′

I), (GA′
II), (MV′

I), (MV′
II) and (MV′

III) of (a) and, in addition, the two
conditions:

(AV′
I) for every x0 ∈ X and every V ∈ B there exists W ∈ B such that

x0.W ⊂ V ;
(AV′

II) for every V ∈ B there exist W ∈ B such that W.W ⊂ V .

Then, there exists a unique topology τ on X, compatible with the A-algebra struc-
ture of X, such that B is a fundamental system of τ -neighbourhoods of 0.

Let X be a topological ring and A a subring of X (we assume here that the
unit element of X belongs to A, see [11]). Then it is clear that the topology
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induced on A by the topology on X is compatible with the ring structure of A.
Moreover, if we denote by A0 the topological ring obtained by endowing A with
the topology induced by X, it is clear the X becomes an A0-topological algebra.
Now, if B is a filter basis on X verifying the conditions of Proposition 2.1, it is
easily seen that

(AV′
I) ⇒ (MV′

I) and (MV′
II); and (AV′

II) ⇒ (MV′
III)

which allow the following simplification of Proposition 2.2(b), which we shall
need in the sequel:

Corollary 2.3. Let X be a ring, A a subring of X (see [11]) and B a filter
basis on X verifying the four conditions (GA′

I), (GA′
II), (AV′

I) and (AV′
II) of

Proposition 2.1 (with X instead of A). Then, there exists a unique topology τ

on X with the following properties:

(a) τ is compatible with the ring structure of X. The topology τA induced
by τ on A is compatible with the ring structure of A.

(b) X is an A0-topological algebra (here A0 denotes the topological ring
obtained by endowing A with τA).

(c) B is a fundamental system of τ -neighbourhoods of 0.

3. The scalar full sharp topology

In the remainder of the paper we shall adopt the following conventions. As
usual, K denotes indistinctly R or C, ⊂:= ]0, 1] and ⊂η:= ]0, η[ for each η ∈⊂.
We shall assume fixed an arbitrary m ∈ N∗ and a non void open set Ω in Rm.
We shall use freely the symbols Aq = Aq(m; K) (q ∈ N) [2, Definition 1.5 and
Notation 1.8], G(Ω) [2, Notation 2.1.1], K = K(Rm), EM (K) = EM (K; Rm) and
N (K) = N (K; Rm) [2, 3.1, Definition 3.1.2 and Remark 3.1.3]. The definitions of
the algebra of the simplified generalized functions and the ring of the simplified
generalized numbers,

Gs(Ω) :=
EM,s[Ω]
Ns[Ω]

and Ks :=
EM,s(K)
Ns(K)

,

that we adopt here are the ones given in [4, Section 1], where the notation
used are G(Ω) and K. The only difference between the above definitions in the
simplified cases and the ones given in [2, 8.1 and 8.2] is that here (resp. in [2])
the domains of u ∈ EM,s[Ω] and v ∈ EM,s(K) are ⊂ ×Ω and ⊂ (resp. R∗

+ × Ω
and R∗

+).
As usual, K ⊂⊂ Ω denotes the sentence “K is a compact subset of Ω”.
We use an exhaustive sequence of open sets (Ωl)l∈N for Ω, which means that

Ω =
⋃

l∈N Ωl, Ωl being a non-void open set and Ωl ⊂⊂ Ωl+1, for all l ∈ N. If
F : Ω → K is a function and ∅ 6= S ⊂ Ω, we define ||F ||S := supx∈S |F (x)| and,
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in the particular case S = Ωl (for any l ∈ N) we write ||F ||l instead of ||F ||Ωl
,

i.e. ||F ||l := supx∈Ωl
|F (x)|.

If ϕ ∈ A0 = A0(m, K) we define i(ϕ) := diam supp (ϕ) and since 0 /∈ A0 we
have i(ϕ) > 0 for all ϕ ∈ A0. It is easy to see that i(ϕε) = εi(ϕ) for all ε > 0.

Our next result paves the way for the definition of a partial order relation
on R by using the same kind of ideas which leads to the definition of a partial
order relation on Rs in [5, Section 3], see also [9].

Lemma 3.1. For a given x ∈ R the following are equivalent:

(a) every representative x̂ of x satisfies the condition:

(3.1)

{
there exists N ∈ N such that for all b > 0 and for all ϕ ∈ AN

there is η = η(b, ϕ) ∈ I verifying x̂(ϕε) ≥ −εb for all ε ∈⊂η;

(b) there exists a representative x̂ of x satisfying (3.1);
(c) there exists a representative x∗ of x such that x∗(ϕ) ≥ 0 for all ϕ ∈ A0;
(d) there exist N ∈ N and a representative x∗ of x such that x∗(ϕ) ≥ 0 for

all ϕ ∈ AN .

Proof. (b) ⇒ (c) From the representative x̂ of x in (b) we define h:A0 → R
by h(ϕ) := 0 (resp. −x̂(ϕ)) if x̂(ϕ) ≥ 0 (resp. x̂(ϕ) < 0), hence h(ϕ) ≥ 0 for
each ϕ ∈ A0 and it is easily seen that h ∈ N (R). Now, it is enough to define
x∗(ϕ) := x̂(ϕ) + h(ϕ) for all ϕ ∈ A0.

(c) ⇒ (a) Let x̂ be an arbitrary representative of x. Since x∗ − x̂ ∈ N (R) it
follows that there is N ∈ N such that for all q ≥ N , for all ϕ ∈ Aq and for all
b > 0 we have |(x∗ − x̂ )(ϕε)|ε−b → 0 if ε ↓ 0. Therefore, there is η = η(b, ϕ) ∈⊂
satisfying |(x∗ − x̂ )(ϕε)|ε−b ≤ 1 for all ε ∈⊂η, hence (x∗ − x̂)(ϕε) ≤ εb for all
ε ∈⊂η, which implies x̂(ϕε) ≥ x∗(ϕε)− εb ≥ −εb for all ε ∈⊂η, hence x̂ satisfies
condition (3.1).

The implications (a) ⇒ (b) and (c) ⇔ (d) are obvious. �

Definition 3.2. An element x ∈ R is said to be quasi-positive or q-positive,
if it has a representative satisfying the equivalent conditions of Lemma 3.1. We
shall denote this by x ≥ 0. We shall say also that x is quasi-negative or q-negative
if −x is q-positive and we denote this by x ≤ 0. If y ∈ R is another element then
we write x ≤ y (resp. x ≥ y) if y − x (resp. x− y) is q-positive.

Notation.

K∗
:= K \ {0}, R+ := {x ∈ R | x ≥ 0} and R∗

+ := {x ∈ R∗ | x ≥ 0}.
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Example 3.3. For every r ∈ R we shall define an element α•r ∈ R∗
+ which

will play the same role that the elements αr ∈ Rs,+ (see [4, Section 1]). A
representative of α•r is the function given by

α̂•r :ϕ ∈ A0 → i(ϕ)r ∈ R∗
+.

Clearly α̂•r(ϕ) > 0 for all ϕ ∈ A0 and α̂•r(ϕε) = εri(ϕ)r = α̂r(ε)i(ϕ)r. Obviously
α̂•r ∈ EM (R) and α•r := cl(α̂•r) ∈ R∗

+. From the condition (3.1) it follows at once
that

(3.2) r, s ∈ R and s < r ⇒ α•r ≤ α•s .

Proposition 3.4. The relation x ≤ y of Definition 3.2 is a partial order
relation on R.

Proof. Follows at once by remarking that from Lemma 3.1(a) we have that,
for given x, y ∈ R, the relation x ≤ y means that

(3.3)


for any representatives x̂ and ŷ of x and y, there exists N ∈ N

such that for all b > 0 and for all ϕ ∈ AN there exists η = η(b, ϕ) ∈ I

verifying x̂(ϕε) ≤ ŷ(ϕε) + εb for all ε ∈⊂η .

�

Example 3.5. The partial order relation on R it is not linear. Indeed, by
defining

x̂(ϕ) := i(ϕ) sin
(

1
i(ϕ)

)
for all ϕ ∈ A0

it is easily seen that x := cl(x̂) ≥ 0 and x ≤ 0 are false.

Proposition 3.6. For every x ∈ R+ and p ∈ N∗ there is a unique y ∈ R+

such that yp = x (this y is denoted by x1/p or p
√

x and it is called q-positive
pth-root of x).

Proof. Let x∗ be the representative of x as in Lemma 3.1(c). Then the
function y∗:ϕ ∈ A0 7→ p

√
x∗(ϕ) ∈ R+ is well defined and moderate. Clearly

y := cl(y∗) ∈ R+ and yp = x. �

For every x ∈ K, if x̂ is any representative of x, the function |x̂|:ϕ ∈ A0 7→
|x̂(ϕ)| ∈ R+ is obviously moderate and since |x̂|(ϕ) = |x̂(ϕ)| ≥ 0 for all ϕ ∈ A0,
it follows that cl(|x̂|) ∈ R+. By the triangle inequality it follows that cl(|x̂|)
is independent of the representative x̂ of x and only depends of x, hence it is
natural to denote this class by |x|, i.e.

|x| := cl(|x̂|)
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is called absolute value (or module) of x. So we have a natural map

x ∈ K 7→ |x| ∈ R+.

The definition below depends on the above concept of absolute value and on
Example 3.3.

Definition 3.7. If x0 ∈ K and r ∈ R, then we define

Vr[x0] := {x ∈ K | |x− x0| ≤ α•r} and B := {Vr[0] | r ∈ R}.

Remark 3.8. In view of Lemma 3.1(a), the statement x ∈ Vr[0] is equivalent
to the following sentence:

(3.4)


if x̂ is any representative of x then there exists N ∈ N such that

for all b > 0 and for all ϕ ∈ AN there exists η = η(b, ϕ) ∈⊂
verifying |x̂(ϕε)| ≤ i(ϕ)rεr + εb, for all ε ∈⊂η

Lemma 3.9. The set B (see Definition 3.7) is a filter basis on K which satis-
fies the four conditions in Proposition 2.1. Therefore, B determines a Hausdorff
topology T compatible with the ring structure of K.

Proof. Clearly B 6= ∅ and ∅ /∈ B. The implication

if r, s ∈ R then there exists t ∈ R such that Vt[0] ⊂ Vr[0] ∩ Vs[0]

follows trivially from the statement

if r, s ∈ R and r < s then Vs[0] ⊂ Vr[0],

which follows at once from (3.4).
Statement (3.4) implies also that B satisfies the four conditions of Proposi-

tion 2.1. Indeed, we get easily that Vr+1[0]+Vr+1[0] ⊂ Vr[0] for all r ∈ R, which
shows that (GA′

I) holds. The equality Vr[0] = −Vr[0] for all r ∈ R shows that
(GA′

II) holds. Now we must show that:

(AV′
I) For given a ∈ K and Vr[0] ∈ B there exists s ∈ R such that

(3.5) a.Vs[0] ⊂ Vr[0].

In fact, since a ∈ K, if â is any representative of a there exists N ∈ N such that
for every ϕ ∈ AN there exist c > 0 and σ ∈⊂ satisfying

|â(ϕε)| ≤ cε−N for all ε ∈⊂σ .

Then, it is easily seen that (3.5) holds by defining s := r + N + 1.
Next, we shall show that

(AV′
II) Given Vr[0] ∈ B there is s ∈ R such that Vs[0]Vs[0] ⊂ Vr[0],



Natural Topologies on Colombeau Algebras 169

which is trivial by defining s := (r + 1)/2.
Finally, T is Hausdorff since it is easily seen that

⋂
r>0 Vr[0] = {0}. �

Definition 3.10. The topology T on K of Lemma 3.9 is called scalar full
sharp topology.

The definition of the partial order relation and the absolute value in K just
introduced in this Section 3 are rather simple generalizations of the analogous
definitions in Ks developed in [5, Lemma 3.1, Definitions 3.2 and 3.4] that we
shall use freely in the sequel.

Clearly, we can adapt Definition 3.7 by introducing, for x0 ∈ Ks and r ∈ R
the set

Vr(x0) := {x ∈ Ks | |x− x0| ≤ αr} and Bs := {Vr(0) | r ∈ R}.

Remark 3.11. From [5, Lemma 3.1] it is easily seen that the statement
x ∈ Vr(0) is equivalent to the following sentence:

(3.6)

{
if x̂ is any representative of x then for all b > 0 there exists ηb ∈ I

such that |x̂(ε)| ≤ εr + εb for all ε ∈⊂ηb
.

With the above notation, introduced just before Remark 3.11, we have the
following “simplified version” of Lemma 3.9.

Lemma 3.12. The set Bs is a filter basis on Ks which satisfies the four
conditions of Proposition 2.1. Therefore, Bs determine a topology Ts compatible
with the ring structure of Ks.

Proof. The argument is a minor modification of the proof of Lemma 3.9
by using (3.6) instead (3.4). �

The topology Ts of Lemma 3.12 is indeed a familiar one:

Theorem 3.13. Let τs be the “sharp topology” on Ks (see [12], [13] and [4]),
then

(a) Ts = τs;
(b) Ts coincides with the topology j−1

m (T ), where T was introduced in Defi-
nition 3.10 and

jm:λ ∈ Ks 7→ cl(λ̂∗) ∈ K = K(Rm),

being λ̂ an arbitrary representative of λ and λ̂∗(ϕ) := λ̂(min(1, i(ϕ)))
for all ϕ ∈ A0 = A0(Rm; K).
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Note that jm is the natural injective ring-homomorphism of Ks into K, hence
we can identifies Ks with jm(Ks) and write Ks ⊂ K. So we can rewrite the
statement (b) of Theorem 3.13 by saying “Ts = τs is the topology induced
by T ”.

Proof. (a) For given x0 ∈ Ks and ρ ∈ R∗
+ we set (see [4, Notation 1.5])

Bρ(x0) := {x ∈ Ks | ||x− x0|| < ρ}.

Since the set of all balls Bρ(0) when ρ ranges over R∗
+ is a fundamental system

of τs-neighbourhoods of 0, it is enough to show the two following statements:

(3.7) for all r ∈ R there exists ρ ∈ R∗
+ such that Bρ(0) ⊂ Vr(0)

and

(3.8) for all ρ ∈ R∗
+ there exists r ∈ R such that Vr(0) ⊂ Bρ(0).

In order to prove (3.7) fix an arbitrary r ∈ R and consider ρ ∈ R∗
+ such that

ρ ≤ e−r. We shall show that Bρ(0) ⊂ Vr(0). Indeed,

x ∈ Bρ(0) ⇔ ||x|| = e−V (bx) < ρ ⇔ V (x̂) > − log ρ,

where x̂ is any representative of x. The preceding inequality and the definition
of V (x̂) imply that there is η ∈⊂ such that

|x̂(ε)|
ε− log ρ

< 1 for all ε ∈⊂η .

Hence, from the choice of ρ, it follows that

|x̂(ε)| ≤ α̂− log ρ(ε) ≤ α̂r(ε) for all ε ∈⊂η

which implies (see (3.6)) that x ∈ Vr(0).
Let us now prove (3.8). To this end, fix an arbitrary ρ ∈ R∗

+ and consider
r ∈ R such that e−r < ρ. We shall show that Vr(0) ⊂ Bρ(0). In the proof of the
preceding inclusion we shall need the following trivial statement:

(3.9) if z ∈ Ks and |z| ≤ 1 then V (ẑ) ≥ 0 for every representative ẑ of z.

Now, for a given x ∈ Ks we have

x ∈ Vr(0) ⇔ |x| ≤ αr ⇔ |α−rx| ≤ 1

and therefore, by (3.9), if x̂ is any representative of x we get (see [4, Proposi-
tion 1.3(c)]) V (α̂−r.x̂) = −r + V (x̂) ≥ 0 thus V (x̂) ≥ r. Therefore, from the
choice of r, we then conclude that ||x|| = e−V (bx ) ≤ e−r < ρ, i.e. x ∈ Bρ(0).

(b) It is enough to show that j−1
m (Vr[0]) = Vr(0) for all r ∈ R, which follows,

as usual, from (3.6) and (3.4). �
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4. The full sharp topology

We use again the notation of Section 3. It will be convenient to give the
following characterizations of the elements of EM [Ω] and N [Ω] (of course, equiv-
alent to the ones given in [2, Notation 2.1.1, (b) and (d)]): u ∈ EM [Ω] if and
only if 

for all l, p ∈ N there exist N ∈ N and σ ∈ R

such that for all ϕ ∈ AN we have ||∂βu(ϕε, · )||l = o(εσ),

if ε ↓ 0, whenever |β| ≤ p;

and u ∈ N [Ω] if and only if
for all l, p ∈ N for all σ ∈ R there exists N ∈ N

such that for all ϕ ∈ ANwe have ||∂βu(ϕε, · )||l = o(εσ),

if ε ↓ 0, whenever |β| ≤ p.

We shall need the result below, whose trivial proof is omited.

Lemma 4.1. Let F , G and H be elements of C(Ω; K) such that

||F (x)| − |G(x)|| ≤ |H(x)|, for all x ∈ Ω.

Then, for each K ⊂⊂ Ω, we have |||F ||K − ||G||K | ≤ ||H||K .

Lemma 4.2. For given u ∈ EM [Ω], β ∈ Nm and l ∈ N, we have:

(a) the function uβ
l :ϕ ∈ A0 7→ ||∂βu(ϕ, · )||l ∈ R+ is moderate (i.e. uβ

l ∈
EM (R)) and cl(uβ

l ) ∈ R+;
(b) if v ∈ EM [Ω] and u − v ∈ N [Ω], then uβ

l − vβ
l ∈ N (R) and hence

cl(uβ
l ) = cl(vβ

l ).

Proof. The assertion (a) is clear and the statement (b) follows at once from
definitions and Lemma 4.1. �

The definition below makes sense from Lemma 4.2.

Definition 4.3. Fix β ∈ Nm and l ∈ N. For every f ∈ G(Ω) we define

||f ||β,l := cl(f̂β
l ) = cl[ϕ ∈ A0 7→ ||∂β f̂(ϕ, · )||l ∈ R+]

where f̂ is any representative of f . For every f0 ∈ G(Ω) and r ∈ R we define

W β
l,r[f0] := {f ∈ G(Ω) | ||f − f0||σ,l ≤ α•r , whenever σ ≤ β}

and
BΩ := {W β

l,r[0] | β ∈ Nm, l ∈ N and r ∈ R}.

For the sake of simplicity, in the statement of the result below, we consider
that K ⊂ G(Ω) as the generalized constants.
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Lemma 4.4. For all β ∈ Nm, l ∈ N and r ∈ R we have K ∩W β
l,r[0] = Vr[0]

(see Definition 3.7).

Proof. The inclusion K ⊂ G(Ω) is given by the canonical homomorphism
of K-algebras

λ = cl(λ̂) ∈ K 7→ λ∗ := cl[(ϕ, x) ∈ A0 × Ω 7→ λ̂(ϕ) ∈ R+] ∈ G(Ω).

Therefore

λ ∈ K ∩W β
l,r[0] ⇔ λ ∈ K and ||λ∗||σ,l ≤ α•r , for all σ ≤ β

and since from Definition 4.3 we get (where δij denotes the Kronecker δ):

||λ∗||σ,l = |λ|.δ0,|σ| (for all σ ≤ β),

it follows that

λ ∈ K ∩W β
l,r[0] ⇔ λ ∈ K and |λ| ≤ α•r ⇔ λ ∈ Vr[0]. �

Remark 4.5. (a) From Lemma 3.1(a) it is easily seen that the statement
f ∈ W β

l,r[0] is equivalent to the following sentence:

(4.1)


for every representative f̂ of f, there exists N ∈ N such that

for all b > 0 and all ϕ ∈ AN there exists η = η(b, ϕ) ∈⊂
satisfying ||∂σ f̂(ϕε, · )||l ≤ i(ϕ)rεr + εb, for all ε ∈⊂η and all σ ≤ β.

(b) The following three statements hold:

(b1) If λ ≥ λ′ then Wλ
p,r[0] ⊂ Wλ′

p,r[0], for all (p, r) ∈ N×R (here, λ ≥ λ′

means that λj ≥ λ′j , for all j = 1, . . . , m).
(b2) If r > r′ then Wλ

p,r[0] ⊂ Wλ
p,r′ [0], for all (λ, p) ∈ Nm × N.

(b3) If p > q then Wλ
p,r[0] ⊂ Wλ

q,r[0], for all (λ, r) ∈ Nm × R.

Theorem 4.6. (a) The set BΩ (see Definition 4.3) is a filter basis on G(Ω)
which satisfies the four conditions (GA′

I), (GA′
II), (AV′

I) and (AV′
II) of Corol-

lary 2.3.
(b) There exists a unique topology TΩ on G(Ω) verifying the following condi-

tions:

(b1) TΩ is compatible with the ring structure of G(Ω). The topology
induced by TΩ on K coincides with the topology T (see Defini-
tion 3.10).

(b2) G(Ω) is a K-topological algebra (when G(Ω) and K are endowed
with TΩ and T , respectively).

(b3) BΩ is a fundamental system of TΩ-neighbourhoods of 0.
(b4) TΩ is metrizable.
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Proof. We abbreviate notation by writing W β
p,r instead of W β

p,r[0].
(a) Clearly BΩ 6= ∅ and ∅ /∈ BΩ since 0 ∈ W β

p,r for all β, p, r. Given W β
p,r and

W γ
q,s in BΩ, if we define λ = (λ1, . . . , λm) where λj := max(βj , γj) (1 ≤ j ≤ m),

l := max(p, q) and t := max(r, s), from Remark 4.5(b), we get Wλ
l,t ⊂ W β

p,r∩W γ
q,s.

Hence, BΩ is a filter basis on G(Ω). The verification of that BΩ satisfies the four
conditions of Corollary 2.3 is easy but rather tedious and here we only sketch
these proofs.

Condition (GA′
I). Given any W β

p,r we have

W β
p,s + W β

p,s ⊂ W β
p,r, for all s > r.

Indeed, this follows easily from the implication

s > r ⇒ 2α•s ≤ α•r ,

which is a consequence of Lemma 3.1(a).
Condition (GA′

II). Obvious, since W β
p,r = −W β

p,r for all β, p, r.
Condition (AV′

I). Given f0 ∈ G(Ω) and W β
p,r there exists s ∈ R such that

(4.2) f0W
β
p,s ⊂ W β

p,r.

Fix a representative f̂0 of f then, from the moderation we can find N1 ∈ N and
r′ < 0 such that for all ϕ ∈ AN1 there exist C > 0 and η1 = η1(ϕ) ∈⊂ satisfying

(4.3) ||∂µf̂0(ϕε, · )||p ≤ Cεr′
for all ε ∈ Iη1 , whenever |µ| ≤ |β|.

Define s := r − r′ + 1 = r + |r′| + 1. Now, the proof of (4.2) is easy: fix any
representative ĝ of an arbitrary g ∈ W β

p,s, we want to prove that f0g ∈ W β
p,r.

From g ∈ W β
p,s and (4.1) we have an inequality for ||∂σ ĝ(ϕε, · )||p (σ ≤ β) which

jointly with (4.3) and the Leibnitz formula for derivation of a product, give an
inequality for ||∂λ(f̂0ĝ)(ϕε, · )||p (λ ≤ β), which shows (by (4.1)) that f0g ∈ W β

p,r.
Condition (AV′

II). Given W β
p,r there is s ∈ R such that W β

p,s.W
β
p,s ⊂ W β

p,r.
Define s := (r + 1)/2. In order to prove the above inclusion, for fixed ar-

bitrary f, g ∈ W β
p,s we want to proof that fg ∈ W β

p,r. From f, g ∈ W β
p,s and

(4.1), for fixed arbitrary representatives f̂ , ĝ of f , g, respectively, we get two
inequalities for ||∂σ f̂(ϕε, · )||p and ||∂σ ĝ(ϕε, · )||p (σ ≤ β). Next, we apply Leib-
nitz formula which, jointly with the above inequalities, leads to an inequality for
||∂λ(f̂ ĝ)(ϕε, · )||p (λ ≤ β), which shows (by (4.1)) that f, g ∈ W β

p,r.
(b) In view of (a) and Corollary 2.3 we can conclude that there exists a unique

topology TΩ on G(Ω) satisfying the three following conditions:

(b1’) TΩ is compatible with the ring structure of G(Ω). The topology TK
induced by TΩ on K, is compatible with the ring structure of K;

(b2’) G(Ω) is a K-topological algebra (G(Ω) and K are endowed with TΩ and
TK, respectively);
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(b3’) BΩ is a fundamental system of TΩ-neighbourhoods of 0.

Now, by Lemma 4.4, it is clear that the topology induced by TΩ on K is T
(see Definition 3.10), hence TK = T , and therefore (b1’) implies (b1) and (b2’)
implies (b2).

Since limr→∞ α•r = 0, it is clear that the set

{W β
p,r | β ∈ Nm, p ∈ N and r ∈ N}

is a countable fundamental system of TΩ-neighbourhoods of 0 and so (b4) is
true. �

Definition 4.7. The topology TΩ on G(Ω) in Theorem 4.6 is called full
sharp topology.

In the sequel, we shall show that the topology induced by TΩ on Gs(Ω) (see
notation in Section 3) is precisely the sharp topology τΩ (see [12], [13] and [4]).
Here, we shall develop a procedure analogous to the one at the beginning of
Section 4, proving the analog of Lemma 4.2 for Gs(Ω), which allows us to define
a filter basis Bs,Ω on Gs(Ω) which will determine a topology Ts,Ω on Gs(Ω). Next,
we shall show that

W β
p,r[0] ∩ Gs(Ω) = W β

p,r(0) for all β, p, r

where W β
p,r(0) denote a general element of Bs,Ω. Hence Ts,Ω will be the topology

induced on Gs(Ω) by TΩ. Finally, we shall show that Ts,Ω = τΩ.

Lemma 4.8. Given u ∈ EM,s[Ω], β ∈ Nm and l ∈ N, we have:

(a) the function uβ
l : ε ∈⊂7→ ||∂βu(ε, · )||l ∈ R+ is moderate (i.e. uβ

l ∈
EM,s(R)) and cl(uβ

l ) ∈ Rs,+;
(b) if v ∈ EM,s[Ω] and u − v ∈ Ns[Ω], then uβ

l − vβ
l ∈ Ns(R) and therefore

cl(uβ
l ) = cl(vβ

l ).

Proof. Follows at once from slight modifications in the proof of Lemma 4.2.
�

Definition 4.9. Fix β ∈ Nm and l ∈ N. For every f ∈ Gs(Ω) we define

|f |β,l = cl(f∗
β
l ) = cl[ε ∈⊂7→ ||∂βf∗(ε, · )||l ∈ R+],

where f∗ is any representative of f . For every f0 ∈ Gs(Ω) and r ∈ R we define

W β
l,r(f0) := {f ∈ Gs(Ω) | |f − f0|σ,l ≤ αr whenever σ ≤ β}

and
Bs,Ω := {W β

l,r(0) | β ∈ Nm, l ∈ N and r ∈ R}.

Here we have also remarks analogous to Remark 4.5.
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Remark 4.10. (a) From [5, Lemma 3.1(i)] it follows at once that the state-
ment f ∈ W β

l,r(0) is equivalent to the following sentence

(4.4)


every representative f∗ of f satisfies:

for all b > 0 there exists ηb ∈⊂ such that

||∂σf∗(ε, · )||l ≤ εr + εb, for all ε ∈⊂ηb
and all σ ≤ β.

(b) The three implications of Remark 4.5(b) hold for the sets W β
l,r(0), we

omit them since it is suffices to change W β
l,r[0] by W β

l,r(0).

Since Gs(Ω) ⊂ G(Ω), for given f ∈ Gs(Ω), β ∈ Nm and l ∈ N, the two
generalized numbers |f |β,l ∈ Ks and ||f ||β,l ∈ K make sense. Moreover, since
Ks ⊂ K, it is natural to ask the relation between these two generalized numbers.
We shall show a nice answer to this question

(4.5) |f |β,l = ||f ||β,l for all f , β, l.

More precisely, if jm: Ks → K denote the canonical inclusion of Ks into K (see
Theorem 3.13(b)) and

Ψ∗
Ω: f ∈ Gs(Ω) 7→ cl[ΨΩ(f∗)] ∈ G(Ω)

denotes the canonical inclusion of Gs(Ω) into G(Ω) (where f∗ ∈ EM,s[Ω] is any
representative of f and ΨΩ:u ∈ EM,s[Ω] 7→ u1 ∈ EM [Ω] is the ring homomorphism
defined by u1(ϕ, x) := u(min(1, i(ϕ)), x) for each (ϕ, x) ∈ A0×Ω) then we have:

Lemma 4.11.

(a) jm(|f |β,l) = ||cl[ΨΩ(f∗)]||β,l for every f ∈ Gs(Ω), β ∈ Nm, l ∈ N and
any representative f∗ of f .

(b) |f |β,l ≤ αr if and only if ||cl[ΨΩ(f∗)]||β,l ≤ α•r , for every f ∈ Gs(Ω),
β ∈ Nm, l ∈ N and any representative f∗ of f .

(c) Ψ∗
Ω
−1(W β

p,r[0]) = W β
p,r(0) for every β ∈ Nm, p ∈ N and r ∈ R.

Proof. (a) Fix f , β, l and any representative f∗ ∈ EM,s[Ω] of f . The
equality follows at once from the definitions of |f |β,l, jm, ΨΩ and ||cl[ΨΩ(f∗)]||β,l.

(b) If f∗ is a representative of f , the inequality |f |β,l ≤ αr is equivalent to the
statement (4.4). Analogously, ||cl[ΨΩ(f∗)]||β,l ≤ α•r is equivalent to the state-
ment (4.1) for f̂ := ΨΩ(f∗). Now, the equivalence between the two inequalities
follows as a tedious application of (4.4) and (4.1).

(c) Follows immediately from (b). �

Note that (4.5) is an abuse of notation whose correct meaning is given in
Lemma 4.11(a). Analogously, the relation

W β
p,r[0] ∩ Gs(Ω) = W β

p,r(0) for all β, p, r

is an abuse of notation whose correct meaning is given in Lemma 4.11(c).
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Theorem 4.12. (a) The set Bs,Ω (see Definition 4.9) is a filter basis on
Gs(Ω) which satisfies the four axioms (GA′

I), (GA′
II), (AV′

I) and (AV′
II) of Corol-

lary 2.3.
(b) There exist a unique topology Ts,Ω on Gs(Ω) verifying the following con-

ditions:

(b1) Ts,Ω is compatible with the ring structure of Gs(Ω). The topology
induced by Ts,Ω on Ks coincides with the topology Ts (see Lem-
ma 3.12) and hence, with the sharp topology τs (see Theorem 3.13);

(b2) Gs(Ω) is a Ks-topological algebra (here we assume that Gs(Ω) and
Ks are endowed with the topologies Ts,Ω and Ts, respectively);

(b3) Bs,Ω is a fundamental system of Ts,Ω-neighbourhoods of 0;
(b4) Ts,Ω coincides with the sharp topology τΩ;
(b5) Ts,Ω coincides with the topology induced by TΩ on Gs(Ω).

Proof. By identifying Gs(Ω) with his image G(Ω) by the canonical map Ψ∗
Ω

we can write Gs(Ω) ⊂ G(Ω) and then, the Lemma 4.11(c) shows that

(4.6) W β
p,r[0] ∩ Gs(Ω) = W β

p,r(0) for all β, p, r

which means that

(4.6’) Bs,Ω = {W ∩ Gs(Ω) | W ∈ BΩ}.

The above relation (4.6’), together with Theorem 4.6(a), implies (a). Now, from
(a) and Corollary 2.3 we get (b), the first statement of (b1), (b2) and (b3). The
proof of the second statement of (b1) follows at once by noting that

W β
p,r(0) ∩Ks = Vr(0) for all β, p, r

which is the simplified version of Lemma 4.4 and easily proved. Note also that
(b5) follows directly from (4.6’).

(b4) Let recall that if u ∈ EM,s[Ω] and (n, p) ∈ N2, we set

Snp(u) := {a ∈ R | ||∂βu(ε, · )||n = o(εa) if ε ↓ 0 for all |β| ≤ p}

and vnp := supSnp(u). Moreover, it is easy to see that vnp is constant on every
equivalence class u+Ns[Ω], hence for each f ∈ Gs(Ω) the (extended) real number

Vnp(f) := vnp(f∗) ∈ ]−∞,∞]

is well defined, where f∗ is any representative of f . The sharp topology τΩ on
Gs(Ω) is defined by the family of pseudo metrics

dnp(f, g) := exp(−Vnp(f − g)) for all f, g ∈ Gs(Ω) and all n, p ∈ N.

For each a > 0 we define the dnp-ball of center 0 and radius a:

Ba(dnp) := {f ∈ Gs(Ω) | dnp(f, 0) ≤ a}.
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Then, the collection of all finite intersections of these balls is a fundamental
system of τΩ-neighbourhoods of 0 in Gs(Ω). Therefore it suffices to prove the
two following statements:

(4.7)


For every a ∈ R∗

+ and (n, p) ∈ R2 there is a finite sequence

(W β
l,r(0))β∈B of elements in Bs,Ω such that

⋂
β∈B

W β
l,r(0) ⊂ Ba(dnp).

and

(4.8)

{
For each β ∈ Nm, l ∈ N and r ∈ R

there is Ba(dnp) such that Ba(dnp) ⊂ W β
l,r(0).

To obtain (4.7) fix a ∈ R∗
+ and (n, p) ∈ N2. Then, clearly we can supose without

lost of generality that 0 < a < e−1. Now, defining l := n and choosing r ∈ R
such that r ≥ − log a + 1, if B := {β ∈ Nm | |β| = p} it follows (apply (4.4)
as usual) that

⋂
β∈B W β

n,r(0) ⊂ Ba(dnp). To prove (4.8) fix β ∈ Nm, l ∈ N and
r ∈ R. If we define n := l, p := |β| and take a ∈ ]0, e−r[, one proves easily the
inclusion Ba(dlp) ⊂ W β

l,r(0). �

5. A few results of convergence

Proposition 5.1. (a) Let M be a Lebesgue-measurable set such that M ⊂⊂
Ω. Then the K-linear function

JM : f ∈ G(Ω) 7→
∫

M

f ∈ K

is TΩ-T -continuous;
(b) For every α ∈ Nm the K-linear function ∂α: f ∈ G(Ω) 7→ ∂αf ∈ G(Ω) is

TΩ-TΩ-continuous.

Proof. (a) Fix Vr[0] with r ∈ N arbitrary. Then, for β := 0 = (0, . . . , 0)
in Nm, s := r + 1 and l ∈ N such that M ⊂ Ωl one proves easily that

JM (W 0
l,r+1[0]) ⊂ Vr[0].

(b) For W β
l,r[0] given arbitrarily it is clear that ∂α(Wα+β

l,r [0]) ⊂ W β
l,r[0]. �

Corollary 5.2. If P =
∑

|α|≤m aα(x)∂α is a generalized LPDO (i.e. aα

in G(Ω) for all |α| ≤ m), then P defines a linear application

P : f ∈ G(Ω) 7→ Pf ∈ G(Ω)

which is TΩ-TΩ-continuous.

Proof. It is enough to show that if (fl)l∈N is a sequence in G(Ω) such that
fl

TΩ−→ f ∈ G(Ω) then Pfl
TΩ−→ Pf .
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The continuity of the multiplication in G(Ω) proves that for every a ∈ G(Ω)
the function Ma: f ∈ G(Ω) 7−→ af ∈ G(Ω) is continuous. From Proposi-
tion 5.1(b) we get ∂αfl

TΩ−→ ∂αf and hence Ma(∂αfl)
TΩ−→ Ma(∂αf) which implies

that aα∂αfl
TΩ−→ aα∂αf for all |α| ≤ m. Now, the continuity of the addition in

G(Ω) proves that Pfl
TΩ−→ Pf . �

Corollary 5.3. If Ω is an open subset of Cm then the subalgebra HG(Ω)
of all holomorphic generalized functions on Ω is a TΩ-closed subalgebra of G(Ω).

Proof. Let (fl) be a sequence in HG(Ω) and assume that fl
TΩ−→ f ∈ G(Ω).

From Corollary 5.2 above we have, for each j = 1, . . . , m:

0 =
∂fl

∂zj
→ ∂f

∂zj
, if l →∞,

hence
∂f

∂zj
= 0 for every j = 1, . . . , m. �

Appendix: On K-locally convex modules (K-LCM)

With the notation introduced in Definition 4.3 it is clear that for given β ∈
Nm and l ∈ N we have

||f + g||β,l ≤ ||f ||β,l + ||g||β,l for all f, g ∈ G(Ω);

||af ||β,l = |a| ||f ||β,l for all f ∈ G(Ω) and all a ∈ K,

which suggest that we can try to mimic some basic facts of the general theory
of LCS by defining:

Definition A.1. Let E be a K-module. A generalized semi-norm (or a G-
seminorm, for short) on E is a function p:E → R+ verifying the two conditions:

p(x + y) ≤ p(x) + p(y) for all x, y ∈ E;(GSN1)

p(ax) = |a| p(x) for all x ∈ E and all a ∈ K.(GSN2)

With the above notation clearly we have

|p(x)− p(y)| ≤ p(x− y) for all x, y ∈ E

since the classical proof works in this case.
The remark preceding Definition A.1 shows that for every β ∈ Nm and l ∈ N,

the function
|| · ||β,l: f ∈ G(Ω) 7→ ||f ||β,l ∈ R+

is a G-seminorm.
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Next, fix a K-module E and a G-seminorm p on E. For each r ∈ R we can
define the p-ball of center 0 and radius α•r by

Bp,r = Bp,r(0) := {x ∈ E | p(x) ≤ α•r}

and for x0 ∈ E we set Bp,r(x0) := x0 + Bp,r = {x ∈ E | p(x − x0) ≤ α•r}. We
can also define the generalized segment of extremities 0 and 1 by

[0, 1]g := {λ ∈ R | 0 ≤ λ ≤ 1},

note that α•r ∈ [0, 1]g for every r ∈ R+.
A subset A of (the K-module) E is G-convex (resp. G-absolutely convex)

if x, y ∈ A, then λx + (1 − λ)y ∈ A for all λ ∈ [0, 1]g (resp. if x, y ∈ A, then
αx + βy ∈ A for all α, β ∈ K such that |α| + |β| ≤ 1). So the definition below
makes sense.

Definition A.2. Let E be a K-module. A module topology T on E (i.e.
a topology compatible with K-module structure) is said to be G-locally convex
if 0 has a fundamental system of G-absolutely convex neighbourhoods.

Let A be a K-algebra and Γ a non void set of seminorms in A such that:

(a) p(x) = 0 for all p ∈ Γ if and only if x = 0;
(b) For all p1, p2 ∈ Γ there is q ∈ Γ such that pi ≤ q (i = 1, 2);
(c) For each p ∈ Γ and each α > 0 we have αp ∈ Γ.

By defining Bp := {x ∈ A | p(x) ≤ 1} for all p ∈ Γ, one proves trivially that the
continuity of the multiplication

(x, y) ∈ A×A → xy ∈ A

is equivalent to each of the two following conditions:

(i) for all p ∈ Γ there exists q ∈ Γ such that BqBq ⊂ Bp;
(ii) for all p ∈ Γ there exists q ∈ Γ such that p(xy) ≤ q(x)q(y) for all

x, y ∈ A.

In this case, the Hausdorff topological algebra (A,Γ) is said to be a locally
multiplicatively-convex algebra (see [10], in this book the condition (ii) has a slight
mistake). Note that the topology TΓ determinated by Γ on A is given (see Corol-
lary 2.3) by the filter basis BΓ of all finite intersection of balls Bp.

In our case (K instead of K), if A is a K-algebra and Γ is a non-void set of
G-seminorms on A it is easy to prove that, for the conditions (i), (ii) above, we
have (ii) ⇒ (i) but, seemingly (i) ⇒ (ii) is false. Therefore, it is natural, in our
case, to say that the topological algebra (A,Γ) is a G-locally multiplicatively-
convex algebra if Γ satisfies the above condition (i). Note that the proof of
Theorem 4.6(a) (AV′

II) shows that (G(Ω),Γ) = (G(Ω), TΩ), where Γ := {|| · ||β,l |
β ∈ Nm and l ∈ N}, is a G-locally multiplicatively-convex algebra.
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