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NATURAL TOPOLOGIES ON COLOMBEAU ALGEBRAS

JORGE ARAGONA — ROSELI FERNANDEZ — STANLEY O. JURIAANS

ABSTRACT. We define intrinsic, natural and metrizable topologies 7q, 7,
Ts,0 and T in G(Q), K, Gs(Q) and Ks, respectively. The topology 7T
induces 7, 7; o and 7s. The topologies 75 o and 75 coincide with the
Scarpalezos sharp topologies.

1. Introduction

It is well known that the Colombeau’s theory was developped aiming to solve
non-linear problems of PDEs and ODEs. In a more specific way, Colombeau’s
full algebra (denoted here as G(Q2), where € is an open subset of R™) was in-
troduced to be the universe that contains a large amount of solutions of PDEs
and ODEs defined on €, which are not solvable classicaly (of course, G(€2) has
many other inhabitants, but they do not matter here). The mere fact that G(Q2)
is an algebra that contains canonically a copy of D’(€2) has represented a great
advance because it made possible the multiplication of distributions without any
kind of restriction. But this progress, despite its importance, was merely alge-
braic, letting aside all the resources of Functional Analysis. Since the machinery
of classical Functional Analysis has shown to be prolific, it was expected that,
soon or late, it would be possible to define a suitable topology (i.e. compatible
with the algebraic structure), in order to have, in this context, a complete set of
algebraic and topological tools.
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The first and most important step in this direction was done in 1995 by
D. Scarpalezos in [12] and [13], who defined the “sharp topology”, on the simpli-
fied version of Colombeau’s algebra. In this work we introduce the topology 7q
on the full algebra G(€2) and prove that the topologies induced by 7q on G4(2)
and K, (ring of Colombeau’s generalized scalars (simplified version)) coincide
with Scarpalezos’s sharp topologies. The topology 7 induced by 7 on K (ring
of Colombeau’s generalized scalars (full version)) made it a topological ring so
that G(Q) is a topological algebra on K.

Our starting point differs from the one of Scarpalezos. In fact, using a partial
order relation < on R (defined in [5] and [9], see Definition 2.2) we have been
able to define a notion of “generalized semi-norms” on G(£2) from which the
definition of 7q follows naturally. This way of working suggests an interesting
parallel between Colombeau’s algebras and the theory of locally convex spaces.

It is pertinent to say that an important part of the motivation for this work
was the resolution of a boundary value problem for a nonlinear PDE which we
now describe. Let 2 be a non-void bounded open subset of R™, T' € R% ; then
Q = Q x ]0,T[ is a bounded open subset of R™*1.

THEOREM 1.1 ([3, Theorem 3.5]). Consider the IBVP
u —Au+ud =0 inG(Q),

(1.1) Ulgy 1o = o in G(),
ulaqxjo,r) =0 in G(0Q x [0,T)),

where ug € G(Q). Then, there is a unique u € G(Q) such that u is solution of
(1.1) (with initial data ug).

The resolution of this problem involves the completeness of 7q,, the definition
of a topology 7, on G(Q) (where Q is a bounded open subset of R™), the
completeness of Tﬁ)b, besides many other questions.

Let us explain a bit more how to solve (1.1). The first thing to be done
is to create the right environment to find a solution. Note that (1.1) was first
considered by Brézis—Friedman [7] who showed that, in case ug =, there is no
solution in D’. Colombeau-Langlais [8] showed that if ug € G.(2), the ideal of
G(Q) consisting of the generalized functions of compact support, then (1.1) has
a solution in G(€Q).

To solve the problem, in case uy € G(f2) is any generalized function, we
use topological arguments. In fact, we first use the results of this paper to
endow G(Q) and G(99 x [0,T]) with suitable but yet compatible and complete
topologies. Using the density of the ideal G.(€2), we get a sequence (uy,)n>1 of
elements of G.(2) such that u,, — g in (G(Q2), Tq) when n — oo and, from results

of Colombeau—Langlais, we construct a sequence (Up,)n>1, such that U,, € G(Q)



NATURAL TOPOLOGIES ON COLOMBEAU ALGEBRAS 163

for all n > 1, is a solution of (1.1) with corresponding initial data w,,. Finally,
using algebraic and topological machinery, we show that (U,),>1 is a Cauchy
sequence which converges to an element U € G(Q), the latter being the unique
solution of (1.1).

It is important to say that we heavily relied on estimates proved in [8],
generalized to an algebraic context, on the topological notion of quasi-regular
sets developed in [1] and on the continuity of a nonlinear differential operator
which is proved using the here developed topology.

We now present the general ideas on which the present work is based. Let
be a non-void open subset of R™ and G(2) as in [2, Notation 2.1.1]. If (€;)ien
is an exhaustive sequence of open subsets of 2 then it is well known that the
natural locally convex topology tq on C*°(£2) can be defined by the fundamental
system of semi-norms ||| - |||z, given by

lulllg. := sup [07u(z)|
TEQ

foru e C*(Q), B € N"™ and [ € N.
To define our topology 7 we proceed as follows. First, for every g € N™
and [ € N, we define the “generalized semi-norm” || - ||g,; on G(2) by

~

1fllg0 == cllp € Ao — ||| f(, )z € R),

for all f € G(2), where fis any representative of f. Next we define a fundamental
system of 0-neighbourhoods of G(2), determining 7. To this end we need to
introduce a partial order relation < on R which generalizes the partial order <
on R, introduced in [5] and [9].

To get a compatible topology we allow as radius of our balls elements of the
set Q° := {a?® | r € R}, which is a linearly ordered subset of R (see Example 2.3)
formed by g¢-positive units of R (i.e. @* C Inv(R) NRy). The consideration of
the generalized scalars o is the natural generalization of an idea of [4].

The same ideas, together with the obvious definition of the absolute value
for elements of K, lead to 7o and allow us to introduce a natural topology 7
on K. It is then proved that 7o and 7 induce on the simplified algebras G,(£2)
and Ky the well-known sharp topologies (see [12], [13] and [4]).

The best way to endow an algebra (or ring) E with a topology compatible
with its algebraic structure is to give a filter basis B on E verifying a set of
axioms which essentially guarantees the continuity of the algebraic operations
of E. This set of axioms is slightly different than the one usually appearing in
text books on TVS. This is because a K-algebra is not a K-TVS. So, to make
the paper self contained, we present, in the Section 2, some results about these

axioms.
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2. Some basic facts on topological algebras

In this section we present three well know results which guarantee that the
topology determined by a given filter basis B on a ring (or module or algebra) is
compatible with the ring (or module or algebra) structure. The proofs of these
three results follow easily from [6, Chapter 3, §1, n° 2 (p. 12); §6, n° 3 (p. 75-76)]
and are omitted.

In what follows the word “ring” means “commutative ring with unit” and
the word “algebra” means “commutative algebra with unit”.

PRrROPOSITION 2.1. Let A be a ring and B a filter basis on A wverifying the
following conditions:

(GA]) for every U € B there exists V € B such that V +V C U;
(GA}y) for every U € B there exists V € B such that =V C U;

(AVY)) for everya € A and every U € B there exists V € B such that a.V C U;
(AVY) for every U € B there exists V € B such that V.V C U.

Then, there exists a unique topology T on A, compatible with the ring structure
of A, such that B is a fundamental system of T-neighbourhoods of 0.

PROPOSITION 2.2. Let A be a topological ring.
(a) Let X be an A-module and B a filter basis on X wverifying the conditions
(GA}]) and (GAYy) of Proposition 2.1 and, in addition, the three conditions:

(MVY) for every xog € X and every V € B there exists a 0-neighbourhood S in
A such that S.xqg C V;
(MVYy) for every Ao € A and every V. € B there exists W € B such that
MW CV;
(MVyy) for every V € B there exist W € B and a 0-neighbourhood S in A such
that SW C V.

Then, there exists a unique topology 7 on X, compatible with the A-module struc-
ture of X, such that B is a fundamental system of T-neighbourhoods of 0.

(b) Let X an A-algebra and B a filter basis on X wverifying the conditions
(GAY)), (GA), MVY), (MVyy) and (MVyy) of (a) and, in addition, the two

conditions:
(AVY]) for every xop € X and every V. € B there exists W € B such that
xg.W CV;
(AVY{y) for every V € B there exist W € B such that W.W C V.

Then, there exists a unique topology 7 on X, compatible with the A-algebra struc-
ture of X, such that B is a fundamental system of T-neighbourhoods of 0.

Let X be a topological ring and A a subring of X (we assume here that the
unit element of X belongs to A, see [11]). Then it is clear that the topology
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induced on A by the topology on X is compatible with the ring structure of A.
Moreover, if we denote by Ag the topological ring obtained by endowing A with
the topology induced by X, it is clear the X becomes an Ag-topological algebra.
Now, if B is a filter basis on X verifying the conditions of Proposition 2.1, it is
easily seen that

(AV]) = (MV]) and (MVYy); and (AVy) = (MViy)

which allow the following simplification of Proposition 2.2(b), which we shall
need in the sequel:

COROLLARY 2.3. Let X be a ring, A a subring of X (see [11]) and B a filter
basis on X werifying the four conditions (GA]), (GAf), (AV]) and (AV) of
Proposition 2.1 (with X instead of A). Then, there exists a unique topology T
on X with the following properties:

(a) T is compatible with the ring structure of X. The topology T4 induced
by T on A is compatible with the ring structure of A.

(b) X is an Ag-topological algebra (here Ay denotes the topological ring
obtained by endowing A with T4).

(¢) B is a fundamental system of T-neighbourhoods of 0.

3. The scalar full sharp topology

In the remainder of the paper we shall adopt the following conventions. As
usual, K denotes indistinctly R or C, C:=]0,1] and C,:= |0, n] for each n €C.
We shall assume fixed an arbitrary m € N* and a non void open set 2 in R™.
We shall use freely the symbols A, = A;(m;K) (¢ € N) [2, Definition 1.5 and
Notation 1.8], G(2) [2, Notation 2.1.1], K = K(R™), £y(K) = En (K; R™) and
N(K) = N(K;R™) [2, 3.1, Definition 3.1.2 and Remark 3.1.3]. The definitions of
the algebra of the simplified generalized functions and the ring of the simplified
generalized numbers,

gM,s[Q] i 5M,S(K)
AT A

that we adopt here are the ones given in [4, Section 1], where the notation

Gs(Q) :

used are G(2) and K. The only difference between the above definitions in the
simplified cases and the ones given in [2, 8.1 and 8.2] is that here (resp. in [2])
the domains of u € £ 4[] and v € Eps(K) are C xQ and C (resp. R x Q
and R*).

As usual, K CC 2 denotes the sentence “K is a compact subset of 2”.

We use an exhaustive sequence of open sets (£;);en for ©, which means that
Q= UleN Q, Q; being a non-void open set and Q; CC Q41, for all [l € N. If
F:Q — K is a function and () # S C Q, we define ||F||s := sup,cg |F(x)| and,
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in the particular case S = € (for any | € N) we write ||F||; instead of || F||q,,
ie. ||F||; := SUP,cq, |F(x)].
If p € Ag = Ap(m,K) we define i(p) := diamsupp (¢) and since 0 ¢ Ay we
have i(p) > 0 for all p € Ag. It is easy to see that i(¢:) = €i(p) for all € > 0.
Our next result paves the way for the definition of a partial order relation
on R by using the same kind of ideas which leads to the definition of a partial
order relation on R; in [5, Section 3], see also [9].

LEMMA 3.1. For a given x € R the following are equivalent:

(a) every representative T of x satisfies the condition:

(3.1) there exists N € N such that for all b > 0 and for all ¢ € An
. there is n = n(b, @) € I verifying T(p.) > —b for all e €Cy;

(b) there exists a representative T of x satisfying (3.1);

(¢c) there exists a representative x, of x such that x.(p) > 0 for all p € Ay;

(d) there exist N € N and a representative . of x such that z.(¢) > 0 for
all p € Ay.

PRrROOF. (b) = (c) From the representative Z of  in (b) we define h: A9 — R
by h(p) := 0 (resp. —Z(¢p)) if Z(p) > 0 (resp. Z(p) < 0), hence h(p) > 0 for
each p € Ay and it is easily seen that h € N (R). Now, it is enough to define
z. () :=T(p) + h(p) for all ¢ € A,.

(¢) = (a) Let T be an arbitrary representative of x. Since x, — 7 € N(R) it
follows that there is N € N such that for all ¢ > N, for all ¢ € A, and for all
b >0 we have |(z« — 7 )(p:)|e ™" — 0if € | 0. Therefore, there is n = 1(b, ¢) €C
satisfying |(z. — Z)(pe)[e™? < 1 for all € €C,, hence (z. — Z)(p:) < & for all
€ €C,, which implies Z(¢.) > 2. (pc) — et > —ebforall e €C,, hence T satisfies
condition (3.1).

The implications (a) = (b) and (c) < (d) are obvious. O

DEFINITION 3.2. An clement = € R is said to be quasi-positive or g-positive,
if it has a representative satisfying the equivalent conditions of Lemma 3.1. We
shall denote this by x > 0. We shall say also that x is quasi-negative or g-negative
if —x is g-positive and we denote this by 2 < 0. If y € R is another element then
we write x <y (resp. x > y) if y — x (resp.  — y) is g-positive.

NOTATION.

K :=K\{0}, Ry:={zeR|z>0} and @i::{xe@”xEO}.
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EXAMPLE 3.3. For every r € R we shall define an element oy € Ei which
will play the same role that the elements o, € R, . (see [4, Section 1]). A
representative of a; is the function given by

af:p € Ay — i(p)" € RE.

Clearly a®(p) > 0 for all ¢ € Ag and a®(¢.) = "i(p)" = a,(e)i(¢)". Obviously
af € Ey(R) and af = cl(a®) € Ei. From the condition (3.1) it follows at once
that

(3.2) r,s€R and s<r=a; <al.

ProrosIiTION 3.4. The relation x < y of Definition 3.2 is a partial order

relation on R.

PROOF. Follows at once by remarking that from Lemma 3.1(a) we have that,
for given x,y € R, the relation z < y means that
for any representatives Z and § of z and y, there exists N € N
(3.3) < such that for all b > 0 and for all ¢ € Ay there exists n =n(b, ) €1
verifying Z(p:) < y(pe) + b for all e €C,, .
O

EXAMPLE 3.5. The partial order relation on R it is not linear. Indeed, by
defining

1
Z(p) :=i(p)sin (| — | forall p € Ay
@ =it (555
it is easily seen that z := cl(Z) > 0 and z < 0 are false.

PROPOSITION 3.6. For every x € Ry and p € N* there is a unique y € R
such that y? = x (this y is denoted by VP or ¢/x and it is called g-positive
pth-root of x).

PROOF. Let z, be the representative of z as in Lemma 3.1(c). Then the
function y,: ¢ € Ag — {/x.(p) € Ry is well defined and moderate. Clearly
y:=cl(y.) € Ry and y? = z. O

For every x € K, if 7 is any representative of x, the function |Z|: ¢ € Ay —
|Z(p)| € Ry is obviously moderate and since |Z|(¢) = |Z(p)| > 0 for all p € Ay,
it follows that cl(|Z]) € Ry. By the triangle inequality it follows that cl(|Z])
is independent of the representative Z of x and only depends of x, hence it is
natural to denote this class by |z|, i.e.

] := cl(|7])
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is called absolute value (or module) of . So we have a natural map
r €K |z| € Ry.

The definition below depends on the above concept of absolute value and on
Example 3.3.

DEFINITION 3.7. If 2 € K and r € R, then we define

Vilzo] ={x €K ||z —z0| < al} and B:={V,.[0]|r € R}.

REMARK 3.8. In view of Lemma 3.1(a), the statement = € V;.[0] is equivalent
to the following sentence:

if Z is any representative of x then there exists N € N such that
(3.4) for all b > 0 and for all ¢ € Ay there exists n = n(b, p) €C
verifying |Z(p.)| < i(p)"e” + &, for all e €C,,
LEMMA 3.9. The set B (see Definition 3.7) is a filter basis on K which satis-

fies the four conditions in Proposition 2.1. Therefore, B determines a Hausdorff
topology T compatible with the ring structure of K.

PRrROOF. Clearly B # 0 and () ¢ B. The implication
if r, s € R then there exists ¢ € R such that V;[0] C V;.[0] N V5[0]
follows trivially from the statement
if r,s € R and r < s then V;[0] C V,.[0],

which follows at once from (3.4).

Statement (3.4) implies also that B satisfies the four conditions of Proposi-
tion 2.1. Indeed, we get easily that V,1[0] + V,41[0] C V,.[0] for all r € R, which
shows that (GA{) holds. The equality V,.[0] = —V,[0] for all » € R shows that
(GAf;) holds. Now we must show that:

(AV}) For given a € K and V;.[0] € B there exists s € R such that

(3.5) a.V,[0] € V,[0].

In fact, since a € K, if @ is any representative of a there exists N € N such that
for every ¢ € Ay there exist ¢ > 0 and o €C satisfying

la(p)| < ce™ foralle ec, .

Then, it is easily seen that (3.5) holds by defining s :==r + N + 1.
Next, we shall show that

(AV{;) Given V,[0] € B there is s € R such that V;[0]V;[0] C V;.[0],
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which is trivial by defining s := (r + 1)/2.
Finally, 7 is Hausdorff since it is easily seen that (7, , V;[0] = {0}. O

DEFINITION 3.10. The topology 7 on K of Lemma 3.9 is called scalar full
sharp topology.

The definition of the partial order relation and the absolute value in K just
introduced in this Section 3 are rather simple generalizations of the analogous
definitions in K developed in [5, Lemma 3.1, Definitions 3.2 and 3.4] that we
shall use freely in the sequel.

Clearly, we can adapt Definition 3.7 by introducing, for zg € K, and r € R
the set

Vi(zg) ={z €K, ||r — 20| <.} and B, :={V.(0)|r€R}.

REMARK 3.11. From [5, Lemma 3.1] it is easily seen that the statement
x € V,.(0) is equivalent to the following sentence:

(3.6 if ¥ is any representative of x then for all b > 0 there exists n, € I
such that |Z()| < e" + ¥ for all € €C,, .

With the above notation, introduced just before Remark 3.11, we have the
following “simplified version” of Lemma 3.9.

LEMMA 3.12. The set By is a filter basis on K, which satisfies the four
conditions of Proposition 2.1. Therefore, Bs determine a topology T, compatible
with the ring structure of K.

PRrROOF. The argument is a minor modification of the proof of Lemma 3.9
by using (3.6) instead (3.4). O

The topology 7, of Lemma 3.12 is indeed a familiar one:

THEOREM 3.13. Let 74 be the “sharp topology” on K (see [12], [13] and [4]),
then

(a) 7; = Tsy
(b) T coincides with the topology j,.1(T), where T was introduced in Defi-
nition 3.10 and

JmiA €Ky = () € K = K(R™),

being A an arbitrary representative of A\ and X*(go) = X(min(l,i(gp)))
for all p € Ag = Ag(R™; K).
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Note that j,, is the natural injective ring-homomorphism of K, into K, hence
we can identifies K, with j,,(K,) and write K, C K. So we can rewrite the
statement (b) of Theorem 3.13 by saying “7; = 7, is the topology induced
by 77.

PROOF. (a) For given zy € K, and p € R we set (see [4, Notation 1.5])
By(xo) :={z € K, | ||z — aol| < p}-

Since the set of all balls B,(0) when p ranges over R is a fundamental system
of Ts-neighbourhoods of 0, it is enough to show the two following statements:

(3.7) for all € R there exists p € RY such that B,(0) C V;.(0)
and
(3.8) for all p € R’ there exists 7 € R such that V,.(0) C B,(0).

In order to prove (3.7) fix an arbitrary » € R and consider p € R* such that
p < e”". We shall show that B,(0) C V,-(0). Indeed,

€ B,0) & |lz]| =eV® < p & V(@) > —logp,

where 7 is any representative of z. The preceding inequality and the definition
of V(Z) imply that there is n €C such that

|z(e)]

e~ log p

<1 foralle €c,.
Hence, from the choice of p, it follows that
|Z(e)| < A_10gpl(e) < ar(e) forall e eC,

which implies (see (3.6)) that z € V,.(0).

Let us now prove (3.8). To this end, fix an arbitrary p € R* and consider
r € R such that e™" < p. We shall show that V;.(0) C B,(0). In the proof of the
preceding inclusion we shall need the following trivial statement:

(3.9) if 2 € K, and |z| <1 then V(Z) > 0 for every representative Z of 2.
Now, for a given x € K, we have
zeV.(0)e |z <ar < |az| <1

and therefore, by (3.9), if T is any representative of x we get (see [4, Proposi-
tion 1.3(c)]) V(a_,.z) = —r 4+ V(Z) > 0 thus V(Z) > r. Therefore, from the
choice of 7, we then conclude that ||z|| = e™V(@) < e < p, i.e. x € B,(0).

(b) Tt is enough to show that j,.1(V,.[0]) = V,.(0) for all 7 € R, which follows,
as usual, from (3.6) and (3.4). O



NATURAL TOPOLOGIES ON COLOMBEAU ALGEBRAS 171

4. The full sharp topology

We use again the notation of Section 3. It will be convenient to give the
following characterizations of the elements of £3,[Q] and N[Q] (of course, equiv-
alent to the ones given in [2, Notation 2.1.1, (b) and (d)]): u € &[] if and
only if

for all I, p € N there exist N € N and 0 € R
such that for all ¢ € Ay we have ||0°%u(p., - )|l; = o(7),
if € | 0, whenever |3| < p;
and u € N[Q] if and only if
for all I,p € N for all o € R there exists N € N
such that for all ¢ € Aywe have ||0°u(p., - )|l = o(7),
if € | 0, whenever |5] < p.
We shall need the result below, whose trivial proof is omited.
LEMMA 4.1. Let F', G and H be elements of C(€;K) such that
[|F ()] — |G(@)|| < |H(x)|, forallz e Q.
Then, for each K CC Q, we have |||F||x — ||Gl|k| < ||H||x -

LEMMA 4.2. For given u € Ey[Q)], f € N™ and | € N, we have:

a) the function uﬂmp € Ay — ||0%u(p, -)||; € Ry is moderate (i.e. u’ e
1 l
En(R)) and cl(u)) € Ry ;
b) if v € Ey[Q] and u — v € N, then v’ — v’ € N(R) and hence
l 1
Cl(ulﬁ) = cl(vlﬁ).

PRrROOF. The assertion (a) is clear and the statement (b) follows at once from
definitions and Lemma 4.1. O

The definition below makes sense from Lemma 4.2.
DEFINITION 4.3. Fix 8 € N™ and | € N. For every f € G(Q2) we define
1£115.0 = cl(F) = cllp € Ao = (|07 Fle, )l € Ry]
where fis any representative of f. For every fy € G(Q2) and r € R we define

Wl{jr[fo] ={feGQ)||lf — follo, < a, whenever o < 8}

and
Bo = {W/[0]| 3€N™, I €NandreR}.

For the sake of simplicity, in the statement of the result below, we consider
that K C G(2) as the generalized constants.
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LEMMA 4.4. For all € N™, 1 € N and r € R we have KN W} [0] = V;[0]
(see Definition 3.7).

PRrOOF. The inclusion K C G(f) is given by the canonical homomorphism
of K-algebras

A=c(}) e K A :=cl[(p,z) € Ag x Q2 A(p) € Ry] € G(Q).
Therefore
AeKn WZ?T[O] sAeK and [N,y <ap, forallo<p
and since from Definition 4.3 we get (where 0;; denotes the Kronecker §):
A lot = [A|-60 10 (for all o < 3),
it follows that

)\GKOWM[O]@)\GK and |[A <ay & Xe V0] O

REMARK 4.5. (a) From Lemma 3.1(a) it is easily seen that the statement
fe Wl[? ..[0] is equivalent to the following sentence:

for every representative fof f, there exists N € N such that
(4.1) for all b > 0 and all ¢ € Ay there exists n = n(b, p) €C
satisfying [|0 (e, - )||i < i(p) e + &b, for all e €C, and all o < .
(b) The following three statements hold:

(b1) If A > X then W,,.[0] € W, [0], for all (p,7) € Nx R (here, A > X’
means that \; > A}, for all j =1,...,m).

(b2) If r > ¢/ then W, [0] € W}, [0], for all (A, p) € N™ x N.

(b3) If p > ¢ then W,[0] € W2, [0], for all (A,7) € N™ x R.

THEOREM 4.6. (a) The set Bq (see Definition 4.3) is a filter basis on G(§2)
which satisfies the four conditions (GAY]), (GAfy), (AVY) and (AV}) of Corol-
lary 2.3.

(b) There exists a unique topology To on G(Q) verifying the following condi-

tions:

(bl) T is compatible with the ring structure of G(Q2). The topology
induced by Tq on K coincides with the topology T (see Defini-
tion 3.10).

(b2) G(Q) is a K-topological algebra (when G(2) and K are endowed
with T and T, respectively).

(b3) Bgq is a fundamental system of To-neighbourhoods of 0.

(b4) Tgq is metrizable.
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PROOF. We abbreviate notation by writing W/, instead of W/ [0].

(a) Clearly Bg # 0 and () ¢ Bg, since 0 € Wgr for all 8, p, r. Given Wpﬁm and
Wi in Bq, if we define A = (A1,..., Ay) where \; := max(8;,7;) (1 <j <m),
[ := max(p, q) and t :== max(r, s), from Remark 4.5(b), we get VVf‘t C WIETOW;S.
Hence, Bq is a filter basis on G(§2). The verification of that Bg satisfies the four
conditions of Corollary 2.3 is easy but rather tedious and here we only sketch
these proofs.

Condition (GA{). Given any W/}, we have

W£S+W£SCWB for all s > 7.

p,r?

Indeed, this follows easily from the implication
s>r =208 <ar,

which is a consequence of Lemma 3.1(a).
Condition (GAf;). Obvious, since Wﬁr = 7Wpﬁ,r for all 3, p, r.
Condition (AV]). Given fy € G(Q2) and Wgr there exists s € R such that

(4.2) foWp cwp,.

Fix a representative ﬁ) of f then, from the moderation we can find N; € N and
r’ < 0 such that for all ¢ € Ay, there exist C' > 0 and 71 = n1(p) €C satisfying

(4.3) 116" fo (e, Np < Ce” foralle € I,),, whenever |u| < |3].

Define s :=r —r'+1 = r + |r'| + 1. Now, the proof of (4.2) is easy: fix any
representative g of an arbitrary g € Wﬁs, we want to prove that fog € Wpﬁ’r.
From g € Wﬁs and (4.1) we have an inequality for ||07G(¢e, - )||p (¢ < 8) which
jointly with (4.3) and the Leibnitz formula for derivation of a product, give an
inequality for ||9*(fod) (e, -)|lp (A < B), which shows (by (4.1)) that fog € wp,.

Condition (AV{;). Given W/, there is s € R such that W/ W/ c W, .

Define s := (r 4+ 1)/2. In order to prove the above inclusion, for fixed ar-
bitrary f,g € Wgs we want to proof that fg € Wﬁ,.. From f,g € Wﬁs and
(4.1), for fixed arbitrary representatives f,@\ of f, g, respectively, we get two
inequalities for H@"f((pm Nlp and [|07G(¢e, - )||p (0 < B). Next, we apply Leib-
nitz formula which, jointly with the above inequalities, leads to an inequality for
102 (F9)(pes )llp (A < B), which shows (by (4.1)) that f,g € W/J,.

(b) In view of (a) and Corollary 2.3 we can conclude that there exists a unique

topology 7g on G(12) satisfying the three following conditions:

(b1’) 7 is compatible with the ring structure of G(€2). The topology T
induced by 7 on K, is compatible with the ring structure of K;

(b2’) G(9) is a K-topological algebra (G(£2) and K are endowed with 7, and
T, respectively);
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(b3’) Bgq is a fundamental system of 7g-neighbourhoods of 0.

Now, by Lemma 4.4, it is clear that the topology induced by 7o on K is T
(see Definition 3.10), hence Tz = 7, and therefore (b1’) implies (b1) and (b2’)
implies (b2).

Since lim, .., ay = 0, it is clear that the set

{Wﬁr\ﬁéNm,peNandreN}

is a countable fundamental system of 7g-neighbourhoods of 0 and so (b4) is
true. 0

DEFINITION 4.7. The topology 7o on G(Q2) in Theorem 4.6 is called full
sharp topology.

In the sequel, we shall show that the topology induced by 7q on Gs(2) (see
notation in Section 3) is precisely the sharp topology 7o (see [12], [13] and [4]).
Here, we shall develop a procedure analogous to the one at the beginning of
Section 4, proving the analog of Lemma 4.2 for G5(€2), which allows us to define
a filter basis Bs o on G4(€2) which will determine a topology 7 o on G5(£2). Next,
we shall show that

WﬁT[O] NGs(Q) = me(O) forall 8, p, r
where Wﬁr(O) denote a general element of B; o. Hence 75 o will be the topology
induced on G5(2) by 7. Finally, we shall show that 75 o = 7q.

LEMMA 4.8. Given u € Ep 5[, B € N™ and | € N, we have:

(a) the function ulﬁzs eC— ||0%u(e, )| € Ry is moderate (i.e. ulﬁ €

Ens(R)) and cl(ulﬁ) €Rs s
b) if v € Enis[Q] and u — v € N,[Q), then v — v’ € Ny(R) and therefore
, l 1
Cl(ulﬁ) = cl(vf),

PRrROOF. Follows at once from slight modifications in the proof of Lemma 4.2.
O

DEFINITION 4.9. Fix 8 € N™ and [ € N. For every f € G,(Q2) we define
|flsa = l(fe])) = clle € 107 fule, )l € R4,
where f, is any representative of f. For every fy € G5(£2) and r € R we define
WE.(fo) = {f € Ga(Q) | If = foloa < ar whenever o < 3}

and
Bogo:={W/(0)| B€N™ I €NandreR}

Here we have also remarks analogous to Remark 4.5.
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REMARK 4.10. (a) From [5, Lemma 3.1(i)] it follows at once that the state-
ment f € W, (0) is equivalent to the following sentence

every representative f, of f satisfies:
(4.4) for all b > 0 there exists n, €C such that
107 fi(e, |1 <" +¢eb, foralle €C,y, and all o < 3.
(b) The three implications of Remark 4.5(b) hold for the sets VVlﬁ +(0), we
omit them since it is suffices to change VVlﬂ ..[0] by Wﬁ (0).

Since G4(Q2) C G(Q), for given f € G4(Q), B € N™ and | € N, the two
generalized numbers |f|g; € Ky and ||f||5, € K make sense. Moreover, since
K, C K, it is natural to ask the relation between these two generalized numbers.
We shall show a nice answer to this question

(4.5) |f Bl = ||f||g’l for all f, ﬂ, l.

More precisely, if j,,: Ky — K denote the canonical inclusion of K, into K (see
Theorem 3.13(b)) and

Uo: f € Gs(Q) = cl¥o(fi)] € G(Q)

denotes the canonical inclusion of G4(Q) into G(2) (where f. € Ep 5[] is any

representative of f and Wo:u € Enr 5[] — w1 € Enr[(?) is the ring homomorphism
defined by u1(p,x) := u(min(1,i(p)), x) for each (p,x) € Ag x ) then we have:

LEMMA 4.11.

(@) Jm(|fla0) = ll¥a(f)lllpa for every f € Gs(Q), € N", I € N and
any representative f. of f.

(b) |flps < ar if and only if [[cl[Wa(f:)]llse < o, for every f € Gi(9),
0 €N | €N and any representative fi of f.

(c) U5 (WP, [0]) = WP .(0) for every 5 € N™, p e N and r € R.

p,7

ProoF. (a) Fix f, 5, | and any representative f, € Eprs[€?] of f. The
equality follows at once from the definitions of | |1, jm, Yo and ||cl[Ta(f)]]l5,:-

(b) If f. is a representative of f, the inequality |f|s; < a, is equivalent to the
statement (4.4). Analogously, ||cl[¥q(f:)]|lg; < ap is equivalent to the state-
ment (4.1) for f= Ua(f«). Now, the equivalence between the two inequalities
follows as a tedious application of (4.4) and (4.1).

(c) Follows immediately from (b). O

Note that (4.5) is an abuse of notation whose correct meaning is given in
Lemma 4.11(a). Analogously, the relation

WﬁT[O] NGgs(N) = Wﬁr(()) for all 3, p, r

is an abuse of notation whose correct meaning is given in Lemma 4.11(c).
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THEOREM 4.12. (a) The set Bsq (see Definition 4.9) is a filter basis on
Gs(Q2) which satisfies the four azioms (GA]), (GA}y), (AV}) and (AV};) of Corol-
lary 2.3.

(b) There ezist a unique topology Ts.q on Gs(Q) verifying the following con-
ditions:

(bl) T5.q is compatible with the ring structure of Gs(2). The topology
induced by T;.q on Ky coincides with the topology T (see Lem-
ma 3.12) and hence, with the sharp topology 75 (see Theorem 3.13);

(b2) G4(Q) is a K,-topological algebra (here we assume that G4(Q) and
K, are endowed with the topologies Ts.0 and Ty, respectively);

(b3) Bs.q is a fundamental system of Ts o-neighbourhoods of 0;

(b4) Ts.q coincides with the sharp topology Ta;

(b5) Ts.q coincides with the topology induced by To on Gs(£2).

PROOF. By identifying Gs(£2) with his image G(£2) by the canonical map ¥,
we can write G5(2) C G(€2) and then, the Lemma 4.11(c) shows that
(4.6) W2.[01NGs(Q) =W/ (0) forall 8, p, 7
which means that
(4.6%) Bso={Wngs(Q)| W e Bq}.

The above relation (4.6), together with Theorem 4.6(a), implies (a). Now, from
(a) and Corollary 2.3 we get (b), the first statement of (bl), (b2) and (b3). The
proof of the second statement of (b1) follows at once by noting that

B T
WP (0)NK, =V,(0) forall B, p, r

which is the simplified version of Lemma 4.4 and easily proved. Note also that
(bb) follows directly from (4.6°).
(b4) Let recall that if u € Ey75[2) and (n,p) € N?, we set

Spp(u) := {a € R | [|0%u(e, -)||n = o(e?) if £ | O for all |8] < p}

and vy, = sup Spp(u). Moreover, it is easy to see that v, is constant on every
equivalence class u+N;[Q)], hence for each f € G5(2) the (extended) real number

Vap(f) 7= vnp(fi) € ] =00, 0]

is well defined, where f,. is any representative of f. The sharp topology 7 on
G4+(Q) is defined by the family of pseudo metrics

dnp(f,9) == exp(=Vyop(f —g)) forall f,g € G5(Q2) and all n,p € N.

For each a > 0 we define the d,,-ball of center 0 and radius a:

Ea(dnp) = {f € QS(Q> | dnp(fa 0) < a}.
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Then, the collection of all finite intersections of these balls is a fundamental
system of 7q-neighbourhoods of 0 in Gs(2). Therefore it suffices to prove the
two following statements:

For every a € R% and (n,p) € R? there is a finite sequence

(4.7) (Wﬁ (0))gep of elements in Bs o such that ﬂ 0) C Ba(dnp).
BeB

and
For each e N e Nand r € R
(4.8)

there is B, (dpy) such that B,(dp,) C Wfr(()).

To obtain (4.7) fix a € R% and (n,p) € N?. Then, clearly we can supose without

lost of generality that 0 < a < e~!. Now, defining | := n and choosing r € R

such that r > —loga + 1, if B := {8 € N™ | |3] = p} it follows (apply (4.4)
as usual) that (e p W} .(0) C Ba(dnp). To prove (4.8) fix € N™, I € N and
r € R. If we define n := [, p := || and take a € ]0,e™"[, one proves easily the
inclusion B, (d;,) C VVlﬂT(O) O
5. A few results of convergence

PROPOSITION 5.1. (a) Let M be a Lebesgue-measurable set such that M CC

Q. Then the K-linear function
Ju:f€G(Q) — fek
M

18 T -T -continuous;
(b) For every a € N™ the K-linear function 0%: f € G(Q) — 9%f € G(Q) is
T -1 -continuous.

PrOOF. (a) Fix V,[0] with » € N arbitrary. Then, for 8 := 0 = (0,...,0)
in N, s:=r+1 and [ € N such that M C ; one proves easily that

JM(Wl(,)rJrl[O]) C V;[0].
(b) For W .[0] given arbitrarily it is clear that 0 (WO‘+B[ 0]) C Wﬁr 0. O

COROLLARY 5.2. If P =37, <, aa(®)0% is a generalized LPDO (i.e. aq
in G(Q) for all |o| < m), then P defines a linear application

P:feg(Q)— Pfeg(Q)
which is Tq-Tq-continuous.

PROOF It is enough to show that if (f;);en is a sequence in G(£2) such that
fi 7 f € G(Q) then Pf 7% PJ.
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The continuity of the multiplication in G(§2) proves that for every a € G(£2)
the function M,:f € G(Q) —— af € G(Q) is continuous. From Proposi-
tion 5.1(b) we get 0% f) Za, 0° f and hence M, (90* f1) o, M, (0 f) which implies
that a,0%f; o, aa0%f for all |a] < m. Now, the continuity of the addition in
G(Q) proves that Pf; Ta, Pf. O

COROLLARY 5.3. If Q is an open subset of C™ then the subalgebra HG(QY)
of all holomorphic generalized functions on Q is a To-closed subalgebra of G(2).

PROOF. Let (f;) be a sequence in HG(€?) and assume that f; o, feg).

From Corollary 5.2 above we have, for each j =1,... ,m:
of of .
0=—— —, ifl
82]- - %j’ e oo
hence 5
szo for every j=1,... ,m. O
62’]'

Appendix: On K-locally convex modules (K-LCM)

With the notation introduced in Definition 4.3 it is clear that for given 3 €
N™ and [ € N we have

I1f +allse < |[fllpp+lgllss for all f,g € G();
lafllg: = lal |l fllp. for all f € G(Q) and all a € K,

which suggest that we can try to mimic some basic facts of the general theory
of LCS by defining:

DEFINITION A.1. Let E be a K-module. A generalized semi-norm (or a G-
seminorm, for short) on E is a function p: E — R verifying the two conditions:

(GSN1)  p(x+y) <p(z)+ply) foralzyek;
(GSN2) plaz) = la|p(x) for all z € E and all a € K.

With the above notation clearly we have

Ip(z) —p(y)| <plx—y) forallz,ycE

since the classical proof works in this case.
The remark preceding Definition A.1 shows that for every § € N™ and [ € N,
the function

suif €G(Q) = |Ifllas € By

is a G-seminorm.
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Next, fix a K-module E and a G-seminorm p on E. For each » € R we can
define the p-ball of center 0 and radius a by

By = Bpr(0):={z € E|p(z) <oy}

and for g € E we set By (z0) =20+ Bpr ={z € E | p(x —x0) < aP}. We
can also define the generalized segment of extremities 0 and 1 by

0,1, :={AeR|0< A< 1},

note that ay € [0, 1], for every r € R.

A subset A of (the K-module) E is G-convex (resp. G-absolutely convex)
if z,y € A, then Az + (1 — N)y € A for all A € [0,1], (resp. if z,y € A, then
azr + By € A for all o, 3 € K such that |a| + |3] < 1). So the definition below

makes sense.

DEFINITION A.2. Let E be a K-module. A module topology 7 on E (i.e.
a topology compatible with K-module structure) is said to be G-locally convex
if 0 has a fundamental system of G-absolutely convex neighbourhoods.

Let A be a K-algebra and I" a non void set of seminorms in A such that:
(a) p(z) =0 for all p € T" if and only if x = 0;
(b) For all p;,ps €T there is ¢ € T such that p; < ¢ (i = 1,2);
(c) For each p € I' and each o > 0 we have ap € T.

By defining B, := {z € A | p(z) < 1} for all p € T', one proves trivially that the
continuity of the multiplication

(x,y) EAXA—zye A

is equivalent to each of the two following conditions:

(i) for all p € T' there exists ¢ € I" such that B,B, C By;
(ii) for all p € T there exists ¢ € T' such that p(xy) < q(z)q(y) for all
xz,y € A.

In this case, the Hausdorff topological algebra (A,T) is said to be a locally
multiplicatively-convex algebra (see [10], in this book the condition (ii) has a slight
mistake). Note that the topology 7r determinated by I' on A is given (see Corol-
lary 2.3) by the filter basis Br of all finite intersection of balls B,,.

In our case (K instead of K), if A is a K-algebra and T is a non-void set of
G-seminorms on A it is easy to prove that, for the conditions (i), (ii) above, we
have (ii) = (i) but, seemingly (i) = (ii) is false. Therefore, it is natural, in our
case, to say that the topological algebra (A,T) is a G-locally multiplicatively-
convex algebra if T' satisfies the above condition (i). Note that the proof of
Theorem 4.6(a) (AVY;) shows that (G(Q2),T') = (G(2),Tq), where I := {|| - ||,1 |
B € N™ and [ € N}, is a G-locally multiplicatively-convex algebra.
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