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COMPUTER-ASSISTED PROOF
OF A PERIODIC SOLUTION

IN A NONLINEAR FEEDBACK DDE

Miko�laj Zalewski

Abstract. In this paper, we rigorously prove the existence of a non-trivial
periodic orbit for the nonlinear DDE: x′(t) = −K sin(x(t−1)) for K = 1.6.
We show that the equations for the Fourier coefficients have a solution by
computing the local Brouwer degree. This degree can be computed by using
a homotopy, and its validity can be proved by checking a finite number of
inequalities. Checking these inequalities is done by a computer program.

1. Introduction

The equation:
x′(t) = −K sin(x(t − 1))

is an example of a nonlinear feedback delay differential equation (see [2]). It is
used to model, for example, delay-lock loops in electronics (see [5]). Numerical
simulations shows that for small K < π/2 the solutions tends to 0, for π/2 <

K < 5.1 there is an attracting periodic orbit oscillating around 0, but for K > 5.1
there is chaos — the solutions jump by ±2π.

However, there are no rigorous proofs for such behavior. In [3] there is a proof
of the chaos for large K, but after changing the sinus to a function close to
a piecewise linear function. The [5] analyzes the eigenvalues of the linearization
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and provides an informal argument for the bifurcation in K = π/2 and for the
creation of an attracting orbit, but this is not a proof.

In this paper we will strictly show that there is a periodic solution for K =
1.6. By a solution we mean a C1-function that satisfies the equation.

In the remainder of the introduction, we briefly outline our method. We
will use the Fourier coefficients of the periodic orbit. First, we rescale the time
to obtain a 2π period. We make the substitution: x̃(t) = x(t/τ), where τ is
a parameter. If τ is equal to 2π/T (where T is the period of the solution in the
original equation), we will have a 2π-periodic solution of the new equation:

x̃′(t) =
1
τ

x′
(

t

τ

)
= −K

τ
sin

(
x

(
t

τ
− 1

))
= −K

τ
sin

(
x

(
t − τ

τ

))
= −K

τ
sin(x̃(t − τ)).

By renaming x̃ to x we obtain:

(1.1) x′(t) = −K

τ
sin(x(t − τ)).

We will prove for this equation that there exists a τ from a small interval
such that there exists a 2π-periodic orbit in a small neighbourhood of a specified
function. Note that we do not obtain the exact value of the period (even if
numerical solutions suggest it is 4, i.e. τ = π/2), but treat τ as a variable.

To prove the existence of the orbit, we will use the method of self-consistent
bounds that was introduced in the context of Kuramoto–Shivashinsky PDEs
in [6] and [7]. When applied to the boundary value problem for ODEs or DDEs,
this method is similar to the Cesari method introduced in [1] but does not require
one of the conditions — see Section 2.4 in [7] for a comparison. Below we briefly
describe the method.

We will derive from (1.1) the equations for the Fourier coefficients. Let us
first write (1.1) with a Taylor expansion instead of the sinus:

x′(t) = −K

τ

∞∑
n=0

(−1)k

(2k + 1)!
[x(t − τ)]2k+1.

The equations on the Fourier coefficients will look similar:

incn = −K

τ

∞∑
k=0

(−1)k

(2k + 1)!
(c∗(2k+1))ne−inτ for all n ∈ Z

where (c∗(2k+1))n means convoluting the sequence c with itself 2k + 1 times and
then taking the n-th coefficient. The operation of convolution and this notation
is introduced in details in Section 2.
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We will show that the following function has a non-trivial zero:

F (τ, c) =
{

inτeinτcn + K

∞∑
k=0

(−1)k

(2k + 1)!

(
c∗(2k+1)

)
n

}∞

n=−∞

where the domain is:

Xβ :=
{

x: Z → C

∣∣∣∣ |xn| ≤ β

(|n| + 1)2
and xn = x−n for all n ∈ Z

}
for some β > 0. On Xβ we consider the product topology (which is equivalent
to component-wise convergence). It turns out that on such a domain the sums
in the definition of F are convergent, F is continuous, and each sequence c ∈ Xβ

corresponds to a real-valued continuous function. Moreover, if F (c) = 0 then
the function is C1.

We will search for a zero in the neighbourhood of an approximate solution,
obtained from numerical simulations. We will denote this approximation by ĉ.
For 0 ≤ n ≤ 5 it is equal to:

n ĉn

0 0

1 −0.1521000000− 0.1163508047i

2 0

3 0.0001123121− 0.0002746107i

4 0

5 −0.0000008173− 0.0000001014i

Table 1

For n > 5 the ĉn is zero, for n < 0 we have ĉn = ĉ−n. The variable τ in the
approximation is: τ̂ = 1.570796.

For each l ∈ N, let us define the Galerkin projection Pl and immersion Ql:

Pl: CZ � c → (c0, . . . , cl) ∈ R × C
l,

Ql: R × C
l � (c0, . . . , cl) → (. . . , 0, 0, c−l, . . . , c0, . . . , cl, 0, 0, . . . ) ∈ C

Z.

Let us note that we need only the non-negative terms in the finite space, as
the negative terms can be obtained by conjugation. Also as c0 = c−0, we have
c0 ∈ R. From the compactness of Xβ, it will be easy to show that:

Lemma 4.1. Let β > 0, l0 > 0, τ, τ ∈ R be fixed. If for each l > l0

there is a cl ∈ Xβ and τl ∈ [τ , τ ] such that PlF (τl, c
l) = 0 then there exists
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a (c0, τ0) ∈ Xβ × [τ , τ ] such that F (τ0, c
0) = 0. Moreover, if all the cl are in

a closed set D then c0 ∈ D.

Thus, it is enough to show that there is a zero for every Galerkin projection
of F :

F̃l: R × (R × C
l) � (τ, c) → PlF (τ, Ql(c)) ∈ R × C

l.

This will allow us to use a finite-dimensional topological method to prove the
existence of a zero of F . Let us note that the real dimension of the domain
is 2l + 2 while that of the image is 2l + 1. Thus, if there is a zero, one can
expect a 1-dimensional manifold of zeros. This manifold can be easily identified
— if x( · ) is a solution then x( · + φ) is also a solution. This means that if
F̃l(τ, c0, . . . , cl) = 0 then F̃l(τ, c0, e

iφc1, . . . , eilφcl) = 0, as can be easily checked.
To use the topological method, we want to have the zero isolated — we will limit
the domain assuming that c1 ∈ ĉ1 + R. Of course, finding a zero in a limited
domain implies a zero of the full system. By Fl we will denote the F̃l limited to
the smaller domain.

The before-mentioned method to prove the existence of a zero of Fl is the
local Brouwer degree (introduced e.g. in [4]). Let us denote by deg(Fl, U, x) the
degree of x on U . It is known that if the degree is non-zero then there exists
y ∈ U such that Fl(y) = x. We will use a neighbourhood of ĉ as U and x = 0.

To compute the degree, we will use the homotopy invariance of the local
Brouwer degree. As our homotopy Hl, we will use a linear deformation of Fl

into a function Gl that contains the most important terms of Fl (that is not
strictly a linearization of Fl but it is close to it):

Hl(h, τ, c) = hFl(τ, c) + (1 − h)Gl(τ, c).

It will be easy to show that the degree of Gl is non-zero. We will need
to show that 0 /∈ Hl([0; 1]; ∂U). To show that, it is enough to show that the
terms in Gl dominate the (mainly nonlinear) terms that are in Fl but not Gl,
i.e. that |Gl| > |Fl − Gl|. That part of the proof is computer-assisted — the
proofs of the estimates are given in this paper but computing the exact values
and checking that the inequalities holds is done by a computer program using
the CAPD package for rigorous interval arithmetics.

The program. This program is written in C++ and can be downloaded
from http://www.im.uj.edu.pl/MikolajZalewski/dl/delay-sin.tgz. The
rounding-mode changing code required by the interval arithmetic is system-
dependent and has been checked to work on PCs (both 32-bit and 64-bit) on
both Windows (compiled with cygwin) and Linux (compiled with gcc). It should
also work on SPARC and Mac OS X, although that has not been tested. Using
other CPUs or compilers might require modifications to the rounding code.
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The constants used in the theorems — the K, β1, β2, ∆τ , τ̂ and ĉn —
are represented in the program as small intervals containing the values. Thus
the theorems are true for values as written in the paper, even if they are not
representable as IEEE floating point numbers.

2. Fourier coefficients

We will use the following notation: if {xn}∞n=−∞ and {yn}∞n=−∞ are se-
quences with complex values then by x ∗ y we will denote the convolution of the
sequences:

x ∗ y :=
{ ∞∑

k=−∞
xkyn−k

}∞

n=−∞
.

It is well known that if the sum converges, the operation of convolution is
associative. We will also use the notation ( · )n for the n-th coefficient of the
sequence in brackets, e.g. (x ∗ y)n =

∑∞
k=−∞ xkyn−k. Also:

x∗k := x ∗ . . . ∗ x︸ ︷︷ ︸
k times

(for k ≥ 1), (x∗0)n :=

{
1 if n = 0,

0 if n �= 0.

Of course, the sum in the definition of the convolution may be not convergent, so
we will limit our attention to a domain where the sum will be always convergent.
The following lemma holds:

Lemma 2.1. If x and y are such that there exists α ≥ 2 and β1, β2 > 0 such
that

|xn| ≤ β1

(|n| + 1)α
, |yn| ≤ β2

(|n| + 1)α
, for all n,

then (x ∗ y)n is convergent, for each n, and

|(x ∗ y)n| ≤ C
β1β2

(|n| + 1)α
where C =

2(2α + 1)
α − 1

.

Proof. Let us assume n ≥ 0 and let us estimate |(x ∗ y)n|:∣∣∣∣ ∞∑
k=−∞

xkyn−k

∣∣∣∣ ≤ ∣∣∣∣ ∞∑
k=0

x−kyn+k

∣∣∣∣ +
∣∣∣∣ n−1∑

k=1

xkyn−k

∣∣∣∣ +
∣∣∣∣ ∞∑

k=0

xn+ky−k

∣∣∣∣,
∣∣∣∣ n−1∑

k=1

xkyn−k

∣∣∣∣ ≤ β1β2

n−1∑
k=1

1
(k + 1)α

1
(n − k + 1)α

≤ 2β1β2

∑
1≤k≤ n

2

1
(k + 1)α

1
(n − k + 1)α

≤ 2β1β2

∑
1≤k≤ n

2

1
(k + 1)α

1
((n/2) + 1)α
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≤ 2
β1β22α

(n + 2)α

∑
1≤k≤ n

2

1
(k + 1)α

≤ 2
β1β22α

(n + 2)α

∑
k≥1

1
(k + 1)α

,

∣∣∣∣ ∞∑
k=0

x−kyn+k

∣∣∣∣ ≤ β1β2

∞∑
k=0

1
(k + 1)α

1
(n + k)α + 1

≤ β1β2

(n + 1)α

∑
k≥0

1
(k + 1)α

.

Analogously: ∣∣∣∣ ∞∑
k=0

xn+ky−k

∣∣∣∣ ≤ β1β2

(n + 1)α

∑
k≥0

1
(k + 1)α

.

The sums
∑∞

k=k0
1/(kα + 1) can be estimated by integrals:

∞∑
k=0

1
(k + 1)α

≤ 1 +
∫ ∞

0

1
(x + 1)α

dx =
α

α − 1
,

∞∑
k=1

1
(k + 1)α

≤ 1
2α

+
∫ ∞

1

1
(x + 1)α

dx =
α + 1

2α(α − 1)
.

From that we obtain:∣∣∣∣ ∞∑
k=−∞

xkyn−k

∣∣∣∣ ≤ β1β2

(n + 1)α

[
2α+1 α + 1

2α(α − 1)
+ 2

α

α − 1

]
≤ β1β2

(n + 1)α

2(2α + 1)
α − 1

.

The result for n < 0 can be obtained by analogous estimations or by taking
sequences x̃, ỹ: x̃n := x−n, ỹn := y−n and applying for them the result for
n > 0. �

With one exception, we will use this lemma for α = 2. For α = 2 we have
C = 10.

Observation 2.2. If x is such that there exists α ≥ 2, β > 0, for all n such
that |xn| ≤ β/(|n| + 1)α, then

|(x∗k)n| ≤ Ck−1 βk

(|n| + 1)α
where C =

2(2α + 1)
α − 1

.

Observation 2.3. If x and y are such that x−n = xn, y−n = yn then
(x ∗ y)−n = (x ∗ y)n.

Thus, we have that if x ∈ Xβ1 and y ∈ Xβ2 then x ∗ y ∈ XCβ1β2 (where Xβ

was defined in the introduction and C is from Lemma 2.1). It will be also useful
to define a set of sequences from any Xβ :

X :=
⋃
β>0

Xβ .

We will limit ourselves to the sequences in X . For them we have:
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Lemma 2.4. Let c ∈ X. Then
∑∞

n=−∞ cneint converges to a real-valued
continuous function.

Proof. The functions
∑N

n=−N cneint are continuous and real-valued as if
cn = c−n then cneint + c−ne−int ∈ R. They converge uniformly because

∞∑
n=−∞

|cneint| ≤
∞∑

n=−∞

β

(|n| + 1)2
< ∞.

Thus, the limit is also real-valued and continuous. �

Let us note that c ∈ X does not guarantee that the function is C1.
We use the convolution because of the following well known fact:

Lemma 2.5. If c ∈ X are the Fourier coefficients of x(t), d ∈ X are the
coefficients of y(t) then the Fourier coefficients of x(t) · y(t) are c ∗ d. As a con-
sequence, the coefficients of xn(t) are c∗n.

Now, we can write the equation (1.1) on the Fourier coefficients.

Theorem 2.6. Let τ be fixed and x(t): R → R be a 2π-periodic function with
the Fourier coefficients c ∈ X. Then:

(a) for each n ∈ Z the sum on the right-hand side of the following equation
converges:

(2.1) incn = −K

τ

∞∑
k=0

(−1)k

(2k + 1)!
(c∗(2k+1))ne−inτ ,

(b) x(t) is a 2π-periodic solution of (1.1) if and only if c satisfies the equa-
tions (2.1).

To prove the theorem, we will need some lemmas. As already mentioned,
c ∈ X does not imply that x(t) is C1. However, if c is the solution of equation
(2.1), we have the following lemma that will allow us to show that x(t) is C1

(using this method one can show that that x(t) is C∞, but we don’t need it):

Lemma 2.7. If c satisfies equation (2.1) and β > 0, α ≥ 2 are such that
|cn| ≤ β/(|n| + 1)α for all n, then there exists β′ such that |cn| ≤ β′/(|n| + 1)α+1

for all n.

Proof. Let C := 2(2α + 1)/(α − 1). We have that:

(2.2)
∣∣∣∣ − K

τ

∞∑
k=0

(−1)k

(2k + 1)!
(c∗(2k+1))ne−inτ

∣∣∣∣ ≤ K

τ

∞∑
k=0

1
(2k + 1)!

|(c∗(2k+1))n|

≤ K

τ

∞∑
k=0

1
(2k + 1)!

C2k β2k+1

(|n| + 1)α
=

K

τ

1
C(|n| + 1)α

sinh(Cβ).
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We also have |incn| = |n||cn|. The two sides of the equation (2.1) must be
equal hence we obtain:

K

τ

1
C(|n| + 1)α

sinh(Cβ) ≥ |n||cn|.

Thus for n �= 0 the β′ = (2K/(Cτ )) sinh(Cβ) satisfies the assertion. If it is not
satisfied for n = 0, we can increase β′. �

Increasing α is important, as we have:

Lemma 2.8. Let c be a sequence of complex values satisfying, for some β,
|cn| ≤ β/(|n| + 1)3 and let cn = c−n. Then the sequence c is a sequence of
Fourier coefficients of a real-valued C1 function x(t).

Proof. The sequences
∑n

k=−n ckeikt and
∑n

k=−n ikckeikt are real-valued,
the second is the derivative of the first one, and are uniformly convergent as
n → ∞. Hence both converge to continuous function and the second is the
derivative of the first one. Thus x(t) =

∑∞
k=−∞ ckeikt is C1. �

Proof of the Theorem 2.6. (a) The convolutions are convergent because
x ∈ X . From the equation (2.2) from the proof of Lemma 2.7, we have that if
x ∈ Xβ then

∞∑
k=0

∣∣∣∣ (−1)k

(2k + 1)!
(c∗(2k+1))ne−inτ

∣∣∣∣ ≤ 1
C(|n| + 1)2

sinh(Cβ) < ∞.

(b) Implication ⇒: It is enough to show that {incn}∞n=−∞ are the Fourier
coefficients of x′(t) while

−K

τ

∞∑
k=0

(−1)k

(2k + 1)!
(c∗(2k+1))ne−inτ

are the Fourier coefficients of −(K/τ) sinx(t − τ).
The first part can be obtained by integrating

∫ 2π

0
x′(t)eikt dt by parts.

As for the second, we have that

−K

τ

N∑
k=0

(−1)k

(2k + 1)!
(x(t − τ))2k+1 → −K

τ
sin x(t − τ) as N → ∞.

The Fourier coefficients of x(t− τ) are equal to d := {cne−inτ}∞n=−∞. Hence the
coefficients of x(t − τ)2k+1 are d∗(2k+1) which is equal to c∗(2k+1)e−inτ .

Hence, we have that the Fourier coefficients of

−K

τ

N∑
k=0

(−1)k

(2k + 1)!
(x(t − τ))2k+1
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are equal to {
− K

τ

N∑
k=0

(−1)k

(2k + 1)!
(c∗(2k+1))ne−inτ

}∞

n=−∞
.

It has been shown that this sequence in convergent as N → ∞, thus the n-th
coefficient of −(K/τ) sinx(t − τ) is

−K

τ

∞∑
k=0

(−1)k

(2k + 1)!
(c∗(2k+1))ne−inτ .

This ends the proof of this case.
Implication ⇐: from Lemmas 2.7 and 2.8 we obtain that x(t) is a C1-function.

We know that

−K

τ

∞∑
k=0

(−1)k

(2k + 1)!
(c∗(2k+1))ne−inτ

are the Fourier coefficients of −(K/τ) sin x(t− τ). They are equal to incn — the
Fourier coefficients of x′(t). So both −(K/τ) sinx(t−τ) and x′(t) are continuous
and 2π-periodic functions with equal Fourier coefficients. Hence the functions
themselves are equal, and equation (1.1) is satisfied. �

Let us define a function F : R × X → CZ (with the product topology on CZ)
corresponding to equation (2.1):

F (τ, c) :=
{

inτeinτ cn + K

∞∑
k=0

(−1)k

(2k + 1)!
(c∗(2k+1))n

}∞

n=−∞
.

Of course, having F (τ, c) = 0 is equivalent to the fact that τ , c satisfies
equation (2.1). In the rest of the paper, we will show that F has a nontrivial
zero. Let us note that F (τ, c)n = F (τ, c)−n.

As we will use topological tools, we will want F to be continuous. First, let
us note that the convolution is not continuous on the whole X (as written above,
we use the product topology on X) but we have:

Lemma 2.9. The operation of convolution is continuous on each Xβ

Proof. Let us fix some x0, y0 ∈ Xβ and some δ. Let Nδ be large enough
that, for |n| > Nδ, if x, y, x0, y0 ∈ Xβ then |xn − (x0)n|, |yn − (y0)n| < δ. Let us
take a neighbourhood U of (x0, y0) such that for each (x, y) ∈ U we have, for all
|n| ≤ Nδ, |xn − (x0)n|, |yn − (y0)n| < δ. Then, we will have:

|(x0 ∗ y0 − x ∗ y)n| ≤ |(x0 ∗ (y0 − y))n| + |((x0 − x) ∗ y)n|,

|(x0 ∗ (y0 − y))n| ≤
∞∑

j=−∞
|(x0)j | · |(y0)n−j − yn−j | ≤ βδ

∞∑
j=−∞

1
(|j| + 1)2

.

This tends to zero as δ → 0. After an analogous estimation for |((x0 − x) ∗ y)n|,
we have that the convolution is continuous. �
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Lemma 2.10. The function F is continuous on each Xβ.

Proof. The convolutions are continuous on each Xβ , and the result of a con-
volution lays in a Xβ′ for some β′. Thus K

∑N
k=0((−1)k/(2k + 1)!)(c∗(2k+1))n is

continuous for each N . From estimates as in equation (2.2), we have that, for
each coefficient, this series converges uniformly as N → ∞. Hence, we obtain
that the limit K

∑∞
k=0((−1)k/(2k + 1)!)(c∗(2k+1))n is continuous.

The term inτeinτ cn is also continuous, so F is continuous. �

3. Some estimates

As mentioned in the introduction, we will need some estimates to show that
the inequality holds in the neighbourhood of the ĉ. We will use two kinds of sets:
ĉ +Xβ2 that will be used to obtain finer estimates (as β2 will be small) and Xβ1

(where β1 will be large enough to contain the whole set ĉ + Xβ2) for some more
rough but simpler ones.

In this section, we will only assume about ĉ that almost all coefficients are
equal to zero. We will denote by Yl the space of the possible values of ĉ — the
set of sequences such that at most the elements −l, . . . , l are non-zero:

Yl := {c ∈ X : if |n| > l then cn = 0 for all n}.

First, let us note two simple properties:

Observation 3.1. If c ∈ Yl then c∗k ∈ Ykl.

Lemma 3.2. If x, y ∈ X then

(x + y)∗n =
n∑

k=0

(
n

k

)
x∗k ∗ y∗(n−k).

Proof. Let the sequence x corresponds to a function fx(t), and let y corre-
sponds to a function fy(t). Then, the RHS corresponds to the function (fx(t) +
fy(t))n, while the LHS corresponds to

∑n
k=0

(
n
k

)
fx(t)kfy(t)n−k. These functions

are equal, so their Fourier coefficients are as well. �

To estimate (K/p!)(x∗p)n — an element of the sum in the equation (2.1) —
for x ∈ Xβ , it is enough to use Lemma 2.1. However, for the sets of the form
c + Xβ , we will use a more sophisticated estimates:

Lemma 3.3. Let c ∈ Yl, p > 1, β > 0. Then, for any x ∈ Xβ and C = 10,
we have:∣∣∣∣Kp!

(c + x)∗p
n

∣∣∣∣ ≤ K

p!

(
|c∗p

n | +
p−1∑
k=0

(
p

k

) lk∑
j=−lk

|c∗k
j |Cp−k−1 βp−k

(|n − j| + 1)2

)
.
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Proof. From Lemmas 2.1 and 3.2 we have:∣∣∣∣Kp!
(x + c)∗p

n

∣∣∣∣ ≤ K

p!

p∑
k=0

(
p

k

)
|(c∗k ∗ x∗(p−k))n| ≤ K

p!

p∑
k=0

(
p

k

) ∞∑
j=−∞

|c∗k
j ||x∗(p−k)

n−j |

≤ K

p!

(
|c∗p

n | +
p−1∑
k=0

(
p

k

) ∞∑
j=−∞

|c∗k
j |Cp−k−1 βp−k

(|n − j| + 1)2

)
.

We have c ∈ Yl so c∗k
j = 0 for j > kl what ends the proof. �

Of course, we can use the previous lemma only for a finite number of terms.
To estimate the tail, we will use a weaker estimate by using a neighbourhood of
the second type, applying Lemma 2.1 and summing the geometric sequence:

Lemma 3.4. Let N be odd, β ∈ [0; N/10]. If x ∈ Xβ then∣∣∣∣(K
∞∑

k=(N−1)/2

(−1)k

(2k + 1)!
x∗(2k+1)

)
n

∣∣∣∣ ≤ K · (Cβ)N−1

N !(1 − (Cβ/N)2)
· β

(|n| + 1)2

where C = 10.

Proof. Using Lemma 2.1 we have∣∣∣∣K( ∞∑
k=(N−1)/2

(−1)k

(2k + 1)!
x∗(2k+1)

)
n

∣∣∣∣
≤K

∞∑
k=(N−1)/2

1
N !N2k−(N−1)

|(x∗(2k+1))n|

≤ K

N !

∞∑
k=(N−1)/2

(Cβ)2k

N2k−(N−1)
· β

(|n| + 1)2

=
K(Cβ)N−1

N !

( ∞∑
k=0

(
C2β2

N2

)k)
· β

(|n| + 1)2

=
K(Cβ)N−1

N !(1 − Cβ/N)2)
· β

(|n| + 1)2
.

The geometric sequence is convergent because if β < N/10 then (Cβ/N)2 < 1.�

From Lemma 3.3 we can obtain an estimate that after multiplication by
(|n| + 1)2 is independent of n. That will be used to estimate the term in all
inequalities for high n’s with one formula:

Lemma 3.5. Let β > 0, c ∈ Yl, p > 1, N > pl. Then for each x ∈ Xβ,
n ≥ N we have:∣∣∣∣Kp!

(x + c)(∗p)
n

∣∣∣∣ ≤ K

p!

( p−1∑
k=0

(
p

k

) lk∑
j=−lk

|c∗k
j |(Cβ)p−k−1 (N + 1)2

(N − |j| + 1)2

)
β

(|n| + 1)2
.
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Proof. Note that if n > pl then c∗p
n = 0 and

β

(|n − j| + 1)2
=

(n + 1)2

(n − j + 1)2
· β

(n + 1)2
≤ (N + 1)2

(N − |j| + 1)2
· β

(n + 1)2

as n ≥ N > j, then apply Lemma 3.3. �

For the first terms, we will need to have a better estimate than in Lemma 3.3,
so we will regroup the terms (to understand why this regrouping helps, let us
compare two estimates: |1.1 ·x−1 ·x| ≤ 1.1|x|+1|x| = 2.1|x| and |1.1 ·x−1 ·x| =
|(1.1 − 1)x| = 0.1|x|).

Lemma 3.6. Let x ∈ Xβ, c ∈ Yl.

inτeinτ (cn + xn) + K

3∑
k=0

(−1)k

(2k + 1)!
(c + x)∗(2k+1)

n

=(inτeinτ + K)cn − K

3!
(c∗3)n +

K

5!
(c∗5)n − K

7!
(c∗7)n

+ (inτeinτ + K)xn +
7∑

p=1

6l∑
j=−6l

γp,jx
∗p
n−j

where

γp,j = −K

3!

(
3
p

)
(c∗(3−p))j +

K

5!

(
5
p

)
(c∗(5−p))j − K

7!

(
7
p

)
(c∗(7−p))j

and we assume
(
n
k

)
= 0 for k > n.

4. Proving the existence of the periodic solution

We will search for the orbit in the neighbourhood of ĉ and τ̂ defined in the
introduction. Let us define the sets and boundaries on which we will work:

X1 := Xβ1 , X2 := ĉ + Xβ2 , X3 := {y ∈ X2 : y1 − ĉ1 ∈ R},
τ := τ̂ − ∆τ, τ := τ̂ + ∆τ

where ∆τ = 0.000001, β2 = 0.0000002438, β1 = 0.766763.
We will prove that a solution exists in the set [τ ; τ ] × X3. The X1 is the

bigger but simpler neighbourhood, mentioned at the beginning of Section 3 —
the β1, β2 are such that X2 ⊂ X1. Obviously, we have X3 ⊂ X2.

As mentioned in the introduction, we will use the Galerkin projections of F

with the condition y1 − ĉ1 ∈ R. This condition make the dimensions of the
domain and the image equal, what allows us to use the Brouwer local degree.
Hence the condition in X3. The Pl and Ql were defined in the introduction as
the projection and immersion of the finite-dimensional space. Let us first prove
the lemma stated in the introduction.
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Lemma 4.1. Let β > 0, l0 > 0, τ, τ ∈ R be fixed. If for each l > l0

there is a cl ∈ Xβ and τl ∈ [τ , τ ] such that PlF (τl, c
l) = 0 then there exists

(τ0, c
0) ∈ [τ , τ ] × Xβ such that F (τ0, c

0) = 0. Moreover, if all the cl are in
a closed set D then c0 ∈ D.

Proof. From the compactness of [τ , τ ] × Xβ , there exists a subsequence lk

such that clk converges to a limit c0 and τlk converges to τ0. Let us fix n ≥ 0
and note that, for l > n, if Pl(F (τ, c)) = 0 then F (τ, c)n = 0. Thus, from the
continuity of F , we have

F (τ0, c
0)n = lim

k→∞
F (τlk , clk)n = lim

k→∞
PlkF (τlk , clk)n = 0.

For n < 0 we have

F (τ0, c
0)n = lim

k→∞
F (τlk , clk)n = lim

k→∞
F (τlk , clk)−n = 0.

Thus F (τ0, c
0) = 0.

The last assertion follows from the fact that c0 is then a limit of a sequence
in the closed set D. �

Before defining the homotopy, let us introduce some auxiliary notations.
Let us denote: fn(τ) := inτeinτ . By Ln we will denote the linear part of fn:
Ln(τ) := f ′

n(τ̂ )(τ − τ̂) = (inein�τ − n2ein�τ )(τ − τ̂ ). By rn we will denote the
nonlinear part: rn(τ) := fn(τ) − fn(τ̂ ) − Ln(τ).

We will define the homotopy on the whole infinite-dimensional space

H : [0; 1]× [τ ; τ ] × X3 → C
Z.

It will be a bit more convenient to prove that there are no zeros on the boundary
for such a homotopy, and later use the Galerkin projections of it to deform
Fl (that is the Galerkin projection of F — see introduction). As written in
the introduction, the homotopy is a linear deformation of F to a nearly linear
function G:

H(h, τ, x) := hF (τ, ĉ + x) + (1 − h)G(τ, x)

where G on the n-th coefficient is equal to:

G(τ, x)n :=

{
(fn(τ) + K)xn for n �= ±1,

(fn(τ̂ ) + K + γ1,0 + γ1,2n)xn + L(τ)ĉn for n = ±1.

Where γp,j is from Lemma 3.6. The x±1 ∈ R (from the definition of X3), thus
for n = ±1 we have xn−2n = xn = xn, and the term γ1,2nxn−2n that appears in
the definition of F is in fact a linear term with respect to xn.

The G is not strictly a linearization of F , as it does not contain all the linear
terms and it is not linear with respect to τ . However, it contains the most
important terms — the rest will be shown to be small compared to them.



386 M. Zalewski

One can write explicit formulas for H . For n �= ±1 we have:

H(h, τ, x)n := (fn(τ) + K)xn

+ h

(
(fn(τ) + K)ĉn + K

∞∑
k=1

(−1)k

(2k + 1)!
((x + ĉ)∗(2k+1))n

)
and, for n = ±1,

H(t, τ, x)n := (fn(τ̂ ) + K + γ1,0 + γ1,2n)xn + Ln(τ)ĉn

+ h

(
(fn(τ̂ ) + K)ĉn − K

3!
(ĉ∗3)n +

K

5!
(ĉ∗5)n − K

7!
(ĉ∗7)n

)
+ h

∑
−6·5≤j≤6·5,j �=0,2n

γ1,jxn−j + h
7∑

p=2

6·5∑
j=−6·5

γp,jx
∗p
n−j

+ hrn(τ)ĉn + h(fn(τ) − fn(τ̂ ))xn + hR(ĉ + x).

Where R is a short notation for:

R(y) := K

∞∑
k=4

(−1)k

(2k + 1)!
y∗(2k+1).

To show that any Galerkin projection of H does not have a zero on the
boundary of [τ ; τ ] × Pl(X3), it is enough to show that H does not have a zero
on the boundary. More exactly:

Theorem 4.2. Let x ∈ X3, τ ∈ [τ , τ ]. Let x be such that there exists n such
that |xn| = β2/(|n| + 1)2 or let τ ∈ {τ, τ}. Then H(h, τ, x) �= 0 for all h ∈ [0; 1].

Proof. The proof is computer assisted — the calculations are done by the
program. The computation is as follow.

First, let us note that if |xn| = β2/(|n| + 1)2 for n < 0, then also |x−n| =
|xn| = β2/(| − n| + 1)2, where −n > 0. Thus, it is enough to consider this
condition for n ≥ 0 (and the case τ ∈ {τ , τ}). We do it in two steps.

Step 1. Let us assume that |xn| = β2/(|n| + 1)2 for some n ≥ 0, n �= 1. We
will show that H(h, τ, x)n �= 0 (what obviously implies H(h, τ, x) �= 0). We have:

|H(h, τ, x)n|

=
∣∣∣∣(fn(τ) + K)xn + h

(
(fn(τ) + K)ĉn + K

∞∑
k=1

(−1)k

(2k + 1)!
((x + ĉ)∗(2k+1))n

)∣∣∣∣
≥ |(fn(τ) + K)xn| −

∣∣∣∣((fn(τ) + K)ĉn + K

∞∑
k=1

(−1)k

(2k + 1)!
((x + ĉ)∗(2k+1))n

)∣∣∣∣.
Thus, it is enough to show:

|(fn(τ) + K)xn| >

∣∣∣∣(fn(τ) + K)ĉn + K

∞∑
k=1

(−1)k

(2k + 1)!
((x + ĉ)∗(2k+1))n

∣∣∣∣.
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To prove it, we will use the estimates from the previous section to compute
a lower bound of the LHS and an upper bound of the RHS. As it will require a lot
of computations, we will use the program to compute the results. To overcome
the problem of computers being able to represent naturally only a finite subset
of R, we will use the interval arithmetics. It will compute some small intervals
where the mathematically strict results lies. This will be enough to be able to
prove the inequality — if the left bound of LHS estimate interval will be bigger
than the right bound of the RHS estimate interval, then the inequality will be
proved.

The LHS will be estimated by:

(4.1) |(fn(τ) + K)xn| ≥ ||fn(τ)| − K| β2

(|n| + 1)2
= |nτ − K| β2

(|n| + 1)2
.

The τ can be any number from the interval [τ ; τ ]. We can take advantage of
the interval arithmetics and substitute the whole interval as τ . Hence, for any
specified n, this estimate is computable by a program. We will use it for every
n < 225 to obtain an interval containing a mathematically strict lower bound
for the LHS.

Of course, our program cannot compute the bounds for each n ∈ N sepa-
rately, thus for n ≥ 225, we want to prove all the inequalities in some finite
computations. Thus, we have two cases:

(a) For n ≥ 225. Let us multiply the estimate for LHS by (n + 1)2. We have

|(fn(τ) + K)xn|(n + 1)2 ≥ |nτ − K|β2 ≥ (225τ − K)β2

what, after substituting [τ ; τ ] for τ , gives us an estimate independent of n.
On the RHS, we have (fn(τ) + K)ĉn = 0, because ĉn = 0 for n > 225. Thus,

we have only the sum

K

∞∑
k=1

(−1)k

(2k + 1)!
((x + ĉ)∗(2k+1))n.

We have:∣∣∣∣K ∞∑
k=1

(−1)k

(2k + 1)!
((x + ĉ)∗(2k+1))n

∣∣∣∣
≤

21∑
k=1

K

(2k + 1)!
|((x + ĉ)∗(2k+1))n| +

∣∣∣∣K ∞∑
k=22

(−1)k

(2k + 1)!
((x + ĉ)∗(2k+1))n

∣∣∣∣.
The terms for k = 1, . . . , 21 are estimated from Lemma 3.5 (with N = 255).

For the sum for k ≥ 22, we will use Lemma 3.4.
Both Lemmas 3.5 and 3.4 gives us estimates that after a multiplication

by (n + 1)2 are independent of n. Of course, |LHS| > |RHS| is equivalent to
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|LHS|(n + 1)2 > |RHS|(n + 1)2, and the latter can be checked for every n > 255
by the program by checking just one inequality.

The program checks that inequality, and it is satisfied.
(b) For n < 225. In this case, the program computes a separate estimate for

each n ∈ {0, 2, 3 . . . , 224} and checks that the inequalities are satisfied. We will
also have to use some more sophisticated estimates.

Let us use Lemma 3.6 to group the terms of the RHS:∣∣∣∣(fn(τ) + K)ĉn + K

∞∑
k=1

(−1)k

(2k + 1)!
((x + ĉ)∗(2k+1))n

∣∣∣∣
=

∣∣∣∣((fn(τ) + K)ĉn − K

3!
(ĉ∗3)n +

K

5!
(ĉ∗5)n − K

7!
(ĉ∗7)n

)
+

7∑
p=1

6l∑
j=−6l

γp,jx
∗k
n−j + R(ĉ + x)

∣∣∣∣
≤

∣∣∣∣(fn(τ) + K)ĉn − K

3!
(ĉ∗3)n +

K

5!
(ĉ∗5)n − K

7!
(ĉ∗7)n

∣∣∣∣
+

∣∣∣∣ 7∑
p=1

6l∑
j=−6l

γp,jx
∗k
n−j

∣∣∣∣ + |R(ĉ + x)|

≤ |fn(τ) − fn(τ̂ )||ĉn| +
∣∣∣∣(fn(τ̂ ) + K)ĉn − K

3!
(ĉ∗3)n +

K

5!
(ĉ∗5)n − K

7!
(ĉ∗7)n

∣∣∣∣
+

7∑
p=1

6l∑
j=−6l

|γp,j | β2(10β2)p−1

(|n − j| + 1)2
+

21∑
k=4

K

(2k + 1)!
|((x + ĉ)∗(2k+1))n|

+
∣∣∣∣K ∞∑

k=22

(−1)k

(2k + 1)!
((x + ĉ)∗(2k+1))n

∣∣∣∣.
For the first term, we will use the estimate:

(4.2) |(fn(τ) − fn(τ̂ ))| ≤ max
τ∈[τ,τ ]

|f ′(τ)(τ − τ̂ )|

≤ max
τ∈[τ,τ ]

|ineinτ − n2τeinτ | · |∆τ | ≤ max
τ∈[τ,τ ]

(n + n2τ)|∆τ |.

To compute the maximum, it is enough to substitute [τ , τ ] as τ and use the
interval arithmetics — if we compute this expression for all possible τ , then the
result interval will also contain the value of the expression for the maximal τ .
Thus, the mathematically strict result will be in the interval.

The fact that this estimate grows quickly with n is irrelevant, as for n > 5
we have ĉn = 0.

The |(fn(τ̂ ) + K)ĉn − (K/3!)(ĉ∗3)n + (K/5!)(ĉ∗5)n − (K/7!)(ĉ∗7)n| can be
directly computed and is small as it is the numerical solution that is close to
zero.
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The
∑7

p=1

∑6l
j=−6l |γp,j |(β2(10β2)p−1/(|n − j| + 1)2) can be directly compu-

ted and is small for p > 1 as 10β2 is small. The terms for p = 1 happens to
be small and they are not a problem for the inequality to hold (if they were
not, we could try to change the coordinates to diagonalize the linear part). We
estimate (K/(2k + 1)!)|((x + ĉ)∗(2k+1))n| for k ∈ {4, . . . , 21} from Lemma 3.3.
To estimate |K ∑∞

k=22((−1)k/(2k + 1)!)((x+ ĉ)∗(2k+1))n|, we use Lemma 3.4. In
both estimates we have 1/(2k + 1)! with k large enough to make the result small.

Thus, we see that, unless the γ1, · are big, the estimate of the RHS upper
bound should be small. And the program checks that they are — it computes this
upper bound of the RHS and the lower bound of the LHS from equation (4.1),
compares them and for each n in {0, 2, 3, . . . , 224} finds that the inequality holds.
This ends the case for n �= 1.

n LHS RHS

0 4.1792 · 10−7 0.1687 · 10−7

2 0.4474 · 10−7 0.0958 · 10−7

3 0.5080 · 10−7 0.0827 · 10−7

4 0.4893 · 10−7 0.0160 · 10−7

5 0.4537 · 10−7 0.0118 · 10−7

6 0.4171 · 10−7 0.0070 · 10−7

7 0.3834 · 10−7 0.3465 · 10−7

8 0.3536 · 10−7 0.0040 · 10−7

9 0.3274 · 10−7 0.0036 · 10−7

Table 2. Estimates of the LHS and the RHS for small n. The estimates
obtained by the program. The RHS is closest to the LHS for n = 7, because
we have arbitrarily chosen �c7 = 0. That makes the term |(fn(τ) + K)�cn −
(K/3!)(�c∗3)n +(K/5!)(�c∗5)n−(K/7!)(�c∗7)n| for n = 7 approximately equal
0.3411 · 10−7.

Step 2. We have two cases left: τ ∈ {τ, τ} and |x1| = β2/4. We have two
variables left but only one equation — the equation for n = 1. However, this is
a complex equation and the variables are real, so we will be able to show that in
both cases H(τ, x) �= 0. Let us denote:

Lτ := L1(τ)ĉ1, Lx := (fn(τ̂ ) + K + γ1,0 + γ1,2)x1,

N := (fn(τ̂ ) + K)ĉn − K

3!
(ĉ∗3)n +

K

5!
(ĉ∗5)n − K

7!
(ĉ∗7)n

+
∑

−6l≤j≤6l,j �=0,2

γp,jx
∗k
n−j+

7∑
p=2

6l∑
j=−6l

γp,jx
∗k
n−j+R(c)+rn(τ)ĉn+(f(τ)−f(τ̂ ))xn.
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The Lτ , Lx, N depend on τ , x, but to make the notation short, we skip it.
They are chosen such that G(τ, x)1 = Lτ + Lx, F (τ, x)1 = Lτ + Lx + N and
H(h, τ, x)1 = Lτ + Lx + hN .

If τ ∈ {τ, τ}, then we will show that:

(4.3) |Lτ | > |Lx| + |N |
what will give H(h, τ, x)1 �= 0. The |Lτ | can be computed:

|L1(τ)ĉ1| = |in − n2| · ∆τ · |ĉn||n=1 =
√

2∆τ · |ĉ1|.
We estimate the terms in |N | like for n �= 1, with the exception of the new

terms: |(f(τ)− f(τ̂))xn| and |rn(τ)ĉn|. For the first one we use inequality (4.2).
For the second we use the estimate:

|rn(τ)ĉn| ≤ max
τ∈[τ;τ ]

∣∣∣∣12f ′′
1 (τ)(τ − τ̂)2

∣∣∣∣ · |ĉn|

=
|ĉn|
2

max
τ∈[τ;τ ]

| − (2n2 + in3τ)einτ | =
|ĉn|
2

max
τ∈[τ;τ ]

|2 + iτ |.

Like for equation (4.2), we compute the maximum by substituting [τ ; τ ] for
τ and computing all the possible values.

Having all these estimates our program checks that the inequality (4.3) is
satisfied.

In the case |x1| = β2/4, the inequality |Lx| > |Lτ | + |N | is obviously false.
To prove that there is no zero, we will need to use the fact that τ ∈ R and
x1 ∈ R. On Figure 1, we sketch how the sets of possible values of Lτ and
Lx + N look like on the complex plane. We see that they should not intersect,
i.e. 0 /∈ Lτ − (Lx + N). That, for an estimate that is symmetric with respect
to 0, is equivalent to 0 /∈ Lτ + (Lx + N).

Formally, we will show that{
tan[arg(Lτ )] : (τ, x) ∈ [τ , τ ] × X3, x1 = ±β2

4

}
∩

{
tan[arg(Lx + N)] : (τ, x) ∈ [τ , τ ] × X3, x1 = ±β2

4

}
= ∅

(where arg is the complex number argument). This implies that if we take an a

from the first set and a b from the second, then a+b �= 0. Thus 0 �= Lτ +Lx+N =
H(h, τ, x)1.

The arg(Lτ ) is easy to compute as this is tan arg((iei�τ −ei�τ )ĉ1), and tan arg z

for a complex number z can be computed as �z/�z. To estimate the other set,
we will use the estimate for N from the previous point. Let us denote by λ

the right end of the interval containing the upper bound for N . Then we have
|N | ≤ λ. Thus, Lx + N ∈ ±(fn(τ̂ ) + K + γ1,0 + γ1,2)(β2/4) + [−λ; λ] + [−λ; λ]i
and using the interval arithmetics we can find tan arg(Lx + N).
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Lτ

Lx + N

Figure 1. The possible values of Lτ and Lx + N

The program checks that these two sets are disjoint, and this ends the proof
of the theorem. �

To finish the proof of the existence of the orbit, let us define a second homo-
topy:

HL(h, τ, x) :=

{
(fn(τ̂ + h(τ − τ̂ )) + K)xn for n �= ±1,

(fn(τ̂ ) + K + γ1,0 + γ1,2n)xn + L(τ)c1 for n = ±1.

It deforms G into:

GL(h, τ, x) :=

{
(fn(τ̂ ) + K)xn for n �= ±1,

(fn(τ̂ ) + K + γ1,0 + γ1,2n)xn + L(τ)c1 for n = ±1.

Lemma 4.3. If (τ, x) ∈ [τ , τ ]×X3 such that τ ∈ {τ, τ} or there exists n such
that |xn| = β2/(|n| + 1)2 then HL(h, x, τ) �= 0.

Proof. Let h, x, τ be such that HL(h, x, τ) = 0. Let n �= ±1. The
τ̂ + h(τ − τ̂) ∈ [τ ; τ ] thus |fn(τ̂ + h(τ − τ̂)) + K| can be estimated as in equation
(4.1). For each such value we have proven that it is strictly greater than an
RHS≥ 0. Hence |fn(τ̂ + h(τ − τ̂))+ K| > 0 and, if HL(h, τ, x) = 0, then xn = 0.

Thus we have xn = 0 for each n �= ±1. But then HL(h, τ, x) = G(τ, x) =
H(0, τ, x) and H has no zeros on the boundary. �
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Observation 4.4. The Galerkin projection of H, i.e. Hl(τ, y0, . . . , yl) :=
PlH(τ, Ql(y0, . . . , yl)) (for (y0, . . . , yn) ∈ R × R × C

n−1) is a homotopy from
F l(τ, c+ · ) to the projection of G. Analogously, the projection of HL is a homo-
topy from G to GL. There are no zeros on the boundaries for these homotopies.

Observation 4.5. The degree deg(Fl, [τ , τ ] × Pl(X3), 0) is well defined.

Proof. The homotopy Hl for h = 1 have no zeros on the boundary and this
is Fl. �

Lemma 4.6. deg(Fl, [τ , τ ] × Pl(X3), 0) �= 0

Proof. We know that the degree of Fl is equal to the degree of the Galerkin
projection of GL — let us denote it by GL

l . Function GL
l is linear. If the

determinant of the differential were zero then there would be a zero on the
boundary of any neighbourhood of (τ̂ , 0). Hence, the determinant is non-zero.
That means that the degree is ±1, i.e. non-zero. �

Theorem 4.7. Equation (1.1) has a periodic solution for some τ ∈ [τ , τ ]
whose Fourier coefficients are in the set X3.

Proof. From Lemma 4.6 we know that the local Brouwer degree is non-zero,
thus each Fl has a zero in X3. From Lemma 4.1 we have that F has a zero in X3.
From Theorem 2.6 we obtain that in X3 there is a solution of the equation. �

5. Conclusions

In this paper, I rigorously proved the existence of a periodic orbit for K = 1.6.
I was not able to show that the period is 4, although the numerical simulations
suggests that. We needed the τ as a variable in the proof for the image and the
domain to have the same dimension.

The value K = 1.6 has been chosen, because it is easiest to find the ĉn values
for an attracting orbit. However, using the Newton method, it should be possible
to find an approximation of an orbit which is not attracting (from the numerical
simulations, it seems to happen for K > 5.11). For larger K, the values of ĉn

may not decrease as fast, so we may need to diagonalize the first coefficients
of Fl, as mentioned in the proof.

Of course, the sinus function is periodic, so there exist infinitely many such
orbit that differ by 2kπ (k ∈ Z). As mentioned, for K > 5.11 it seems that these
periodic orbits stop to be attracting. The orbits from numerical simulations
jump by ±2π, from one periodic orbit to another. This suggests heteroclinic
connections and chaos but proving it would require some new ideas.
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