RETRACTING BALL ONTO SPHERE IN $B C_{0}(\mathbb{R})$

Łukasz Piasecki

Abstract

In infinite dimensional Banach spaces the unit sphere is a lipschitzian retract of the unit ball. We use the space of continuous functions vanishing at a point to provide an example of such retraction having relatively small Lipschitz constant.

1. Introduction

Let $(X,\| \|)$ be an infinite dimensional Banach space with the unit ball B and the unit sphere S. Since the works of Nowak [8] and Benyamini and Sternfeld [2] it is known that S is a lipschitzian retract of B. It means that there exists a mapping (a retraction) $R: B \rightarrow S$ satisfying, with a certain constant $k>0$, the Lipschitz condition

$$
\begin{equation*}
\|R x-R y\| \leq k\|x-y\| \tag{1.1}
\end{equation*}
$$

for all $x, y \in B$ and such that $R x=x$ for all $x \in S$. Obviously, the above is not true for spaces of finite dimension due to the Brouwer's Non Retraction Theorem. There is an interesting question. What is the infimum of all k admitting existence of a retraction $R: B \rightarrow S$ satisfying the Lipschitz condition (1.1) with constant k ?

[^0]More precisely, the investigation is going on to find or evaluate the optimal retraction constant $k_{0}(X)$ defined by:

$$
k_{0}(X)=\inf \{k: \text { there exists a retraction } R: B \rightarrow S \text { satisfying (1.1) }\}
$$

At present the exact value of $k_{0}(X)$ is not known for any single Banach space. Various evaluations can be found in books of Goebel and Kirk [4] and Goebel [3] and papers cited there. Obviously, constant $k_{0}(X)$ can not be to small. The universal known bound from below is $k_{0}(X) \geq 3$ but probably it is not sharp. For some spaces there are better estimates e.g. $k_{0}(X)>3$ for uniformly convex spaces, $k_{0}\left(l_{1}\right) \geq 4$ and $k_{0}(H)>4.5$ for Hilbert space. There were several approaches to give a reasonable universal estimate from above. All of them are based on individual constructions and tricks. It is a general feeling that spaces can differ by the value of $k_{0}(X)$ depending on the regularity of the norm geometry.

For several years the best known estimate from above was for $L_{1}(0,1)$ (see [3]). Together with a general estimation from below, we have

$$
3 \leq k_{0}\left(L_{1}(0,1)\right) \leq 9.43 \ldots
$$

Very recently M. Annoni and E. Casini [1] obtained better evaluation for l_{1}. Together with known bound from below, we have

$$
4 \leq k_{0}\left(l_{1}\right) \leq 8
$$

Immediately, the same estimate has been extended for $L_{1}(0,1)$ and few other spaces [6].

An interesting situation is observed for spaces with uniform norm. The best known estimate for the space of continuous functions is (see [3])

$$
3 \leq k_{0}(C[0,1]) \leq 4(1+\sqrt{2})^{2}=23.31 \ldots
$$

Added in the proof: Author get a better estimation: $k_{0}(C[0,1])<14.93$ in his master's degree thesis. But for subspace $C_{0}[0,1]$ consisting of all the functions vanishing at zero the best published estimate is (see [5])

$$
3 \leq k_{0}\left(C_{0}[0,1]\right) \leq 12
$$

This was improved by the very recent result [7] stating that

$$
3 \leq k_{0}\left(C_{0}[0,1]\right) \leq 7
$$

The aim of this note is to present a construction for the space $B C_{0}(\mathbb{R})$ of all bounded continuous functions vanishing at zero which improves the estimates presented above. Then we extend this construction to a much wider class of spaces.

2. The case of $B C_{0}(\mathbb{R})$

Let us start with the space $B C_{0}(\mathbb{R})$ of all bounded continuous functions on \mathbb{R} vanishing at zero and furnished with the standard uniform norm $\|f\|=$ $\sup \{|f(t)|: t \in \mathbb{R}\}$. For our construction we shall need two simple special functions. First function is $\alpha: \mathbb{R} \rightarrow[-1,1]$,

$$
\alpha(t)= \begin{cases}-1 & \text { for } t<-1 \\ t & \text { for }-1 \leq t \leq 1 \\ 1 & \text { for } t>1\end{cases}
$$

Function α generates the truncation retraction Q of the whole space $B C_{0}(\mathbb{R})$ onto its unit ball B,

$$
Q f(t)=\alpha(f(t))=\max \{-1, \min \{1, f(t)\}\}
$$

Obviously Q satisfies the Lipschitz condition (1.1) with the constant $k=1$

$$
\begin{equation*}
\|Q f-Q g\| \leq\|f-g\| \tag{2.1}
\end{equation*}
$$

and for each f such that $\|f\|>1$ we have

$$
\begin{equation*}
\|Q f\|=1 \tag{2.2}
\end{equation*}
$$

Also for any $r \geq 0$ it generates the truncation Q_{r} on the ball $B(r)$ with center at zero and radius r,

$$
Q_{r} f= \begin{cases}r Q((1 / r) f) & \text { if } r>0 \\ 0 & \text { if } r=0\end{cases}
$$

Moreover, for any $r_{1} \geq 0, r_{2} \geq 0$, we have

$$
\begin{equation*}
\left\|Q_{r_{1}} f-Q_{r_{2}} g\right\| \leq \max \left\{\left|r_{1}-r_{2}\right|,\|f-g\|\right\} \tag{2.3}
\end{equation*}
$$

The second simple function to be used in the construction is $\Lambda:[0, \infty) \rightarrow[0,1]$

$$
\Lambda(t)= \begin{cases}3 t & \text { for } 0 \leq t \leq 1 / 3 \\ 2-3 t & \text { for } 1 / 3<t \leq 2 / 3 \\ 0 & \text { for } t>2 / 3\end{cases}
$$

It is clear that Λ satisfies for all $s, t \in[0, \infty)$ the Lipschitz condition

$$
\begin{equation*}
|\Lambda(s)-\Lambda(t)| \leq 3|s-t| \tag{2.4}
\end{equation*}
$$

The function Λ can be used to define a mapping $T: B C_{0}(\mathbb{R}) \rightarrow B$ by putting for each $f \in B C_{0}(\mathbb{R})$

$$
\begin{equation*}
T f(t)=\Lambda\left(|f(t)|+\frac{|t|}{1+|t|}\right) \tag{2.5}
\end{equation*}
$$

In view of (2.4), for all $f, g \in B C_{0}(\mathbb{R})$ we have

$$
\begin{equation*}
\|T f-T g\| \leq 3\|f-g\| \tag{2.6}
\end{equation*}
$$

Moreover, for each $f \in B C_{0}(\mathbb{R})$ there exists a point t_{1} such that

$$
\left|f\left(t_{1}\right)\right|+\frac{\left|t_{1}\right|}{1+\left|t_{1}\right|}=\frac{1}{3} \quad \text { and } \quad T f\left(t_{1}\right)=1
$$

Hence
(2.7) $\|f-T f\| \geq\left|T f\left(t_{1}\right)\right|-\left|f\left(t_{1}\right)\right|=1-\left(\frac{1}{3}-\frac{\left|t_{1}\right|}{1+\left|t_{1}\right|}\right)=\frac{2}{3}+\frac{\left|t_{1}\right|}{1+\left|t_{1}\right|} \geq \frac{2}{3}$.

In the next step let us define a mapping $F: B((2+\sqrt{2}) / 3) \rightarrow B C_{0}(\mathbb{R})$

$$
F f= \begin{cases}f-T f & \text { if }\|f\| \leq 2 / 3 \\ f-Q_{3(1-\|f\|)} T f & \text { if } 2 / 3 \leq\|f\| \leq 1 \\ (4-3\|f\|) f & \text { if } 1 \leq\|f\| \leq(2+\sqrt{2}) / 3\end{cases}
$$

The radius $(2+\sqrt{2}) / 3$ has been selected via certain process of optimization. We skip the detailes.

Observe that if $\|f\|=2 / 3$ both formulas give the same result. The same holds if $\|f\|=1$.

Let us prove that mapping F satisfies the Lipschitz condition with constant 4.

- In view of (2.6) for all f, g with $\|f\| \leq 2 / 3$ and $\|g\| \leq 2 / 3$ we have

$$
\begin{aligned}
\|F f-F g\| & =\|(f-T f)-(g-T g)\| \leq\|f-g\|+\|T f-T g\| \\
& \leq\|f-g\|+3\|f-g\|=4\|f-g\|
\end{aligned}
$$

- In view of (2.3) and (2.6) for all f, g with $2 / 3 \leq\|f\| \leq 1$ and $2 / 3 \leq$ $\|g\| \leq 1$ we have

$$
\begin{aligned}
\|F f-F g\| & =\left\|\left(f-Q_{3(1-\|f\|)} T f\right)-\left(g-Q_{3(1-\|g\|)} T g\right)\right\| \\
& \leq\|f-g\|+\left\|Q_{3(1-\|f\|)} T f-Q_{3(1-\|g\|)} T g\right\| \\
& \leq\|f-g\|+\max \{|3(1-\|f\|)-3(1-\|g\|)|,\|T f-T g\|\} \\
& \leq\|f-g\|+\max \{3 \mid\|f\|-\|g\|\|, 3\| f-g \|\}=4\|f-g\| ;
\end{aligned}
$$

- Without loss of generality, we can assume that $1 \leq\|g\| \leq\|f\| \leq$ $(2+\sqrt{2}) / 3$,

$$
\begin{aligned}
\|F f-F g\| & =\|(4-3\|f\|) f-(4-3\|g\|) g\| \\
& \leq\|(4-3\|f\|)(f-g)\|+\|(4-3\|f\|) g-(4-3\|g\|) g\| \\
& \leq(4-3\|f\|)\|f-g\|+3\|g\|(\|f\|-\|g\|) \\
& \leq(4-3\|f\|+3\|g\|)\|f-g\| \leq 4\|f-g\|
\end{aligned}
$$

Finally, the standard reasoning shows that for all $f, g \in B((2+\sqrt{2}) / 3)$ we have

$$
\begin{equation*}
\|F f-F g\| \leq 4\|f-g\| \tag{2.8}
\end{equation*}
$$

Let us prove now that for each $f \in B((2+\sqrt{2}) / 3)$ we have

$$
\begin{equation*}
\|F f\| \geq \frac{2}{3} \tag{2.9}
\end{equation*}
$$

In view of (2.7), $\|F f\|=\|f-T f\| \geq 2 / 3$ for all f with $\|f\| \leq 2 / 3$. The same holds for all f with $2 / 3 \leq\|f\| \leq 1$. Indeed, if f attains its norm at a point \bar{t}, $\|f\|=|f(\bar{t})| \geq 2 / 3$, then using the fact that $\Lambda(|f(\bar{t})|+|\bar{t}| /(1+|\bar{t}|))=0$, we have

$$
\begin{aligned}
\|F f\| & =\left\|f-Q_{3(1-\|f\|)} T f\right\| \geq\left|f(\bar{t})-Q_{3(1-\|f\|)} T f(\bar{t})\right| \\
& \geq|f(\bar{t})|-\left|Q_{3(1-\|f\|)} \Lambda\left(|f(\bar{t})|+\frac{|\bar{t}|}{1+|\bar{t}|}\right)\right|=\|f\| \geq \frac{2}{3} .
\end{aligned}
$$

Since functions attaining their norm form the dense set in B we conclude that

$$
\|F f\| \geq \frac{2}{3} \quad \text { for each } f \in B
$$

If $1 \leq\|f\| \leq(2+\sqrt{2}) / 3$ then

$$
\|F f\|=\|(4-3\|f\|) f\|=(4-3\|f\|)\|f\| \geq \frac{2}{3}
$$

and inequality (2.9) is proved.
Observe also that for each f with $\|f\|=\frac{2+\sqrt{2}}{3}$ we have

$$
\begin{equation*}
F f=(2-\sqrt{2}) f \tag{2.10}
\end{equation*}
$$

Let us define now a mapping $\widetilde{F}: B \rightarrow B C_{0}(\mathbb{R})$ by putting for each $f \in B$

$$
\widetilde{F} f=\frac{3}{2+\sqrt{2}} F\left(\frac{2+\sqrt{2}}{3} f\right)
$$

In view of (2.8)-(2.10)

- for all $f, g \in B$ we have

$$
\begin{equation*}
\|\widetilde{F} f-\widetilde{F} g\| \leq 4\|f-g\| \tag{2.11}
\end{equation*}
$$

- for each $f \in B$ we have

$$
\begin{equation*}
\|\widetilde{F} f\| \geq \frac{2}{2+\sqrt{2}} \tag{2.12}
\end{equation*}
$$

- for each $f \in S$ we have

$$
\begin{equation*}
\widetilde{F} f=\frac{2}{2+\sqrt{2}} f \tag{2.13}
\end{equation*}
$$

Putting together (2.1), (2.2), (2.11)-(2.13) we can now define the retraction $R: B \rightarrow S$ as

$$
R f=Q\left(\frac{2+\sqrt{2}}{2} \widetilde{F} f\right)
$$

and observe that for all $f, g \in B$ we have

$$
\begin{aligned}
\|R f-R g\| & =\left\|Q\left(\frac{2+\sqrt{2}}{2} \widetilde{F} f\right)-Q\left(\frac{2+\sqrt{2}}{2} \widetilde{F} g\right)\right\| \\
& \leq \frac{2+\sqrt{2}}{2}\|\widetilde{F} f-\widetilde{F} g\| \leq 4\left(\frac{2+\sqrt{2}}{2}\right)\|f-g\|=2(2+\sqrt{2})\|f-g\|
\end{aligned}
$$

What we have shown can be formulated as

$$
k_{0}\left(B C_{0}(\mathbb{R})\right) \leq 2(2+\sqrt{2})<6.83
$$

3. Possibility of generalization

Presented construction can be repeated with minor changes and applied to a much wider class of spaces. Suppose (M, d) is a connected metric space consisting of more than one point and let $z \in M$ be a selected point. Consider the space $B C_{z}(M)$ of all bounded continuous functions $f: M \rightarrow \mathbb{R}$ vanishing at z, $f(z)=0$, with the standard uniform norm $\|f\|=\sup \{|f(x)|: x \in M\}$.

If M is an unbounded then the following modification of the formula (2.5),

$$
T f(x)=\Lambda\left(|f(x)|+\frac{d(x, z)}{1+d(x, z)}\right)
$$

allows to carry on the proof with only technical changes.
For bounded space M, the same holds. It is enough to put

$$
m=\sup \{d(x, z): x \in M\}
$$

and modify (2.5) by

$$
T f(x)=\Lambda\left(|f(x)|+\frac{d(x, z)}{m}\right)
$$

All the above allows us to conclude with the theorem,
Theorem 3.1. If (M, d) is a connected metric space consisting of more than one point and $z \in M$ is a given point, then

$$
k_{0}\left(B C_{z}(M)\right) \leq 2(2+\sqrt{2})<6.83
$$

The above proof combined tricks known from [5] and [7].

References

[1] M. Annoni and E. Casini, An upper bound for the Lipschitz retraction constant in l_{1}, Studia Math. 180 (2007), 73-76.
[2] Y. Benyamini and Y. Sternfeld, Spheres in infinite dimensional Banach space are Lipschitz contractible, Proc. Amer. Math. Soc. 88 (1983), 439-445.
[3] K. Goebel, Concise Course on Fixed Point Theorems, Yokohama Publishers, 2002.
[4] K. Goebel and W. A. Kirk, Topics in metric fixed point theory (1990), Cambridge University Press, Cambridge.
[5] K. Goebel and G. Marino, A note on minimal displacement and optimal retraction problems, Fixed Point Theory and its Applications, Guanajuato Mexico 2005, Yokohama Publishers, 2006.
[6] K. Goebel, G. Marino, L. Muglia and R. Volpe, Valuation of retraction constant and minimal displacement in some Banach spaces, Nonlinear Anal. (to appear).
[7] K. Goebel and Ł. Piasecki, A new estimate for the optimal retraction constant, International Symposium on Banach and Function Spaces, Proceedings of the conference, Kitakiushiu 2006, Yokohama Publishers.
[8] B. Nowak, On the Lipschitz retraction of the unit ball in infinite dimensional Banach spaces onto boundary, Bull. Acad. Polon. Sci. 27 (1979), 861-864.

Manuscript received November 26, 2007

[^1]
[^0]: 2000 Mathematics Subject Classification. Primary 47H10.
 Key words and phrases. Minimal displacement, optimal retractions, lipschitzian mappings.
 This paper is a part of the L . Piasecki master's degree thesis, which won an award of the Polish Mathematical Society Competition in honour of Józef Marcinkiewicz (1910-1940, Starobielsk [Katyń extermination]).

[^1]: Łukasz Piasecki
 Institute of Mathematics
 Maria Curie-Skłodowska University
 20-031 Lublin, POLAND
 E-mail address: piasecki@hektor.umcs.lublin.pl

