PERIODIC SOLUTIONS FOR A NEUTRAL DIFFERENTIAL EQUATION WITH VARIABLE PARAMETER

Bo Du - Jianxin Zhao - Weigao Ge

Abstract

By means of Mawhin's continuation theorem, we present some sufficient conditions which guarantee the existence of at least one T-periodic solution for a first-order neutral equation with variable parameter. The interest is that the coefficient c is not a constant, which is different from the corresponding ones of past work

1. Introduction

This paper is devoted to using Mawhin's continuation theorem to investigate the existence of periodic solutions for a first-order neutral equation with variable parameter as follows:

$$
\begin{equation*}
(x(t)-c(t) x(t-\tau))^{\prime}+g(x(t-\gamma(t)))=e(t) \tag{1.1}
\end{equation*}
$$

where $g, e, \gamma \in C(\mathbb{R}, \mathbb{R})$ with $e(t)=e(t+T)$ and $\gamma(t)=\gamma(t+T) ; c \in C^{1}(\mathbb{R}, \mathbb{R})$ with $|c(t)| \neq 1$ and $c(t+T)=c(t) ; T, \tau$ are given constants with $T>0$.

In recent years, neutral functional differential equations (NFDEs) have been extensively studied by many researchers. In [4]-[6], Lu and Ge studied the

[^0]following NFDEs:
\[

$$
\begin{array}{r}
\frac{d}{d t}(u(t)-k u(t-\tau))=g_{1}(u(t))+g_{2}\left(u\left(t-\tau_{1}\right)\right)+p(t) \\
(x(t)+c x(t-r))^{\prime \prime}+f\left(x^{\prime}(t)\right)+g(x(t-\tau(t)))=p(t) \\
\frac{d^{2}}{d t^{2}}(u(t)-k u(t-\tau))=f(u(t)) u^{\prime}(t)+\alpha(t) g(u(t)) \\
\quad+\sum_{j=1}^{n} \beta_{j}(t) g\left(u\left(t-\gamma_{j}(t)\right)\right)+p(t)
\end{array}
$$
\]

In [7] Enrico Serra studied a kind of NFDE in the following form:

$$
x^{\prime}(t)+a x^{\prime}(t-\tau)=f(t, x(t))
$$

In [3] Liu considered the following first-order neutral functional differential equation:

$$
(u(t)+B u(t-\tau))^{\prime}=g_{1}(t, u(t))-g_{2}\left(t, u\left(t-\tau_{1}\right)\right)+p(t)
$$

However, to the best of our knowledge, there are few results on the existence of periodic solutions to first-order neutral equations for the case of a variable $c(t)$. Recently, we obtained the properties of the neutral operator $A: C_{T} \rightarrow C_{T}$, $[A x](t)=x(t)-c(t) x(t-\tau)$ in [6]. In this paper, we will obtain the existence of periodic solutions to equation (1.1) by using the properties of the operator A and Mawhin's continuation theorem.

2. Preliminary

In this section, we give some lemmas which will be used in this paper. Let

$$
\begin{gathered}
c_{0}=\max _{t \in[0, T]}|c(t)|, \quad \sigma=\min _{t \in[0, T]}|c(t)|, \quad c_{1}=\max _{t \in[0, T]}\left|c^{\prime}(t)\right|, \\
C_{T}=\{x \mid x \in C(\mathbb{R}, \mathbb{R}), x(t+T) \equiv x(t), \text { for all } t \in \mathbb{R}\}
\end{gathered}
$$

with the norm

$$
|\varphi|_{0}=\max _{t \in[0, T]}|\varphi(t)|, \quad \text { for all } \varphi \in C_{T}
$$

and

$$
C_{T}^{1}=\left\{x \mid x \in C^{1}(\mathbb{R}, \mathbb{R}), x(t+T) \equiv x(t), \text { for all } t \in \mathbb{R}\right\}
$$

with the norm

$$
\|\varphi\|=\max _{t \in[0, T]}\left\{|\varphi|_{0},\left|\varphi^{\prime}\right|_{0}\right\}, \quad \text { for all } \varphi \in C_{T}^{1}
$$

Clearly, C_{T} and C_{T}^{1} are Banach spaces.
Define linear operator:

$$
A: C_{T} \rightarrow C_{T}, \quad[A x](t)=x(t)-c(t) x(t-\tau), \quad \text { for all } t \in \mathbb{R}
$$

Lemma 2.1 ([1]). If $|c(t)| \neq 1$, then operator A has continuous inverse A^{-1} on C_{T}, satisfying:
(a) $\quad\left[A^{-1} f\right](t)=\left\{\begin{array}{l}f(t)+\sum_{j=1}^{\infty} \prod_{i=1}^{j} c(t-(i-1) \tau) f(t-j \tau), \\ \\ \quad c_{0}<1, \text { for all } f \in C_{T}, \\ -\frac{f(t+\tau)}{c(t+\tau)}-\sum_{j=1}^{\infty} \prod_{i=1}^{j+1} \frac{1}{c(t+i \tau)} f(t+j \tau+\tau), \\ \sigma>1, \text { for all } f \in C_{T} .\end{array}\right.$
(b)

$$
\int_{0}^{T}\left|\left[A^{-1} f\right](t)\right| d t \leq \begin{cases}\frac{1}{1-c_{0}} \int_{0}^{T}|f(t)| d t, & c_{0}<1, \text { for all } f \in C_{T} \\ \frac{1}{\sigma-1} \int_{0}^{T}|f(t)| d t, & \sigma>1, \text { for all } f \in C_{T}\end{cases}
$$

Let X and Y be real Banach spaces and let $L: D(L) \subset X \rightarrow Y$ be a Fredholm operator with index zero, here $D(L)$ denotes the domain of L. This means that $\operatorname{Im} L$ is closed in Y and $\operatorname{dim} \operatorname{Ker} L=\operatorname{codim} \operatorname{Im} L<\infty$. If L is a Fredholm operator with index zero, then there exist continuous projectors $P: X \rightarrow X, Q: Y \rightarrow Y$ such that $\operatorname{Im} P=\operatorname{Ker} L, \operatorname{Im} L=\operatorname{Ker} Q=\operatorname{Im}(I-Q)$ and $L_{D(L) \cap \operatorname{Ker} P}:(I-P) X \rightarrow \operatorname{Im} L$ is invertible. Denote by K_{p} the inverse of L_{P}.

Let Ω be an open bounded subset of X, a map $N: \bar{\Omega} \rightarrow Y$ is said to be L compact in $\bar{\Omega}$ if $Q N(\bar{\Omega})$ is bounded and the operator $K_{p}(I-Q) N(\bar{\Omega})$ is relatively compact. We first recall the famous Mawhin's continuation theorem.

Lemma 2.2 ([2]). Suppose that X and Y are two Banach spaces and $L: D(L)$ $\subset X \rightarrow Y$ is a Fredholm operator with index zero. Furthermore, $\Omega \subset X$ is an open bounded set and $N: \bar{\Omega} \rightarrow Y$ is L-compact on $\bar{\Omega}$. If all the following conditions hold:
(a) $L x \neq \lambda N x$, for all $x \in \partial \Omega \cap D(L)$, for all $\lambda \in(0,1)$,
(b) $N x \notin \operatorname{Im} L$, for all $x \in \partial \Omega \cap \operatorname{Ker} L$,
(c) $\operatorname{deg}\{J Q N, \Omega \cap \operatorname{Ker} L, 0\} \neq 0$,
where $J: \operatorname{Im} Q \rightarrow \operatorname{Ker} L$ is an isomorphism. Then equation $L x=N x$ has a solution on $\bar{\Omega} \cap D(L)$.

Define a linear operator

$$
L: D(L) \subset C_{T} \rightarrow C_{T}, \quad L x=(A x)^{\prime}
$$

where $D(L)=\left\{x \mid x \in C_{T}^{1}\right\}$, and a nonlinear operator

$$
N: C_{T} \rightarrow C_{T}, \quad N x=-g(x(t-\gamma(t)))+e(t)
$$

It is easy to see

$$
\operatorname{Im} L=\left\{y \mid y \in C_{T}, \int_{0}^{T} y(s) d s=0\right\}
$$

Since for all $x \in \operatorname{Ker} L,(x(t)-c(t) x(t-\tau))^{\prime}=0$, we have

$$
\begin{equation*}
x(t)-c(t) x(t-\tau)=1 \tag{2.1}
\end{equation*}
$$

Let $\varphi(t)$ be the unique T-periodic solution of (2.1), then $\varphi(t) \neq 0$ and

$$
\operatorname{Ker} L=\{a \varphi(t), a \in \mathbb{R}\}
$$

So $\operatorname{Im} L$ is closed in C_{T} and $\operatorname{dim} \operatorname{Ker} L=\operatorname{codim} \operatorname{Im} L=1$. Then the operator L is a Fredholm operator with index zero. Define continuous projectors

$$
P: C_{T} \rightarrow \operatorname{Ker} L, \quad(P x)(t)=\frac{\int_{0}^{T} x(t) \varphi(t) d t}{\int_{0}^{T} \varphi^{2}(t) d t} \varphi(t)
$$

and

$$
Q: C_{T} \rightarrow C_{T} / \operatorname{Im} L, \quad Q y=\frac{1}{T} \int_{0}^{T} y(s) d s
$$

Hence,

$$
\operatorname{Im} P=\operatorname{Ker} L \quad \text { and } \quad \operatorname{Ker} Q=\operatorname{Im} L
$$

Set operators

$$
L_{P}=\left.L\right|_{D(L) \cap \operatorname{Ker} P}: D(L) \cap \operatorname{Ker} P \rightarrow \operatorname{Im} L
$$

and

$$
L_{P}^{-1}=K_{p}: \operatorname{Im} L \rightarrow D(L) \cap \operatorname{Ker} P
$$

Since

$$
K_{p}: \operatorname{Im} L \subset C_{T} \rightarrow D(L) \cap \operatorname{Ker} P \subset C_{T}^{1}
$$

is an embedding operator, so K_{p} is a completely continuous operator; on the other hand, by the definitions of Q and N, it is clear that $Q N(\bar{\Omega})$ is bounded. Hence nonlinear operator N is L-compact on $\bar{\Omega}$.

3. Existence of periodic solution for equation (1.1)

Theorem 3.1. Suppose that $\int_{0}^{T} e(s) d s=0, \int_{0}^{T} \varphi^{2}(s) d s \neq 0,|c(t)| \neq 1$ for all $t \in \mathbb{R}$, and there exist constants $d>0$ and $r \geq 0$ such that
(H1) $x g(x)>0$, whenever $|x|>d$;
(H2) $\lim _{|x| \rightarrow \infty}|g(x)| /|x| \leq r \in[0, \infty)$.
Then equation (1.1) has at least one T-periodic solution, if

$$
\begin{aligned}
& \max \left\{\frac{c_{1} T}{1-c_{0}}, \frac{T r}{1-c_{0}-c_{1} T}\right\}<1 \quad \text { for } c_{0}<\frac{1}{2} \\
& \max \left\{\frac{c_{1} T}{\sigma-1}, \frac{T r}{\sigma-1-c_{1} T}\right\}<1 \\
& \text { for } \sigma>1
\end{aligned}
$$

Proof. We complete the proof by three steps.
Step 1. Let $\Omega_{1}=\{x \in D(L): L x=\lambda N x, \lambda \in(0,1)\}$. We show that Ω_{1} is a bounded set. For all $x \in \Omega_{1}, L x=\lambda N x$, i.e.

$$
\begin{equation*}
(A x)^{\prime}(t)=-\lambda g(x(t-\gamma(t)))+\lambda e(t) \tag{3.1}
\end{equation*}
$$

Integrating both sides of (3.1) over $[0, T]$, we have

$$
\int_{0}^{T} g(x(t-\gamma(t))) d t=0
$$

From integral mean value theorem, there is a constant $\xi \in[0, T]$ such that $g(x(\xi-\gamma(\xi)))=0$, from assumption (H1) we have $|x(\xi-\gamma(\xi))| \leq d$. Because $x(t)$ is a T-periodic function, then there exists a constant $\xi^{*} \in[0, T]$ satisfying $\xi-\gamma(\xi)=\xi^{*}+k T, k \in Z$, then we have $\left|x\left(\xi^{*}\right)\right| \leq d$. Hence

$$
\begin{align*}
|x|_{0} & =\max _{t \in[0, T]}\left|x\left(\xi^{*}\right)+\int_{\xi^{*}}^{t} x^{\prime}(s) d s\right| \tag{3.2}\\
& \leq\left|x\left(\xi^{*}\right)\right|+\int_{0}^{T}\left|x^{\prime}(s)\right| d s \leq d+\int_{0}^{T}\left|x^{\prime}(s)\right| d s
\end{align*}
$$

From $[A x](t)=x(t)-c(t) x(t-\tau)$, for all $x \in C_{T}^{1}$, we have

$$
\left(A x^{\prime}\right)(t)=(A x)^{\prime}(t)+c^{\prime}(t) x(t-\tau)
$$

then from Lemma 2.1 and (3.2), if $c_{0}<1 / 2$ we have

$$
\begin{aligned}
\int_{0}^{T}\left|x^{\prime}(t)\right| d t & =\int_{0}^{T}\left|\left(A^{-1} A x^{\prime}\right)(t)\right| d t \leq \int_{0}^{T} \frac{\left|\left(A x^{\prime}\right)(t)\right|}{1-c_{0}} d t \\
& =\int_{0}^{T} \frac{\left|(A x)^{\prime}(t)+c^{\prime}(t) x(t-\tau)\right|}{1-c_{0}} d t \\
& \leq \int_{0}^{T} \frac{\left|(A x)^{\prime}(t)\right|}{1-c_{0}} d t+\frac{c_{1} T}{1-c_{0}}\left(d+\int_{0}^{T}\left|x^{\prime}(t)\right| d t\right)
\end{aligned}
$$

In view of $c_{1} T /\left(1-c_{0}\right)<1$, we have

$$
\begin{equation*}
\int_{0}^{T}\left|x^{\prime}(t)\right| d t \leq \int_{0}^{T} \frac{\left|(A x)^{\prime}(t)\right|}{1-c_{0}-c_{1} T} d t+\frac{c_{1} T d}{1-c_{0}-c_{1} T} \tag{3.3}
\end{equation*}
$$

On the other hand, by (3.1) we have

$$
\begin{align*}
\int_{0}^{T}\left|(A x)^{\prime}(t)\right| d t & \leq \int_{0}^{T}|g(x(t-\gamma(t)))| d t+\int_{0}^{T}|e(t)| d t \tag{3.4}\\
& \leq \int_{0}^{T}|g(x(t-\gamma(t)))| d t+T|e|_{0}
\end{align*}
$$

Now we consider $\int_{0}^{T}|g(x(t-\gamma(t)))| d t$. Let

$$
F(z)=\frac{T(r+z)}{1-c_{0}-c_{1} T}, \quad z \in[0, \infty)
$$

From $\operatorname{Tr} /\left(1-c_{0}-c_{1} T\right)<1$, we have $F(0)<1$. Since $F(z)$ is continuous on $[0, \infty)$, so there exists a constant $\delta>0$ such that

$$
F(z)=\frac{T(r+z)}{1-c_{0}-c_{1} T}<1, \quad z \in(0, \delta] .
$$

Choosing $\varepsilon_{1}=\delta_{1} / 2>0$, we have

$$
\begin{equation*}
\frac{T\left(r+\varepsilon_{1}\right)}{1-c_{0}-c_{1} T}<1 \tag{3.5}
\end{equation*}
$$

Similarly, there exists a constant $\varepsilon_{2}>0$ such that

$$
\begin{equation*}
\frac{T\left(r+\varepsilon_{2}\right)}{\sigma-1-c_{1} T}<1 \tag{3.6}
\end{equation*}
$$

For such a constant ε_{1}, in view of assumption (H2), we obtain that there exists a constant $\rho>0$ such that

$$
\begin{equation*}
|g(x)| \leq\left(r+\varepsilon_{1}\right)|x|, \quad \text { whenever }|x|>\rho \tag{3.7}
\end{equation*}
$$

Let

$$
E_{1}=\{t \in[0, T]:|x(t-\gamma(t))|>\rho\}, \quad E_{2}=\{t \in[0, T]:|x(t-\gamma(t))| \leq \rho\}
$$

By (3.7) we have

$$
\begin{align*}
& \int_{0}^{T}|g(x(t-\gamma(t)))| d t \tag{3.8}\\
& \quad=\left(\int_{E_{1}}|g(x(t-\gamma(t)))| d t+\int_{E_{2}}|g(x(t-\gamma(t)))| d t\right) \\
& \quad \leq T\left(r+\varepsilon_{1}\right)|x|_{0}+T g_{\rho}
\end{align*}
$$

where $g_{\rho}=\max _{|u| \leq \rho}|g(u)|$. From (3.4) and (3.8) we have

$$
\begin{align*}
\int_{0}^{T}\left|(A x)^{\prime}(t)\right| d t & \leq \int_{0}^{T}|g(x(t-\gamma(t)))| d t+T|e|_{0} \tag{3.9}\\
& \leq T\left(r+\varepsilon_{1}\right)|x|_{0}+T g_{\rho}+T|e|_{0}
\end{align*}
$$

If $c_{0}<1 / 2$, from (3.3) and (3.9) we have

$$
\begin{equation*}
\int_{0}^{T}\left|x^{\prime}(t)\right| d t \leq \frac{T\left(r+\varepsilon_{1}\right)}{1-c_{0}-c_{1} T}|x|_{0}+\frac{T g_{\rho}+T|e|_{0}}{1-c_{0}-c_{1} T}+\frac{c_{1} T d}{1-c_{0}-c_{1} T} \tag{3.10}
\end{equation*}
$$

From (3.2) and (3.10) we have

$$
\begin{align*}
|x|_{0} & \leq d+\int_{0}^{T}\left|x^{\prime}(s)\right| d s \tag{3.11}\\
& \leq d+\frac{T\left(r+\varepsilon_{1}\right)}{1-c_{0}-c_{1} T}|x|_{0}+\frac{T g_{\rho}+T|e|_{0}}{1-c_{0}-c_{1} T}+\frac{c_{1} T d}{1-c_{0}-c_{1} T}
\end{align*}
$$

By (3.5) and (3.11) there exists a constant $M_{1}>0$ such that $|x|_{0} \leq M_{1}$.

If $\sigma>1$, from (3.6) and the condition $c_{1} T /(\sigma-1)<1$, similar to the above proof, we obtain that there exists a constant $M_{2}>0$ such that $|x|_{0} \leq M_{2}$. Then we have $|x|_{0}<\max \left\{M_{1}, M_{2}\right\}+1:=\bar{M}$.

Step 2. Let $\Omega_{2}=\{x \in \operatorname{Ker} L: Q N x=0\}$, we shall prove that Ω_{2} is a bounded set. For all $x \in \Omega_{2}$, when $x=a_{0} \varphi(t), a_{0} \in \mathbb{R}$, we have

$$
\begin{equation*}
\int_{0}^{T} g\left(a_{0} \varphi(t)\right) d t=0 \tag{3.12}
\end{equation*}
$$

When $c_{0}<1 / 2$, we have

$$
\begin{aligned}
\varphi(t) & =A^{-1}(1)=1+\sum_{j=1}^{\infty} \prod_{i=1}^{j} c(t-(i-1) \tau) \\
& \geq 1-\sum_{j=1}^{\infty} \prod_{i=1}^{j} c_{0}=1-\frac{c_{0}}{1-c_{0}}=\frac{1-2 c_{0}}{1-c_{0}}:=\delta_{1}>0
\end{aligned}
$$

Then we have $a_{0} \leq d / \delta_{1}$. Otherwise, for all $t \in[0, T], a_{0} \varphi(t)>d$, from assumption (H1), we have

$$
\int_{0}^{T} g\left(a_{0} \varphi(t)\right) d t>0
$$

which is contradiction to (3.12). When $\sigma>1$, we have

$$
\begin{aligned}
\varphi(t) & =A^{-1}(1)=-\frac{1}{c(t+\tau)}-\sum_{j=1}^{\infty} \prod_{i=1}^{j+1} \frac{1}{c(t+i \tau)} \\
& \leq-\frac{1}{\sigma}-\sum_{j=1}^{\infty} \prod_{i=1}^{j+1} \frac{1}{\sigma}=-\frac{1}{\sigma-1}:=\delta_{2}<0
\end{aligned}
$$

Then we have $a_{0} \leq-d / \delta_{2}$. Otherwise, for all $t \in[0, T], a_{0} \varphi(t)<-d$, from assumption (H1), we have

$$
\int_{0}^{T} g\left(a_{0} \varphi(t)\right) d t<0
$$

which is contradiction to (3.12). So Ω_{2} is a bounded set.
Denote $\left|a_{0} \varphi(t)\right| \leq \widehat{M}$ and $M=\max \{\bar{M}, \widehat{M}\}+1$.
Step 3. Let $\Omega=\left\{x \in X:|x|_{0}<M\right\}$, then $\Omega_{1} \cup \Omega_{2} \subset \Omega$. For all $(x, \lambda) \in$ $\partial \Omega \times(0,1)$, from the above proof, $L x \neq \lambda N x$ is satisfied. Obviously, condition (b) of Lemma 2.2 is also satisfied. Now we prove that condition (c) of Lemma 2.2 is satisfied. Take the homotopy

$$
H(x, \mu)=\mu x-(1-\mu) J Q N x, \quad x \in \bar{\Omega} \cap \operatorname{Ker} L, \quad \mu \in[0,1]
$$

where $J: \operatorname{Im} Q \rightarrow \operatorname{Ker} L$ is a homeomorphism with $J a=a \varphi(t), a \in \mathbb{R}$. For all $x \in \partial \Omega \cap \operatorname{Ker} L$, we have $x=a_{1} \varphi, a_{1} \in \mathbb{R},\left|a_{1} \varphi\right|=M>d$, then

$$
H(x, \mu)=a_{1} \varphi \mu+(1-\mu) g\left(a_{1} \varphi\right) .
$$

By using assumption (H1), we have $H(x, \mu) \neq 0$. And then by the degree theory,

$$
\begin{aligned}
\operatorname{deg}\{J Q N, \Omega \cap \operatorname{Ker} L, 0\} & =\operatorname{deg}\{H(\cdot, 0), \Omega \cap \operatorname{Ker} L, 0\} \\
& =\operatorname{deg}\{H(\cdot, 1), \Omega \cap \operatorname{Ker} L, 0\} \\
& =\operatorname{deg}\{I, \Omega \cap \operatorname{Ker} L, 0\} \neq 0
\end{aligned}
$$

Applying Lemma 2.2, we reach the conclusion.
As applications, we consider an example:

Example 3.2.

$$
\begin{equation*}
\left(x(t)-\frac{1}{10}(2-\sin t) x(t-\tau)\right)^{\prime}+g\left(x\left(t-\frac{1}{2} \sin t\right)\right)=\cos t \tag{3.13}
\end{equation*}
$$

where $\gamma(t)=(1 / 2) \sin t, e(t)=\cos t, c(t)=(1 / 10)(2-\sin t), T=2 \pi$,

$$
g(u)= \begin{cases}e^{\sin u} & \text { for } u \geq 0 \\ \frac{1}{101} u & \text { for } u<0\end{cases}
$$

We have

$$
\lim _{|x| \rightarrow \infty} \frac{|g(x)|}{|x|}<\frac{1}{100}:=r
$$

$c_{0}=3 / 10$ and $c_{1}=1 / 10$. From simple calculation, we have

$$
\frac{c_{1} T}{1-c_{0}}=\frac{2 \pi}{7}<1, \quad \frac{T r}{1-c_{0}-c_{1} T}=\frac{\pi}{35-10 \pi}<1
$$

Applying Theorem 3.1, (3.13) has at least one 2π-periodic solution.

References

[1] B. Du, L. Guo, W. Ge and S. Lu, Periodic solutions for generalized Liénard neutral equation with variable parameter, Nonlinear Anal. 70 (2009), 385-392.
[2] R. E. Gaines and J. L. Mawhin, Coincidence Degree and Nonlinear Differential Equations, Springer, Berlin, 1977.
[3] B. Liu and L. Huang, Existence and uniqueness of periodic solutions for a kind of first order neutral functional differential equation, J. Math. Anal. Appl. 322 (2006), 121-132.
[4] S. Lu and W. Ge, On the existence of periodic solutions for neutral functional differential equation, Nonlinear Anal. 54 (2003), 1285-1306.
[5] S. Lu, W. Ge and Z. Zheng, Periodic solutions to neutral differential equation with deviating arguments, Appl. Math. Comput. 152 (2004), 17-27.
[6] S. Lu, J. Ren and W. Ge, Problems of periodic solutions for a kind of second order neutral functional differential equation, Appl. Anal. 82 (2003), 411-426.
[7] E. Serra, Periodic solutions for some nonlinear differential equational equations of neutral type, Nonlinear Anal. 17 (1991), 139-151.

Bo Du
Department of Mathematics
School of Science
Zhejiang Forestry College
Hangzhou 311300, P.R. China
E-mail address: dubo7307@163.com

Jianxin Zhao

Navy Submarine Academy
Qingdao, 266071, P.R. China
Weigao Ge
Department of Mathematics
Beijing Institute of Technology
Beijing, 100081, P.R. China

[^0]: 2000 Mathematics Subject Classification. 34B15, 34B13.
 Key words and phrases. Neutral, variable parameter, periodic solution, Mawhin's continuation theorem.

 Supported by National Natural Science Foundation of P.R. China (No:10671012).

