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PERIODIC SOLUTIONS
FOR A NEUTRAL DIFFERENTIAL EQUATION

WITH VARIABLE PARAMETER

Bo Du — Jianxin Zhao — Weigao Ge

Abstract. By means of Mawhin’s continuation theorem, we present some

sufficient conditions which guarantee the existence of at least one T -periodic

solution for a first-order neutral equation with variable parameter. The
interest is that the coefficient c is not a constant, which is different from

the corresponding ones of past work.

1. Introduction

This paper is devoted to using Mawhin’s continuation theorem to investigate
the existence of periodic solutions for a first-order neutral equation with variable
parameter as follows:

(x(t)− c(t)x(t− τ))′ + g(x(t− γ(t))) = e(t), (1.1)

where g, e, γ ∈ C(R, R) with e(t) = e(t + T ) and γ(t) = γ(t + T ); c ∈ C1(R, R)
with |c(t)| 6= 1 and c(t + T ) = c(t); T, τ are given constants with T > 0.

In recent years, neutral functional differential equations (NFDEs) have been
extensively studied by many researchers. In [4]–[6], Lu and Ge studied the
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following NFDEs:

d

dt
(u(t)− ku(t− τ)) = g1(u(t)) + g2(u(t− τ1)) + p(t),

(x(t) + cx(t− r))′′ + f(x′(t)) + g(x(t− τ(t))) = p(t),

d2

dt2
(u(t)− ku(t− τ)) = f(u(t))u′(t) + α(t)g(u(t))

+
n∑

j=1

βj(t)g(u(t− γj(t))) + p(t).

In [7] Enrico Serra studied a kind of NFDE in the following form:

x′(t) + ax′(t− τ) = f(t, x(t)).

In [3] Liu considered the following first-order neutral functional differential equa-
tion:

(u(t) + Bu(t− τ))′ = g1(t, u(t))− g2(t, u(t− τ1)) + p(t).

However, to the best of our knowledge, there are few results on the existence
of periodic solutions to first-order neutral equations for the case of a variable
c(t). Recently, we obtained the properties of the neutral operator A:CT → CT ,
[Ax](t) = x(t) − c(t)x(t − τ) in [6]. In this paper, we will obtain the existence
of periodic solutions to equation (1.1) by using the properties of the operator A

and Mawhin’s continuation theorem.

2. Preliminary

In this section, we give some lemmas which will be used in this paper. Let

c0 = max
t∈[0,T ]

|c(t)|, σ = min
t∈[0,T ]

|c(t)|, c1 = max
t∈[0,T ]

|c′(t)|,

CT = {x | x ∈ C(R, R), x(t + T ) ≡ x(t), for all t ∈ R}

with the norm
|ϕ|0 = max

t∈[0,T ]
|ϕ(t)|, for all ϕ ∈ CT

and
C1

T = {x | x ∈ C1(R, R), x(t + T ) ≡ x(t), for all t ∈ R}
with the norm

||ϕ|| = max
t∈[0,T ]

{|ϕ|0, |ϕ′|0}, for all ϕ ∈ C1
T .

Clearly, CT and C1
T are Banach spaces.

Define linear operator:

A:CT → CT , [Ax](t) = x(t)− c(t)x(t− τ), for all t ∈ R.
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Lemma 2.1 ([1]). If |c(t)| 6= 1, then operator A has continuous inverse A−1

on CT , satisfying:

(a) [A−1f ](t) =



f(t) +
∞∑

j=1

j∏
i=1

c(t− (i− 1)τ)f(t− jτ),

c0 < 1, for all f ∈ CT ,

−f(t + τ)
c(t + τ)

−
∞∑

j=1

j+1∏
i=1

1
c(t + iτ)

f(t + jτ + τ),

σ > 1, for all f ∈ CT .

(b)
∫ T

0

|[A−1f ](t)| dt ≤


1

1− c0

∫ T

0

|f(t)| dt, c0 < 1, for all f ∈ CT ,

1
σ − 1

∫ T

0

|f(t)| dt, σ > 1, for all f ∈ CT .

Let X and Y be real Banach spaces and let L:D(L) ⊂ X → Y be a Fred-
holm operator with index zero, here D(L) denotes the domain of L. This
means that ImL is closed in Y and dim Ker L = codim ImL < ∞. If L is
a Fredholm operator with index zero, then there exist continuous projectors
P :X → X, Q:Y → Y such that Im P = KerL, Im L = KerQ = Im (I −Q) and
LD(L)∩Ker P : (I − P )X → Im L is invertible. Denote by Kp the inverse of LP .

Let Ω be an open bounded subset of X, a map N : Ω → Y is said to be L-
compact in Ω if QN(Ω) is bounded and the operator Kp(I−Q)N(Ω) is relatively
compact. We first recall the famous Mawhin’s continuation theorem.

Lemma 2.2 ([2]). Suppose that X and Y are two Banach spaces and L:D(L)
⊂ X → Y is a Fredholm operator with index zero. Furthermore, Ω ⊂ X is
an open bounded set and N : Ω → Y is L-compact on Ω. If all the following
conditions hold:

(a) Lx 6= λNx, for all x ∈ ∂Ω ∩D(L), for all λ ∈ (0, 1),
(b) Nx /∈ Im L, for all x ∈ ∂Ω ∩KerL,
(c) deg{JQN, Ω ∩KerL, 0} 6= 0,

where J : Im Q → KerL is an isomorphism. Then equation Lx = Nx has a
solution on Ω ∩D(L).

Define a linear operator

L:D(L) ⊂ CT → CT , Lx = (Ax)′,

where D(L) = {x | x ∈ C1
T }, and a nonlinear operator

N :CT → CT , Nx = −g(x(t− γ(t))) + e(t).
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It is easy to see

Im L =
{

y

∣∣∣∣ y ∈ CT ,

∫ T

0

y(s) ds = 0
}

.

Since for all x ∈ KerL, (x(t)− c(t)x(t− τ))′ = 0, we have

(2.1) x(t)− c(t)x(t− τ) = 1.

Let ϕ(t) be the unique T -periodic solution of (2.1), then ϕ(t) 6= 0 and

KerL = {aϕ(t), a ∈ R}.

So Im L is closed in CT and dim KerL = codim Im L = 1. Then the operator L

is a Fredholm operator with index zero. Define continuous projectors

P :CT → KerL, (Px)(t) =

∫ T

0
x(t)ϕ(t) dt∫ T

0
ϕ2(t) dt

ϕ(t)

and

Q:CT → CT /Im L, Qy =
1
T

∫ T

0

y(s) ds.

Hence,
Im P = KerL and KerQ = Im L.

Set operators

LP = L|D(L)∩Ker P :D(L) ∩KerP → Im L

and
L−1

P = Kp: Im L → D(L) ∩KerP.

Since
Kp: ImL ⊂ CT → D(L) ∩KerP ⊂ C1

T

is an embedding operator, so Kp is a completely continuous operator; on the
other hand, by the definitions of Q and N , it is clear that QN(Ω) is bounded.
Hence nonlinear operator N is L-compact on Ω.

3. Existence of periodic solution for equation (1.1)

Theorem 3.1. Suppose that
∫ T

0
e(s) ds = 0,

∫ T

0
ϕ2(s) ds 6= 0, |c(t)| 6= 1 for

all t ∈ R, and there exist constants d > 0 and r ≥ 0 such that

(H1) xg(x) > 0, whenever |x| > d;
(H2) lim|x|→∞ |g(x)|/|x| ≤ r ∈ [0,∞).

Then equation (1.1) has at least one T -periodic solution, if

max
{

c1T

1− c0
,

T r

1− c0 − c1T

}
< 1 for c0 <

1
2
,

max
{

c1T

σ − 1
,

T r

σ − 1− c1T

}
< 1 for σ > 1.
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Proof. We complete the proof by three steps.
Step 1. Let Ω1 = {x ∈ D(L) : Lx = λNx, λ ∈ (0, 1)}. We show that Ω1 is

a bounded set. For all x ∈ Ω1, Lx = λNx, i.e.

(3.1) (Ax)′(t) = −λg(x(t− γ(t))) + λe(t).

Integrating both sides of (3.1) over [0, T ], we have∫ T

0

g(x(t− γ(t))) dt = 0.

From integral mean value theorem, there is a constant ξ ∈ [0, T ] such that
g(x(ξ − γ(ξ))) = 0, from assumption (H1) we have |x(ξ − γ(ξ))| ≤ d. Because
x(t) is a T -periodic function, then there exists a constant ξ∗ ∈ [0, T ] satisfying
ξ − γ(ξ) = ξ∗ + kT , k ∈ Z, then we have |x(ξ∗)| ≤ d. Hence

|x|0 = max
t∈[0,T ]

∣∣∣∣x(ξ∗) +
∫ t

ξ∗
x′(s) ds

∣∣∣∣(3.2)

≤ |x(ξ∗)|+
∫ T

0

|x′(s)| ds ≤ d +
∫ T

0

|x′(s)| ds.

From [Ax](t) = x(t)− c(t)x(t− τ), for all x ∈ C1
T , we have

(Ax′)(t) = (Ax)′(t) + c′(t)x(t− τ),

then from Lemma 2.1 and (3.2), if c0 < 1/2 we have∫ T

0

|x′(t)| dt =
∫ T

0

|(A−1Ax′)(t)| dt ≤
∫ T

0

|(Ax′)(t)|
1− c0

dt

=
∫ T

0

|(Ax)′(t) + c′(t)x(t− τ)|
1− c0

dt

≤
∫ T

0

|(Ax)′(t)|
1− c0

dt +
c1T

1− c0

(
d +

∫ T

0

|x′(t)| dt

)
.

In view of c1T/(1− c0) < 1, we have

(3.3)
∫ T

0

|x′(t)| dt ≤
∫ T

0

|(Ax)′(t)|
1− c0 − c1T

dt +
c1Td

1− c0 − c1T
.

On the other hand, by (3.1) we have∫ T

0

|(Ax)′(t)| dt ≤
∫ T

0

|g(x(t− γ(t)))| dt +
∫ T

0

|e(t)| dt(3.4)

≤
∫ T

0

|g(x(t− γ(t)))| dt + T |e|0.

Now we consider
∫ T

0
|g(x(t− γ(t)))| dt. Let

F (z) =
T (r + z)

1− c0 − c1T
, z ∈ [0,∞).
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From Tr/(1− c0 − c1T ) < 1, we have F (0) < 1. Since F (z) is continuous on
[0,∞), so there exists a constant δ > 0 such that

F (z) =
T (r + z)

1− c0 − c1T
< 1, z ∈ (0, δ].

Choosing ε1 = δ1/2 > 0, we have

(3.5)
T (r + ε1)

1− c0 − c1T
< 1.

Similarly, there exists a constant ε2 > 0 such that

(3.6)
T (r + ε2)

σ − 1− c1T
< 1.

For such a constant ε1, in view of assumption (H2), we obtain that there exists
a constant ρ > 0 such that

(3.7) |g(x)| ≤ (r + ε1)|x|, whenever |x| > ρ.

Let

E1 = {t ∈ [0, T ] : |x(t− γ(t))| > ρ}, E2 = {t ∈ [0, T ] : |x(t− γ(t))| ≤ ρ}.

By (3.7) we have

(3.8)
∫ T

0

|g(x(t− γ(t)))| dt

=
( ∫

E1

|g(x(t− γ(t)))| dt +
∫

E2

|g(x(t− γ(t)))| dt

)
≤ T (r + ε1)|x|0 + Tgρ,

where gρ = max|u|≤ρ |g(u)|. From (3.4) and (3.8) we have∫ T

0

|(Ax)′(t)| dt ≤
∫ T

0

|g(x(t− γ(t)))| dt + T |e|0(3.9)

≤ T (r + ε1)|x|0 + Tgρ + T |e|0.

If c0 < 1/2, from (3.3) and (3.9) we have

(3.10)
∫ T

0

|x′(t)| dt ≤ T (r + ε1)
1− c0 − c1T

|x|0 +
Tgρ + T |e|0
1− c0 − c1T

+
c1Td

1− c0 − c1T
.

From (3.2) and (3.10) we have

|x|0 ≤ d +
∫ T

0

|x′(s)| ds(3.11)

≤ d +
T (r + ε1)

1− c0 − c1T
|x|0 +

Tgρ + T |e|0
1− c0 − c1T

+
c1Td

1− c0 − c1T
.

By (3.5) and (3.11) there exists a constant M1 > 0 such that |x|0 ≤ M1.



Periodic Solutions for a Neutral Differential Equation 281

If σ > 1, from (3.6) and the condition c1T/(σ − 1) < 1, similar to the above
proof, we obtain that there exists a constant M2 > 0 such that |x|0 ≤ M2. Then
we have |x|0 < max{M1,M2}+ 1 := M .

Step 2. Let Ω2 = {x ∈ KerL : QNx = 0}, we shall prove that Ω2 is a
bounded set. For all x ∈ Ω2, when x = a0ϕ(t), a0 ∈ R, we have

(3.12)
∫ T

0

g(a0ϕ(t)) dt = 0.

When c0 < 1/2, we have

ϕ(t) = A−1(1) = 1 +
∞∑

j=1

j∏
i=1

c(t− (i− 1)τ)

≥ 1−
∞∑

j=1

j∏
i=1

c0 = 1− c0

1− c0
=

1− 2c0

1− c0
:= δ1 > 0.

Then we have a0 ≤ d/δ1. Otherwise, for all t ∈ [0, T ], a0ϕ(t) > d, from assump-
tion (H1), we have ∫ T

0

g(a0ϕ(t)) dt > 0

which is contradiction to (3.12). When σ > 1, we have

ϕ(t) = A−1(1) = − 1
c(t + τ)

−
∞∑

j=1

j+1∏
i=1

1
c(t + iτ)

≤ − 1
σ
−

∞∑
j=1

j+1∏
i=1

1
σ

= − 1
σ − 1

:= δ2 < 0.

Then we have a0 ≤ −d/δ2. Otherwise, for all t ∈ [0, T ], a0ϕ(t) < −d, from
assumption (H1), we have ∫ T

0

g(a0ϕ(t)) dt < 0

which is contradiction to (3.12). So Ω2 is a bounded set.
Denote |a0ϕ(t)| ≤ M̂ and M = max{M, M̂}+ 1.

Step 3. Let Ω = {x ∈ X : |x|0 < M}, then Ω1 ∪ Ω2 ⊂ Ω. For all (x, λ) ∈
∂Ω × (0, 1), from the above proof, Lx 6= λNx is satisfied. Obviously, condition
(b) of Lemma 2.2 is also satisfied. Now we prove that condition (c) of Lemma 2.2
is satisfied. Take the homotopy

H(x, µ) = µx− (1− µ)JQNx, x ∈ Ω ∩KerL, µ ∈ [0, 1],
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where J : ImQ → KerL is a homeomorphism with Ja = aϕ(t), a ∈ R. For all
x ∈ ∂Ω ∩KerL, we have x = a1ϕ, a1 ∈ R, |a1ϕ| = M > d, then

H(x, µ) = a1ϕµ + (1− µ)g(a1ϕ).

By using assumption (H1), we have H(x, µ) 6= 0. And then by the degree theory,

deg{JQN, Ω ∩KerL, 0} = deg{H( · , 0),Ω ∩KerL, 0}
= deg{H( · , 1),Ω ∩KerL, 0}
= deg{I,Ω ∩KerL, 0} 6= 0.

Applying Lemma 2.2, we reach the conclusion. �

As applications, we consider an example:

Example 3.2.

(3.13)
(

x(t)− 1
10

(2− sin t)x(t− τ)
)′

+ g

(
x

(
t− 1

2
sin t

))
= cos t,

where γ(t) = (1/2) sin t, e(t) = cos t, c(t) = (1/10)(2− sin t), T = 2π,

g(u) =

{
esin u for u ≥ 0,
1

101
u for u < 0.

We have

lim
|x|→∞

|g(x)|
|x|

<
1

100
:= r,

c0 = 3/10 and c1 = 1/10. From simple calculation, we have

c1T

1− c0
=

2π

7
< 1,

T r

1− c0 − c1T
=

π

35− 10π
< 1.

Applying Theorem 3.1, (3.13) has at least one 2π-periodic solution.
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