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PERIODIC SOLUTIONS
FOR A NEUTRAL DIFFERENTIAL EQUATION
WITH VARIABLE PARAMETER

Bo Du — JIANXIN ZHAO — WEIGAO GE

ABSTRACT. By means of Mawhin’s continuation theorem, we present some
sufficient conditions which guarantee the existence of at least one T-periodic
solution for a first-order neutral equation with variable parameter. The
interest is that the coefficient ¢ is not a constant, which is different from
the corresponding ones of past work.

1. Introduction

This paper is devoted to using Mawhin’s continuation theorem to investigate
the existence of periodic solutions for a first-order neutral equation with variable
parameter as follows:

(@(t) — c()a(t — 7)) + g(a(t — (1)) = e(t), (1.1)

where g,e,v € C(R,R) with e(t) = e(t +T) and y(t) = v(t + T); c € C}(R,R)
with |e(t)| # 1 and ¢(t + T) = ¢(t); T, 7 are given constants with T' > 0.

In recent years, neutral functional differential equations (NFDEs) have been
extensively studied by many researchers. In [4]-[6], Lu and Ge studied the
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following NFDEs:

%(U(t) = ku(t = 7)) = g1(u(t)) + g2(u(t — 1)) + p(1),

(@(t) + ca(t = )" + f(2'(t)) + g(z(t — 7(1))) = p(t),

%(U(t) = ku(t — 7)) = f(u(®)v'(t) + a(t)g(u(t))

+ Z Bi(#)g(u(t = ;1)) + p(D)-

In [7] Enrico Serra studied a kind of NFDE in the following form:
() +ax'(t —71) = f(t,z(t)).

In [3] Liu considered the following first-order neutral functional differential equa-
tion:
(u(t) + Bu(t — 7)) = g1(t,u(t)) — g2(t, u(t — 1)) + p(t).

However, to the best of our knowledge, there are few results on the existence
of periodic solutions to first-order neutral equations for the case of a variable
¢(t). Recently, we obtained the properties of the neutral operator A: Cr — Cf,
[Az](t) = x(t) — e(t)z(t — 7) in [6]. In this paper, we will obtain the existence
of periodic solutions to equation (1.1) by using the properties of the operator A
and Mawhin’s continuation theorem.

2. Preliminary

In this section, we give some lemmas which will be used in this paper. Let
= t = mi t = (¢
co = max, c@)], o uin lc@)], e, ' ()],
Cr={z|ze€CR,R), z(t+T)=z(t), for all t € R}

with the norm

— )|, for all v € C
lelo tggg]lw()l, or all p € Cr

and
Ch={z|2z e C'R,R), z(t+T) = x(t), for all t € R}

with the norm

lell = max {|¢lo,|¢'|o}, for all p € Cr.
t€[0,T]

Clearly, Cr and C# are Banach spaces.
Define linear operator:

A:Cpr — Cp, [Az](t) = z(t) — c(t)z(t —7), forallteR.
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LEMMA 2.1 ([1]). If |c(t)| # 1, then operator A has continuous inverse A~*
on Crp, satisfying:

F@+Y et == 0)r)ft =),
j=1i=1
co <1, forall f e Crp,
ft+7) 1 ,
_c(t+7)_z, c(t+i7)f(t+‘77+7-)’

o>1, forall f eCr.

1
1—00

T
T / [f@)|dt, co <1, forall f € Cr,
(b) / A~ F)(0)] dt < 0

T
/ |f@®)|dt, o >1, forall f € Cr.
0

oc—1
Let X and Y be real Banach spaces and let L: D(L) C X — Y be a Fred-
holm operator with index zero, here D(L) denotes the domain of L. This
means that ImlL is closed in Y and dimKer L = codimImL < oco. If L is
a Fredholm operator with index zero, then there exist continuous projectors
P:X - X @Y —Ysuch that InP=Ker L, ImnL =Ker@ =Im (I — Q) and
Lp(rynker p: (I — P)X — Im L is invertible. Denote by K, the inverse of Lp.
Let © be an open bounded subset of X, a map N:Q — Y is said to be L-
compact in Q if QN (£2) is bounded and the operator K, (I —Q)N(Q) is relatively
compact. We first recall the famous Mawhin’s continuation theorem.

LEMMA 2.2 ([2]). Suppose that X andY are two Banach spaces and L: D(L)
C X — Y is a Fredholm operator with index zero. Furthermore, Q C X is
an open bounded set and N:Q — Y is L-compact on Q. If all the following

conditions hold:

(a) Lx # ANz, for all x € 0Q N D(L), for all X € (0,1),
(b) Nz ¢ Im L, for allz € 902 NKer L,
(c) deg{JQN,Q2NKerL,0} #0,

where J:Im@Q — Ker L is an isomorphism. Then equation Lr = Nx has a
solution on QN D(L).

Define a linear operator
L:D(L) c Cp — Cp, Lz = (Ax),
where D(L) = {z | z € C}}, and a nonlinear operator

N:Cr — Cp, Nzx=—g(z(t—~(t)))+ e(t).
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It is easy to see

T
ImL:{y yGCT,/ y(s)ds:O}.
0

Since for all z € Ker L, (x(t) — c(t)xz(t — 7))’ = 0, we have

(2.1) z(t) —c()x(t— 1) = 1.
Let ¢(t) be the unique T-periodic solution of (2.1), then p(t) # 0 and
Ker L = {ap(t), a € R}.

So Im L is closed in Cr and dim Ker L = codimIm L = 1. Then the operator L
is a Fredholm operator with index zero. Define continuous projectors

T
t)o(t) dt
P:Cr - KerL, (Pz)(t)= M
Jo St at
and
1 (T
Q:Cr — Cr/ImL, Qy= T/ y(s) ds.
0
Hence,

ImP=KerL and Ker@ =ImlL.
Set operators
LP = L‘D(L)ﬁKerP: D(L) NKerP —ImL
and
Lp' = K,;:ImL — D(L) NKer P.
Since
K,:ImL C Cr — D(L)NKer P C Cr

is an embedding operator, so K, is a completely continuous operator; on the

other hand, by the definitions of @ and N, it is clear that QN () is bounded.
Hence nonlinear operator N is L-compact on €.

3. Existence of periodic solution for equation (1.1)
THEOREM 3.1. Suppose that fOT e(s)ds =0, fOT ©3(s)ds £ 0, |c(t)] # 1 for
all t € R, and there exist constants d > 0 and r > 0 such that
(H1) zg(x) > 0, whenever |x| > d;
(H2) limg) o0 [9(@)[/|2| < 7 € [0,00).
Then equation (1.1) has at least one T-periodic solution, if

ClT Tr <1 f < 1
max or C b
1—co’'1—co—arT 0> 9

ClT Tr
1 1.
max{a_1,0_1_01T}< for o >
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PrOOF. We complete the proof by three steps.
Step 1. Let O = {x € D(L) : Lv = ANz, A € (0,1)}. We show that € is
a bounded set. For all x € 0y, Lx = ANz, i.e.

3.1) (Az)'(t) = =Ag(a(t = 7(1))) + Ae(t).

Integrating both sides of (3.1) over [0, T], we have

T
A g(a(t - ~(t))) di = 0.

From integral mean value theorem, there is a constant £ € [0,7] such that
g(xz(§ —~(8))) = 0, from assumption (H1) we have |z(§ — v(€))| < d. Because
z(t) is a T-periodic function, then there exists a constant £* € [0, T] satisfying
E—~(&) =&+ kT, k € Z, then we have |z(£*)| < d. Hence

e+ [ sy as

*

2 =
(3.2) o e,

<@+ [ Weas<ar [ Wl
From [Az](t) = z(t) — c(t)z(t — 7), for all z € Ck, we have
(Aa")(t) = (Az)'(t) + ' (t)x(t — 7),
then from Lemma 2.1 and (3.2), if ¢g < 1/2 we have

/0 \x’(t)ldt=/0 |(A_1Aa:’)(t)|dt§/0 wdt

o
_/TKAﬂ%ﬂ+d@M@T)ﬁ
0

1—60

S/OT [(A2) )] 4, T <d+/OT m'(t)|dt).

1760 1700

In view of ¢1T/(1 — ¢g) < 1, we have
T T
Az)'(¢)| aTd
3.3 "(t)]dt < I dt :
( ) /0 |£L'()| _/0 1760701T +1700701T
On the other hand, by (3.1) we have

T

(3.4) (A|umwwMtsA muu—vm»mv+A le(t)| dt

T
g% lg(a(t — A())] dt + Tlelo.

Now we consider fOT lg(z(t —~v(t)))| dt. Let

T(r+2)

F(z)=— "%
(Z) ].—Co—ClT)

z €10, 00).
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From Tr/(1 —co —1T) < 1, we have F(0) < 1. Since F'(z) is continuous on
[0, 00), so there exists a constant § > 0 such that

T(r+=z)
Flz)=———"—<1 0,4].
()= T <1 2e(0.9]
Choosing £ = §1/2 > 0, we have
T(r+e1)
3.5 — < 1
( ) 1-— Co — ClT
Similarly, there exists a constant €5 > 0 such that
T(T’ + 52)
3.6 —— < 1.
( ) oc—1-— ClT

For such a constant £1, in view of assumption (H2), we obtain that there exists
a constant p > 0 such that

(3.7) lg(x)| < (r+e1)|z|, whenever |z| > p.
Let
Ey ={t€[0,T]: |x(t —~()| > p}, E2={t€[0,T]:|x(t —~(t))| < p}-

By (3.7) we have

T
(3.8) / 9 (t — (1)) dt

-(/ otete— (o]t + | slalt =2 at)

< T(T’ =+ 61)|$|0 + Tgp,

where g, = max|,|<, |g(u)|. From (3.4) and (3.8) we have

T T
(3.9) | 1yl < [ lgtate =@l at + Tiel
0 0
<T(r+e1)|zlo+Tgy + Tlelo.
If ¢g < 1/2, from (3.3) and (3.9) we have

T(r+e1)

Tg, + Tlelo aTd
+
— Cy — ClT

l—CQ—ClT 1—80—61T'

(3.10) /O |2 (t)| dt < :

From (3.2) and (3.10) we have

lzfo +

T
(3.11)  |zo §d+/ |2’ (s)| ds
0

T(?” + 51)

Tg,+ Tlelo n aTd
1-— Co — 01T

<d .
+ 1—Co—ClT 1_CQ_C1T

lz|o +

By (3.5) and (3.11) there exists a constant M; > 0 such that |z|p < M.
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If o > 1, from (3.6) and the condition ¢;T'/(c — 1) < 1, similar to the above
proof, we obtain that there exists a constant My > 0 such that |z|o < Ms. Then
we have |z|op < max{M;, My} +1:= M.

Step 2. Let Q9 = {& € KerL : QNa = 0}, we shall prove that Qs is a
bounded set. For all x € Qy, when = agp(t), ag € R, we have

(3.12) /0 glaop(t)) dt = 0.
When ¢y < 1/2, we have
o(t) = A7 1) =1+ ZHc(t — (i —1)7)

Zl—incozl— © _ 1720 5.,

1—0() 1—60

Then we have ag < d/d;. Otherwise, for all t € [0,T], agp(t) > d, from assump-
tion (H1), we have

/0 " glanpl0)dt > 0
which is contradiction to (3.12). When o > 1, we have
oo j+1
olt) = A7 (1) = - ct+7) ZH t+ir)
1 & )
< - 231 1_[1 - =4, < 0.
j=1i

Then we have ag < —d/d2. Otherwise, for all ¢t € [0,T], app(t) < —d, from
assumption (H1), we have

/0 glagp(t)) dt < 0

which is contradiction to (3.12). So Q3 is a bounded set.
Denote |agp(t)| < M and M = max{M, M\} + 1.

Step 3. Let Q = {z € X : |z|p < M}, then Q3 UQy C Q. For all (z,)\) €
090 x (0,1), from the above proof, Lx # ANz is satisfied. Obviously, condition
(b) of Lemma 2.2 is also satisfied. Now we prove that condition (c) of Lemma 2.2
is satisfied. Take the homotopy

H(x,p) =pr— (1—p)JQNz, xe€QnKerL, pel0,1],
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where J:Im @ — Ker L is a homeomorphism with Ja = ap(t), a € R. For all
x € 02 NKer L, we have z = a1, a1 € R, |ajp| = M > d, then

H(z,p) = arpp+ (1 = p)g(arp).
By using assumption (H1), we have H(x, 1) # 0. And then by the degree theory,

deg{JQN,QNKer L,0} =deg{H(-,0),2NKerL,0}
=deg{H(-,1),Q2NKerL,0}
= deg{I, 2N Ker L,0} # 0.

Applying Lemma 2.2, we reach the conclusion. O
As applications, we consider an example:

EXAMPLE 3.2.

(3.13) (a:(t) - %(2 —sint)z(t — 7')) +g (a: <t - %sin t)) = cost,
where v(t) = (1/2)sint, e(t) = cost, ¢(t) = (1/10)(2 — sint), T = 2,

esinv for u >0,
glu)=19 1

ﬁu for u < 0.
We have
i 0@ L
¢o = 3/10 and ¢; = 1/10. From simple calculation, we have
al’ _2m _ 1, Ir - T 1
1—00 7 1—00—01T 35— 107

Applying Theorem 3.1, (3.13) has at least one 27-periodic solution.
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